首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ichthyosis prematurity syndrome (IPS) is an autosomal-recessive disorder characterized by premature birth and neonatal asphyxia, followed by a lifelong nonscaly ichthyosis with atopic manifestations. Here we show that the gene encoding the fatty acid transport protein 4 (FATP4) is mutated in individuals with IPS. Fibroblasts derived from a patient with IPS show reduced activity of very long-chain fatty acids (VLCFA)-CoA synthetase and a specific reduction in the incorporation of VLCFA into cellular lipids. The human phenotype is consistent with Fatp4 deficiency in mice that is characterized by a severe skin phenotype, a defective permeability barrier function, and perturbed VLCFA metabolism. Our results further emphasize the importance of fatty acid metabolism for normal epidermal barrier function illustrated by deficiency of a member in the FATP family of proteins.  相似文献   

2.
Fatty acid transport protein (FATP) 4 is one of a family of six FATPs that facilitate long- and very long-chain fatty acid uptake. Mice lacking FATP4 are born with tight, thick skin and a defective epidermal barrier; they die neonatally due to dehydration and restricted movements. Both the skin phenotype and the lethality are rescued by transgene-driven expression of FATP4 solely in suprabasal keratinocytes. Here we show that Fatp4 mutants exhibit epidermal hyperplasia resulting from an increased number of proliferating suprabasal cells. In addition, barrier formation initiates precociously but never progresses to completion. To investigate possible mechanisms whereby Fatp4 influences skin development, we identified misregulated genes in Fatp4 mutants. Remarkably, three members of the epidermal growth factor (EGF) family (Ereg, Areg, and Epgn) showed increased expression that was associated with elevated epidermal activation of the EGF receptor (EGFR) and STAT3, a downstream effector of EGFR signaling. Both Tyrphostin AG1478, an EGFR tyrosine kinase inhibitor, and curcumin, an inhibitor of both STAT3 and EGFR, attenuated STAT3 activation/nuclear translocation, reduced skin thickening, and partially suppressed the barrier abnormalities. These data identify FATP4 activity as negatively influencing EGFR activation and the resulting STAT3 signaling during normal skin development. These findings have important implications for understanding the pathogenesis of ichthyosis prematurity syndrome, a disease recently shown to be caused by FATP4 mutations.  相似文献   

3.
FATP4 (fatty acid transport protein 4; also known as SLC27A4) is the most widely expressed member of a family of six long chain fatty acid transporters. FATP4 is highly expressed in enterocytes and has therefore been proposed to be a major importer of dietary fatty acids. Two independent mutations in Fatp4 cause mice to be born with thick, tight, shiny, "wrinkle-free" skin and a defective skin barrier; they die within hours of birth from dehydration and restricted movements. In contrast, induced keratinocyte-specific deficiency of FATP4 in adult mice causes only mild skin abnormalities. Therefore, whether the loss of FATP4 from skin or a systemic gestational metabolic defect causes the severe skin defects and neonatal lethality remain important unanswered questions. To investigate the basis for the phenotype, we first generated wild-type tetraploid/mutant diploid aggregates that should lead to rescue of any abnormalities caused by loss of FATP4 from the placenta. However, the skin phenotype was not ameliorated. We then generated transgenic mice expressing exogenous FATP4 either widely or specifically in suprabasal keratinocytes, and we bred the transgenes onto the Fatp4(-/-) background. Both modes of FATP4 expression led to rescue of the neonatally lethal skin defects, and the resulting mice were viable and fertile. Keratinocyte expression of an FATP4 variant with mutations in the acyl-CoA synthetase domain did not provide any degree of rescue. We conclude that expression of FATP4 with an intact acyl-CoA synthetase domain in suprabasal keratinocytes is necessary for normal skin development and that FATP4 functions in establishing the cornified envelope.  相似文献   

4.
Elongase of very long chain fatty acids-4 (ELOVL4) is the only mammalian enzyme known to synthesize C28-C36 fatty acids. In humans, ELOVL4 mutations cause Stargardt disease-3 (STGD3), a juvenile dominant macular degeneration. Heterozygous Stgd3 mice that carry a pathogenic mutation in the mouse Elovl4 gene demonstrate reduced levels of retinal C28-C36 acyl phosphatidylcholines (PC) and epidermal C28-C36 acylceramides. Homozygous Stgd3 mice die shortly after birth with signs of disrupted skin barrier function. In this study, we report generation of transgenic (Tg) mice with targeted Elovl4 expression driven by an epidermal-specific involucrin promoter. In homozygous Stgd3 mice, this transgene reinstates both epidermal Elovl4 expression and synthesis of two missing epidermal lipid groups: C28-C36 acylceramides and (O-linoleoyl)-omega-hydroxy C28-C36 fatty acids. Transgene expression also restores skin barrier function and rescues the neonatal lethality of homozygous Stgd3 mice. These studies establish the critical requirement for epidermal C28-C36 fatty acid synthesis for animal viability. In addition to the skin, Elovl4 is also expressed in other tissues, including the retina, brain, and testes. Thus, these mice will facilitate future studies to define the roles of C28-C36 fatty acids in the Elovl4-expressing tissues.  相似文献   

5.
Fatty acid transport protein 4 (FATP4) is an integral membrane protein expressed in the plasma and internal membranes of the small intestine and adipocyte as well as in the brain, kidney, liver, skin, and heart. FATP4 has been hypothesized to be bifunctional, exhibiting both fatty acid transport and acyl-CoA synthetase activities that work in concert to mediate fatty acid influx across biological membranes. To determine whether FATP4 is an acyl-CoA synthetase, the murine protein was engineered to contain a C-terminal FLAG epitope tag, expressed in COS1 cells via adenovirus-mediated infection and purified to near homogeneity using alpha-FLAG affinity chromatography. Kinetic analysis of the enzyme was carried out for long chain (palmitic acid, C16:0) and very long chain (lignoceric acid, C24:0) fatty acids as well as for ATP and CoA. FATP4 exhibited substrate specificity for C16:0 and C24:0 fatty acids with a V(max)/K(m) (C16:0)/V(max)/K(m) (C24:0) of 1.5. Like purified FATP1, FATP4 was insensitive to inhibition by triacsin C but was sensitive to feedback inhibition by acyl-CoA. Although purified FATP4 exhibited high levels of palmitoyl-CoA and lignoceroyl-CoA synthetase activity, extracts from the skin and intestine of FATP4 null mice exhibited reduced esterification for C24:0, but not C16:0 or C18:1, suggesting that in vivo, defects in very long chain fatty acid uptake may underlie the skin disorder phenotype of null mice.  相似文献   

6.
In multicellular organisms, the surface barrier is essential for maintaining the internal environment. In mammals, the barrier is the stratum corneum. Fatty acid transport protein 4 (FATP4) is a key factor involved in forming the stratum corneum barrier. Mice lacking Fatp4 display early neonatal lethality with features such as tight, thick, and shiny skin, and a defective skin barrier. These symptoms are strikingly similar to those of a human skin disease called restrictive dermopathy. FATP4 is a member of the FATP family that possesses acyl-CoA synthetase activity for very long chain fatty acids. How Fatp4 contributes to skin barrier function, however, remains to be elucidated. In the present study, we characterized two Caenorhabditis elegans genes, acs-20 and acs-22, that are homologous to mammalian FATPs. Animals with mutant acs-20 exhibited defects in the cuticle barrier, which normally prevents the penetration of small molecules. acs-20 mutant animals also exhibited abnormalities in the cuticle structure, but not in epidermal cell fate or cell integrity. The acs-22 mutants rarely showed a barrier defect, whereas acs-20;acs-22 double mutants had severely disrupted barrier function. Moreover, the barrier defects of acs-20 and acs-20;acs-22 mutants were rescued by acs-20, acs-22, or human Fatp4 transgenes. We further demonstrated that the incorporation of exogenous very long chain fatty acids into sphingomyelin was reduced in acs-20 and acs-22 mutants. These findings indicate that C. elegans Fatp4 homologue(s) have a crucial role in the surface barrier function and this model might be useful for studying the fundamental molecular mechanisms underlying human skin barrier and relevant diseases.  相似文献   

7.
Mutations in the gene ELOVL4 have been shown to cause stargardt-like macular dystrophy. ELOVL4 is part of a family of fatty acid elongases and is yet to have a specific elongase activity assigned to it. We generated Elovl4 Y270X mutant mice and characterized the homozygous mutant as well as homozygous Elovl4 knockout mice in order to better understand the function or role of Elovl4. We found that mice lacking a functional Elovl4 protein died perinatally. The cause of death appears to be from dehydration due to faulty permeability barrier formation in the skin. Further biochemical analysis revealed a significant reduction in free fatty acids longer than C26 in homozygous mutant and knockout mouse skin. These results implicate the importance of these long chain fatty acids in skin barrier development. Furthermore, we suggest that Elovl4 is likely involved in the elongation of C26 and longer fatty acids.  相似文献   

8.
Fatp4 exhibits acyl-CoA synthetase activity and is thereby able to catalyze the activation of fatty acids for further metabolism. However, its actual function in most tissues remains unresolved, and its role in cellular fatty acid uptake is still controversial. To characterize Fatp4 functions in adipocytes in vivo, we generated a mouse line with adipocyte-specific inactivation of the Fatp4 gene (Fatp4(A-/-)). Under standard conditions mutant mice showed no phenotypical aberrance. Uptake of radiolabeled palmitic and lignoceric acid into adipose tissue of Fatp4(A-/-) mice was unchanged. When exposed to a diet enriched in long chain fatty acids, Fatp4(A-/-) mice gained more body weight compared with control mice, although they were not consuming more food. Pronounced obesity was accompanied by a thicker layer of subcutaneous fat and greater adipocyte circumference, although expression of genes involved in de novo lipogenesis was not changed. However, the increase in total fat mass was contrasted by a significant decrease in various phospholipids, sphingomyelin, and cholesteryl esters in adipocytes. Livers of Fatp4-deficient animals under a high fat diet exhibited a higher degree of fatty degeneration. Nonetheless, no evidence for changes in insulin sensitivity and adipose inflammation was found. In summary, the results of this study confirm that Fatp4 is not crucial for fatty acid uptake into adipocytes. Instead, under the condition of a diet enriched in long chain fatty acids, adipocyte-specific Fatp4 deficiency results in adipose hypertrophy and profound alterations in the metabolism of complex lipids.  相似文献   

9.
Fatty acid transport protein 4 (FATP4) is a fatty acyl-CoA synthetase that preferentially activates very long chain fatty acid substrates, such as C24:0, to their CoA derivatives. To gain better insight into the physiological functions of FATP4, we established dermal fibroblast cell lines from FATP4-deficient wrinkle-free mice and wild type (w.t.) mice. FATP4 -/- fibroblasts had no detectable FATP4 protein by Western blot. Compared with w.t. fibroblasts, cells lacking FATP4 had an 83% decrease in C24:0 activation. Peroxisomal degradation of C24:0 was reduced by 58%, and rates of C24:0 incorporation into major phospholipid species (54-64% decrease), triacylglycerol (64% decrease), and cholesterol esters (58% decrease) were significantly diminished. Because these lipid metabolic processes take place in different subcellular organelles, we used immunofluorescence and Western blotting of subcellular fractions to investigate the distribution of FATP4 protein and measured enzyme activity in fractions from w.t. and FATP4 -/- fibroblasts. FATP4 protein and acyl-CoA synthetase activity localized to multiple organelles, including mitochondria, peroxisomes, endoplasmic reticulum, and the mitochondria-associated membrane fraction. We conclude that in murine skin fibroblasts, FATP4 is the major enzyme producing very long chain fatty acid-CoA for lipid metabolic pathways. Although FATP4 deficiency primarily affected very long chain fatty acid metabolism, mutant fibroblasts also showed reduced uptake of a fluorescent long chain fatty acid and reduced levels of long chain polyunsaturated fatty acids. FATP4-deficient cells also contained abnormal neutral lipid droplets. These additional defects indicate that metabolic abnormalities in these cells are not limited to very long chain fatty acids.  相似文献   

10.
Fatty acid (FA) metabolism is a series of processes that provide structural substances, signalling molecules and energy. Ample evidence has shown that FA uptake is mediated by plasma membrane transporters including FA transport proteins (FATPs), caveolin-1, fatty-acid translocase (FAT)/CD36, and fatty-acid binding proteins. Unlike other FA transporters, the functions of FATPs have been controversial because they contain both motifs of FA transport and fatty acyl-CoA synthetase (ACS). The widely distributed FATP4 is not a direct FA transporter but plays a predominant function as an ACS. FATP4 deficiency causes ichthyosis premature syndrome in mice and humans associated with suppression of polar lipids but an increase in neutral lipids including triglycerides (TGs). Such a shift has been extensively characterized in enterocyte-, hepatocyte-, and adipocyte-specific Fatp4-deficient mice. The mutants under obese and non-obese fatty livers induced by different diets persistently show an increase in blood non-esterified free fatty acids and glycerol indicating the lipolysis of TGs. This review also focuses on FATP4 role on regulatory networks and factors that modulate FATP4 expression in metabolic tissues including intestine, liver, muscle, and adipose tissues. Metabolic disorders especially regarding blood lipids by FATP4 deficiency in different cell types are herein discussed. Our results may be applicable to not only patients with FATP4 mutations but also represent a model of dysregulated lipid homeostasis, thus providing mechanistic insights into obesity and development of fatty liver disease.  相似文献   

11.
Very long chain fatty acids (VLCFA), either free or as components of glycerolipids and sphingolipids, are present in many organs. Elongation of very long chain fatty acids-4 (ELOVL4) belongs to a family of 6 members of putative fatty acid elongases that are involved in the formation of VLCFA. Mutations in ELOVL4 were found to be responsible for an autosomal dominant form of Stargardt's-like macular dystrophy (STGD3) in human. We have previously disrupted the mouse Elovl4 gene, and found that Elovl4+/- mice were developmentally normal, suggesting that haploinsufficiency of ELOVL4 is not a cause for the juvenile retinal degeneration in STGD3 patients. However, Elovl4-/- mice died within several hours of birth for unknown reason(s). To study functions of ELOVL4 further, we have explored the causes for the postnatal lethality in Elovl4-/- mice. Our data indicated that the mutant mice exhibited reduced thickness of the dermis, delayed differentiation of keratinocytes, and abnormal structure of the stratum corneum. We showed that all Elovl4-/- mice exhibited defective skin water permeability barrier function, leading to the early postnatal death. We further showed that the absence of ELOVL4 results in depletion in the epidermis of ceramides with omega-hydroxy very long chain fatty acids (> or = C28) and accumulation of ceramides with non omega-hydroxy fatty acids of C26, implicating C26 fatty acids as possible substrates of ELOVL4. These data demonstrate that ELOVL4 is required for VLCFA synthesis that is essential for water permeability barrier function of skin.  相似文献   

12.
Congenital ichthyoses are life-threatening conditions in humans. We describe here the identification and molecular characterization of a novel recessive mutation in mice that results in newborn lethality with severe congenital lamellar ichthyosis. Mutant newborns have a taut, shiny, non-expandable epidermis that resembles cornified manifestations of autosomal-recessive congenital ichthyosis in humans. The skin is stretched so tightly that the newborn mice are immobilized. The genetic defect was mapped to a region near the proximal end of chromosome 2 by SNP analysis, suggesting Fatp4/Slc27a4 as a candidate gene. FATP4 mutations in humans cause ichthyosis prematurity syndrome (IPS), and mutations of Fatp4 in mice have previously been found to cause a phenotype that resembles human congenital ichthyoses. Characterization of the Fatp4 cDNA revealed a fusion of exon 8 to exon 10, with deletion of exon 9. Genomic sequencing identified an A to T mutation in the splice donor sequence at the 3′-end of exon 9. Loss of exon 9 results in a frame shift mutation upstream from the conserved very long-chain acyl-CoA synthase (VLACS) domain. Histological studies revealed that the mutant mice have defects in keratinocyte differentiation, along with hyperproliferation of the stratum basale of the epidermis, a hyperkeratotic stratum corneum, and reduced numbers of secondary hair follicles. Since Fatp4 protein is present primarily at the stratum granulosum and the stratum spinosum, the hyperproliferation and the alterations in hair follicle induction suggest that very long chain fatty acids, in addition to being required for normal cornification, may influence signals from the stratum corneum to the basal cells that help to orchestrate normal skin differentiation.  相似文献   

13.
The blood-brain barrier (BBB), formed by the brain capillary endothelial cells, provides a protective barrier between the systemic blood and the extracellular environment of the CNS. Passage of fatty acids from the blood to the brain may occur either by diffusion or by proteins that facilitate their transport. Currently several protein families have been implicated in fatty acid transport. The focus of the present study was to identify the fatty acid transport proteins (FATPs) expressed in the brain microvessel endothelial cells and characterize their involvement in fatty acid transport across an in vitro BBB model. The major fatty acid transport proteins expressed in human brain microvessel endothelial cells (HBMEC), mouse capillaries and human grey matter were FATP-1, -4 and fatty acid binding protein 5 and fatty acid translocase/CD36. The passage of various radiolabeled fatty acids across confluent HBMEC monolayers was examined over a 30-min period in the presence of fatty acid free albumin in a 1 : 1 molar ratio. The apical to basolateral permeability of radiolabeled fatty acids was dependent upon both saturation and chain length of the fatty acid. Knockdown of various fatty acid transport proteins using siRNA significantly decreased radiolabeled fatty acid transport across the HBMEC monolayer. Our findings indicate that FATP-1 and FATP-4 are the predominant fatty acid transport proteins expressed in the BBB based on human and mouse expression studies. While transport studies in HBMEC monolayers support their involvement in fatty acid permeability, fatty acid translocase/CD36 also appears to play a prominent role in transport of fatty acids across HBMEC.  相似文献   

14.
FA transport protein 4 (FATP4), one member of a multigene family of FA transporters, was proposed as a major FA transporter in intestinal lipid absorption. Due to the fact that Fatp4(-/-) mice die because of a perinatal skin defect, we rescued the skin phenotype using an FATP4 transgene driven by a keratinocyte-specific promoter (Fatp4(-/-);Ivl-Fatp4(tg/+) mice) to elucidate the role of intestinal FATP4 in dietary lipid absorption. Fatp4(-/-);Ivl-Fatp4(tg/+) mice and wild-type littermates displayed indistinguishable food consumption, growth, and weight gain on either low or high fat (Western) diets, with no differences in intestinal triglyceride (TG) absorption or fecal fat losses. Cholesterol absorption and intestinal TG absorption kinetics were indistinguishable between the genotypes, although Western diet fed Fatp4(-/-);Ivl-Fatp4(tg/+) mice showed a significant increase in enterocyte TG and FA content. There was no compensatory upregulation of other FATP family members or any other FA or cholesterol transporters in Fatp4(-/-);Ivl-Fatp4(tg/+) mice. Furthermore, although serum cholesterol levels were lower in Fatp4(-/-);Ivl-Fatp4(tg/+) mice, there was no difference in hepatic VLDL secretion in-vivo or in hepatic lipid content on either a chow or Western diet. Taken together, our studies find no evidence for a physiological role of intestinal FATP4 in dietary lipid absorption in mice.  相似文献   

15.
Elongation of very long chain fatty acids (ELOVL)5 is one of seven mammalian fatty acid condensing enzymes involved in microsomal fatty acid elongation. To determine the in vivo substrates and function of ELOVL5, we generated Elovl5(-/-) mice. Studies using liver microsomal protein from wild-type and knockout mice demonstrated that the elongation of gamma-linolenic (C18:3, n-6) to dihomo-gamma-linolenic (C20:3, n-6) and stearidonic (C18:4, n-3) to omega3-arachidonic acid (C20:4, n-3) required ELOVL5 activity. Tissues of Elovl5(-/-) mice accumulated the C18 substrates of ELOVL5 and the levels of the downstream products, arachidonic acid (C20:4, n-6) and docosahexaenoic acid (DHA, C22:6, n-3), were decreased. A consequence of decreased cellular arachidonic acid and DHA concentrations was the activation of sterol regulatory element-binding protein (SREBP)-1c and its target genes involved in fatty acid and triglyceride synthesis, which culminated in the development of hepatic steatosis in Elovl5(-/-) mice. The molecular and metabolic changes in fatty acid metabolism in Elovl5(-/-) mice were reversed by dietary supplementation with arachidonic acid and DHA. These studies demonstrate that reduced ELOVL5 activity leads to hepatic steatosis, and endogenously synthesized PUFAs are key regulators of SREBP-1c activation and fatty acid synthesis in livers of mice.  相似文献   

16.
Lower levels of the cognitively beneficial docosahexaenoic acid (DHA) are often observed in Alzheimer's disease (AD) brains. Brain DHA levels are regulated by the blood‐brain barrier (BBB) transport of plasma‐derived DHA, a process facilitated by fatty acid‐binding protein 5 (FABP5). This study reports a 42.1 ± 12.6% decrease in the BBB transport of 14C‐DHA in 8‐month‐old AD transgenic mice (APPswe,PSEN1?E9) relative to wild‐type mice, associated with a 34.5 ± 6.7% reduction in FABP5 expression in isolated brain capillaries of AD mice. Furthermore, short‐term spatial and recognition memory deficits were observed in AD mice on a 6‐month n‐3 fatty acid‐depleted diet, but not in AD mice on control diet. This intervention led to a dramatic reduction (41.5 ± 11.9%) of brain DHA levels in AD mice. This study demonstrates FABP5 deficiency and impaired DHA transport at the BBB are associated with increased vulnerability to cognitive deficits in mice fed an n‐3 fatty acid‐depleted diet, in line with our previous studies demonstrating a crucial role of FABP5 in BBB transport of DHA and cognitive function.

  相似文献   

17.
The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species and mammalian tissues investigated. It binds acyl-CoA esters with high specificity and affinity and is thought to act as an intracellular transporter of acyl-CoA esters between different enzymatic systems; however, the precise function remains unknown. ACBP is expressed at relatively high levels in the epidermis, particularly in the suprabasal layers, which are highly active in lipid synthesis. Targeted disruption of the ACBP gene in mice leads to a pronounced skin and fur phenotype, which includes tousled and greasy fur, development of alopecia and scaling of the skin with age. Furthermore, epidermal barrier function is compromised causing a ~ 50% increase in transepidermal water loss relative to that of wild type mice. Lipidomic analyses indicate that this is due to significantly reduced levels of non-esterified very long chain fatty acids in the stratum corneum of ACBP−/− mice. Here we review the current knowledge of ACBP with special focus on the function of ACBP in the epidermal barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

18.
The epidermal permeability barrier of mammalian skin is localized in the stratum corneum. Corneocytes are embedded in an extracellular, highly ordered lipid matrix of hydrophobic lipids consisting of about 50% ceramides, 25% cholesterol and 15% long and very long chain fatty acids. The most important lipids for the epidermal barrier are ceramides. The scaffold of the lipid matrix is built of acylceramides, containing ω-hydroxylated very long chain fatty acids, acylated at the ω-position with linoleic acid. After glucosylation of the acylceramides at Golgi membranes and secretion, the linoleic acid residues are replaced by glutamate residues originating from proteins exposed on the surface of corneocytes. Removal of their glucosyl residues generates a hydrophobic surface on the corneocytes used as a template for the formation of extracellular lipid layers of the water permeability barrier. Misregulation or defects in the formation of extracellular ceramide structures disturb barrier function. Important anabolic steps are the synthesis of ultra long chain fatty acids, their ω-hydroxylation, and formation of ultra long chain ceramides and glucosylceramides. The main probarrier precursor lipids, glucosylceramides and sphingomyelins, are packed in lamellar bodies together with hydrolytic enzymes such as glucosylceramide-β-glucosidase and acid sphingomyelinase and secreted into the intercelullar space between the stratum corneum and stratum granulosum. Inherited defects in the extracellular hydrolytic processing of the probarrier acylglucosylceramides impair epidermal barrier formation and cause fatal diseases: such as prosaposin deficiency resulting in lack of lysosomal lipid binding and transfer proteins, or the symptomatic clinical picture of the “collodion baby” in the absence of glucocerebrosidase. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

19.
Ceramides covalently bound to keratinocytes are essential for the barrier function of the skin, which can be disturbed in diseases, such as psoriasis and atopic dermatitis. These ceramides of the classes omega-hydroxyacyl-sphingosine and omega-hydroxyacyl-6-hydroxysphingosine contain an omega-hydroxy fatty acid. For their separation and identification, a new analytical approach based on normal phase liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry and tandem nano-electrospray mass spectrometry, respectively, is presented here. Tandem mass spectrometry provided structural information about the sphingoid base as well as the fatty acid moieties. The chain lengths of the bases ranged from C12 to C22, the chain lengths of the fatty acids varied between C28 and C36. In total, 67 ceramide species have been identified in human skin. The analytical methods presented in this work can be helpful for investigating alterations in the ceramide composition of the skin as seen in psoriasis, atopic dermatitis, and diseases with impaired epidermal barrier function.  相似文献   

20.

Background

The uptake and trans-placental trafficking of fatty acids from the maternal blood into the fetal circulation are essential for embryonic development, and involve several families of proteins. Fatty acid transport proteins (FATPs) uniquely transport fatty acids into cells. We surmised that placental FATPs are germane for fetal growth, and are regulated during hypoxic stress, which is associated with reduced fat supply to the fetus.

Methodology/Principal Findings

Using cultured primary term human trophoblasts we found that FATP2, FATP4 and FATP6 were highly expressed in trophoblasts. Hypoxia enhanced the expression of trophoblastic FATP2 and reduced the expression of FATP4, with no change in FATP6. We also found that Fatp2 and Fatp4 are expressed in the mouse amnion and placenta, respectively. Mice deficient in Fatp2 or Fatp4 did not deviate from normal Mendelian distribution, with both embryos and placentas exhibiting normal weight and morphology, triglyceride content, and expression of genes related to fatty acid mobilization.

Conclusions/Significance

We conclude that even though hypoxia regulates the expression of FATP2 and FATP4 in human trophoblasts, mouse Fatp2 and Fatp4 are not essential for intrauterine fetal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号