首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multisite phosphorylation of proteins is a general mechanism for modulation of protein function and molecular interactions. Definition of phosphorylation sites and elucidation of the functional interplay between multiple phosphorylated residues in proteins are, however, a major analytical challenge in current molecular cell biology and proteomic research. In the present study, we used mass spectrometry to determine the major phosphorylated residues of the human epidermal growth factor (EGF) receptor at various well defined cellular conditions. Activation of EGF receptor was achieved by several types of stimulation, i.e. by sodium pervanadate, EGF, and integrin-dependent adhesion. The contribution of cell-matrix adhesion was also determined by activating the EGF receptor by EGF in cells kept in suspension. We developed an analytical strategy that combined miniaturized sample preparation techniques and MALDI tandem mass spectrometry and determined a total of nine phosphorylation sites in the EGF receptor. We discovered one novel phosphorylation site (Ser967) and revealed constitutive phosphorylation of Thr669, Ser967, Ser1002, and Tyr1045 and stimulation-dependent differential phosphorylation of Tyr1068, Tyr1086, Ser1142, Tyr1148, and Tyr1173. The EGF receptor was purified from HeLa cells or ECV304 cells by immunoprecipitation and SDS-PAGE and then digested with trypsin. Phosphopeptides in the range of 0.8-3.7 kDa were recovered by combinations of IMAC, perfusion chromatography, and graphite powder chromatography and subsequently detected and sequenced by MALDI quadrupole time-of-flight tandem mass spectrometry. Two phosphorylation sites were detected in the peptide 1137GSHQISLDNPDYQQDFFPK1155; however, only Tyr1148 was phosphorylated upon EGF treatment; in contrast Ser1142 was only phosphorylated by integrin-dependent adhesion in the absence of EGF treatment, suggesting differential phosphorylation of this region by distinct stimuli. This MALDI MS/MS-based analytical approach demonstrates the feasibility of systematic analysis of signaling molecules by mass spectrometry and provides new insights into the dynamics of receptor signaling processes.  相似文献   

2.
Olsen JV  Blagoev B  Gnad F  Macek B  Kumar C  Mortensen P  Mann M 《Cell》2006,127(3):635-648
  相似文献   

3.
A major goal of the Alliance for Cellular Signaling is to elaborate the components of signal transduction networks in model cell systems, including murine B lymphocytes. Due to the importance of protein phosphorylation in many aspects of cell signaling, the initial efforts have focused on the identification of phosphorylated proteins. In order to identify serine- and threonine-phosphorylated proteins on a proteome-wide basis, WEHI-231 cells were treated with calyculin A, a serine/threonine phosphatase inhibitor, to induce high levels of protein phosphorylation. Proteins were extracted from whole-cell lysates and digested with trypsin. Phosphorylated peptides were then enriched using immobilized metal affinity chromatography and identified by liquid chromatography-tandem mass spectrometry. A total of 107 proteins and 193 phosphorylation sites were identified using these methods. Forty-two of these proteins have been reported to be phosphorylated, but only some of them have been detected in B cells. Fifty-four of the identified proteins were not previously known to be phosphorylated. The remaining 11 phosphoproteins have previously only been characterized as novel cDNA or genomic sequences. Many of the identified proteins were phosphorylated at multiple sites. The proteins identified in this study significantly expand the repertoire of proteins known to be phosphorylated in B cells. The number of newly identified phosphoproteins indicates that B cell signaling pathways utilizing protein phosphorylation are likely to be more complex than previously appreciated.  相似文献   

4.
The serine-threonine protein kinase encoded by the tumor progression locus 2 (Tpl2) proto-oncogene transduces Toll-like receptor and death receptor signals in a variety of cell types. Here we show that Tpl2 undergoes phosphorylation at Thr(290) both in cells overexpressing Tpl2 and in cells stimulated with lipopolysaccharide (LPS) or tumor necrosis factor-alpha and that phosphorylation on this site parallels Tpl2 activation. Reconstitution of Tpl2(-/-) macrophages with wild type Tpl2 or Tpl2 T290D restored ERK activation by LPS, whereas reconstitution of the same cells with Tpl2 T290A did not, suggesting that phosphorylation at Thr(290) is required for the physiological activation of Tpl2 by external signals. Both the wild type Tpl2 and the kinase-inactive mutant Tpl2 K167M undergo Thr(290) phosphorylation, suggesting that Thr(290) may be a site of trans-phosphorylation rather than auto-phosphorylation. Pretreatment of 293 cells and primary macrophages with the Ikappa-B kinase-beta (IKKbeta) inhibitor PS-1145 blocked Tpl2 phosphorylation at Thr(290), suggesting that phosphorylation depends on IKKbeta, an obligatory positive regulator of Tpl2. We conclude that Tpl2 phosphorylation at Thr(290) is induced by LPS, depends on IKKbeta, and is required for the physiological activation of Tpl2 by external signals.  相似文献   

5.
Phosphorylation of plasma membrane proteins frequently initiates signal transduction pathways or attenuate plasma membrane transport processes. Because of the low abundance and hydrophobic features of many plasma membrane proteins and the low stoichiometry of protein phosphorylation, studies of the plasma membrane phosphoproteome are challenging. We present an optimized analytical strategy for plasma membrane phosphoproteomics that combines efficient plasma membrane protein preparation with TiO(2)-based phosphopeptide enrichment and high-performance mass spectrometry for phosphopeptide sequencing. We used sucrose centrifugation in combination with sodium carbonate extraction to achieve efficient and reproducible purification of low microgram levels of plasma membrane proteins from human mesenchymal stem cells (hMSCs, 10(7) cells), achieving more than 70% yield of membrane proteins. Phosphopeptide enrichment by titanium dioxide chromatography followed by capillary liquid chromatography-tandem mass spectrometry allowed us to assign 703 unique phosphorylation sites in 376 phosphoproteins. Our experiments revealed that treatment of cell cultures with three different types of protein phosphatase inhibitors produces distinct phosphopeptide populations and an increase of 10-40% of the number of detected and sequenced phosphoserine, phosphothreonine and phosphotyrosine containing peptides. In summary, our analytical strategy enables functional phosphoproteomic analysis of stem cell differentiation and cell surface biomarker discovery using very low amounts of starting material.  相似文献   

6.
7.
Tpl2/Cot is a serine/threonine kinase that plays a key physiological role in the regulation of immune responses to pro-inflammatory stimuli, including tumor necrosis factor-alpha (TNF-alpha). TNF-alpha stimulates the JNK, ERK, and p38 mitogen-activated protein kinases and the NF-kappaB pathway by recruiting RIP1 and TRAF2 to the TNF receptor 1. Here we showed that Tpl2 activation by TNF-alpha signals depends on the integrity of the Tpl2-interacting proteins RIP1 and TRAF2, which are required for the engagement of the ERK mitogen-activated protein kinase pathway. However, neither RIP1 nor TRAF2 overexpression was sufficient to activate Tpl2 and ERK. We also showed that Tpl2 activation by TNF-alpha depends on a tyrosine kinase activity that is detected in TNF-alpha-stimulated cells. Based on both genetic and biochemical evidence, we concluded that in a variety of cell types, Syk is the tyrosine kinase that plays an important role in the activation of Tpl2 upstream of ERK. These data therefore dissect the TNF receptor 1 proximal events that regulate Tpl2 and ERK and highlight a role for RIP1, TRAF2, and Syk in this pathway.  相似文献   

8.
Phosphorylation events in cellular signaling cascades triggered by a variety of cellular stimuli modulate protein function, leading to diverse cellular outcomes including cell division, growth, death, and differentiation. Abnormal regulation of protein phosphorylation due to mutation or overexpression of signaling proteins often results in various disease states. We provide here a list of protein phosphorylation sites identified from HT-29 human colon adenocarcinoma cell line by immobilized metal affinity chromatography (IMAC) combined with liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis. In this study, proteins extracted from HT-29 whole cell lysates were digested with trypsin and carboxylate groups on the resulting peptides were converted to methyl esters. Derivatized phosphorylated peptides were enriched using Fe(3+)-chelated metal affinity resin. Phosphopeptides retained by IMAC were separated by high performance liquid chromatography (HPLC) and analyzed by electrospray ionization-quadrupole-time-of-flight (ESI-Q-TOF) mass spectrometry. We identified 238 phosphorylation sites, 213 of which could be conclusively localized to a single residue, from 116 proteins by searching MS/MS spectra against the human protein database using MASCOT. Peptide identification and phosphorylation site assignment were confirmed by manual inspection of the MS/MS spectra. Many of the phosphorylation sites identified in our results have not been described previously in the scientific literature. We attempted to ascribe functionality to the sites identified in this work by searching for potential kinase motifs with Scansite (http://scansite.mit.edu) and obtaining information on kinase substrate selectivity from Pattern Explorer (http://scansite.mit.edu/pe). The list of protein phosphorylation sites identified in the present experiment provides broad information on phosphorylated proteins under normal (asynchronous) cell culture conditions. Sites identified in this study may be utilized as surrogate bio-markers to assess the activity of selected kinases and signaling pathways from different cell states and exogenous stimuli.  相似文献   

9.
10.
New tools for quantitative phosphoproteome analysis.   总被引:4,自引:0,他引:4  
Recent advances in analytical methods, particularly in the area of mass spectrometry, have brought the field of proteomics to the forefront in biological science. The ultimate goal of proteomics--to characterize proteins expressed within a cell under a specific set of conditions--is daunting due to the complexity and dynamic nature the of protein population within the cell. While much of the effort has focused on developing methods to identify expressed proteins, the identification of posttranslational modifications is equally important for comprehensive proteome characterization. Of all the known posttranslational modifications, phosphorylation arguably plays the largest role in the context of cellular homeostasis. This review discusses some of the recent progress made in the development of techniques not only to identify, but also to quantitatively determine sites of phosphorylation.  相似文献   

11.
Edman phosphate ((32)P) release sequencing provides a high sensitivity means of identifying phosphorylation sites in proteins that complements mass spectrometry techniques. We have developed a bioinformatic assessment tool, the cleavage of radiolabeled protein (CRP) program, which enables experimental identification of phosphorylation sites via (32)P labeling and Edman degradation of cleaved proteins obtained at femtomole levels. By observing the Edman cycle(s) in which radioactivity is found, candidate phosphorylation sites are identified by determining which residues occur at the observed number of cycles downstream from a peptide cleavage site. In cases where more than one residue could be responsible for the observed radioactivity, additional experiments with cleavage reagents having alternative specificities may resolve the ambiguity. Given a protein sequence and a cleavage site, CRP performs these experiments in silico, identifying resolved sites based on user-supplied experimental data, as well as suggesting combinations of reagents for additional analyses. Analysis of the PhosphoBase protein sequence database suggests that CRP data from two cleavage experiments can be used to identify unambiguously 60% of known phosphorylation sites. Data from additional cleavage experiments may increase the overall coverage to 70% of known sites. By comparing theoretical data obtained from the CRP program with (32)P release data obtained from an Edman sequencer, a known phosphorylation site was identified unambiguously and correctly. In addition, our results show that in vivo phosphorylation sites can be determined routinely by differential proteolysis analysis and Edman cycling with less than 1 fmol of protein and 1000 cpm.  相似文献   

12.
Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial electron transport chain, is regulated by isozyme expression, allosteric effectors such as the ATP/ADP ratio, and reversible phosphorylation. Of particular interest is the "allosteric ATP-inhibition," which has been hypothesized to keep the mitochondrial membrane potential at low healthy values (<140 mV), thus preventing the formation of superoxide radical anions, which have been implicated in multiple degenerative diseases. It has been proposed that the "allosteric ATP-inhibition" is switched on by the protein kinase A-dependent phosphorylation of COX. The goal of this study was to identify the phosphorylation site(s) involved in the "allosteric ATP-inhibition" of COX. We report the mass spectrometric identification of four new phosphorylation sites in bovine heart COX. The identified phosphorylation sites include Tyr-218 in subunit II, Ser-1 in subunit Va, Ser-2 in subunit Vb, and Ser-1 in subunit VIIc. With the exception of Ser-2 in subunit Vb, the identified phosphorylation sites were found in enzyme samples with and without "allosteric ATP inhibition," making Ser-2 of subunit Vb a candidate site enabling allosteric regulation. We therefore hypothesize that additional phosphorylation(s) may be required for the "allosteric ATP-inhibition," and that these sites may be easily dephosphorylated or difficult to identify by mass spectrometry.  相似文献   

13.
The majority of eukaryotic proteins are phosphorylated in vivo, and phosphorylation may be the most common regulatory posttranslational modification. Many proteins are phosphorylated at numerous sites, often by multiple kinases, which may have different functional consequences. Understanding biological functions of phosphorylation events requires methods to detect and quantify individual sites within a substrate. Here we outline a general strategy that addresses this need and relies on the high sensitivity and specificity of selected reaction monitoring (SRM) mass spectrometry, making it potentially useful for studying in vivo phosphorylation without the need to isolate target proteins. Our approach uses label-free quantification for simplicity and general applicability, although it is equally compatible with stable isotope quantification methods. We demonstrate that label-free SRM-based quantification is comparable to conventional assays for measuring the kinetics of phosphatase and kinase reactions in vitro. We also demonstrate the capability of this method to simultaneously measure relative rates of phosphorylation and dephosphorylation of substrate mixtures, including individual sites on intact protein substrates in the context of a whole cell extract. This strategy should be particularly useful for characterizing the physiological substrate specificity of kinases and phosphatases and can be applied to studies of other protein modifications as well.  相似文献   

14.
A systematic study of posttranslational modifications of the estrogen receptor isolated from the MCF-7 human breast cancer cell line is reported. Proteolysis with multiple enzymes, mass spectrometry, and tandem mass spectrometry achieved very high sequence coverage for the full-length 66-kDa endogenous protein from estradiol-treated cell cultures. Nine phosphorylated serine residues were identified, three of which were previously unreported and none of which were previously observed by mass spectrometry by any other laboratory. Two additional modified serine residues were identified in recombinant protein, one previously reported but not observed here in endogenous protein and the other previously unknown. Although major emphasis was placed on identifying new phosphorylation sites, N-terminal loss of methionine accompanied by amino acetylation and a lysine side chain acetylation (or possibly trimethylation) were also detected. The use of both HPLC-ESI and MALDI interfaced to different mass analyzers gave higher sequence coverage and identified more sites than could be achieved by either method alone. The estrogen receptor is critical in the development and progression of breast cancer. One previously unreported phosphorylation site identified here was shown to be strongly dependent on estradiol, confirming its potential significance to breast cancer. Greater knowledge of this array of posttranslational modifications of estrogen receptor, particularly phosphorylation, will increase our understanding of the processes that lead to estradiol-induced activation of this protein and may aid the development of therapeutic strategies for management of hormone-dependent breast cancer.  相似文献   

15.
M Dreger  H Otto  G Neubauer  M Mann  F Hucho 《Biochemistry》1999,38(29):9426-9434
Lamina-associated polypeptide 2 beta (LAP 2 beta), an integral protein of the inner nuclear membrane, appears to be involved in the spatial organization of the interface between nucleoplasma, lamina, and nuclear envelope. Its ability to interact with other proteins and the structural integrity of the nuclear envelope is probably regulated by phosphorylation. Here, we report nonmitotic LAP 2 beta phosphorylation sites that are phosphorylated in the native protein when purified from nuclear envelopes of mouse neuroblastoma Neuro2a cells. Five phosphorylation sites were detected by nano-electrospray mass spectrometric analysis of tryptic LAP 2 beta peptides using parent ion scans specific for phosphopeptides. By mass spectrometric sequencing of these peptides, we identified as phosphorylated residues Thr 74, Thr 159, Ser 176, and Ser 179. Two of the phosphorylation sites, Thr 74 (within a region known to bind chromatin) and Thr 159, are part of consensus sequences of proline-directed kinases. Ser 179 is part of a consensus site for protein kinase C which is able to highly phosphorylate LAP 2 beta in vitro. Three phosphorylation sites, Thr 159, Ser 176, and Ser 179, are located within a stretch of 20 amino acids, thereby forming a highly phosphorylated protein domain which may integrate signaling by multiple protein kinases. Additionally, we identified for the first time at the protein level the LAP 2 splice variant LAP 2 epsilon in nuclear envelopes.  相似文献   

16.
Mast cells play a central role in type I hypersensitivity reactions and allergic disorders such as anaphylaxis and asthma. Activation of mast cells, through a cascade of phosphorylation events, leads to the release of mediators of the early phase allergic response. Understanding the molecular architecture underlying mast cell signaling may provide possibilities for therapeutic intervention in asthma and other allergic diseases. Although many details of mast cell signaling have been described previously, a systematic, quantitative analysis of the global tyrosine phosphorylation events that are triggered by activation of the mast cell receptor is lacking. In many cases, the involvement of particular proteins in mast cell signaling has been established generally, but the precise molecular mechanism of the interaction between known signaling proteins often mediated through phosphorylation is still obscure. Using recently advanced methodologies in mass spectrometry, including automation of phosphopeptide enrichments and detection, we have now substantially characterized, with temporal resolution as short as 10 s, the sites and levels of tyrosine phosphorylation across 10 min of FcepsilonRI-induced mast cell activation. These results reveal a far more extensive array of tyrosine phosphorylation events than previously known, including novel phosphorylation sites on canonical mast cell signaling molecules, as well as unexpected pathway components downstream of FcepsilonRI activation. Furthermore, our results, for the first time in mast cells, reveal the sequence of phosphorylation events for 171 modification sites across 121 proteins in the MCP5 mouse mast cell line and 179 modification sites on 117 proteins in mouse bone marrow-derived mast cells.  相似文献   

17.
18.
19.
A hallmark of the response to high-dose radiation is the up-regulation and phosphorylation of proteins involved in cell cycle checkpoint control, DNA damage signaling, DNA repair, and apoptosis. Exposure of cells to low doses of radiation has well documented biological effects, but the underlying regulatory mechanisms are still poorly understood. The objective of this study is to provide an initial profile of the normal human skin fibroblast (HSF) phosphoproteome and explore potential differences between low- and high-dose irradiation responses at the protein phosphorylation level. Several techniques including Trizol extraction of proteins, methylation of tryptic peptides, enrichment of phosphopeptides with immobilized metal affinity chromatography (IMAC), nanoflow reversed-phase HPLC (nano-LC)/electrospray ionization, and tandem mass spectrometry were combined for analysis of the HSF cell phosphoproteome. Among 494 unique phosphopeptides, 232 were singly phosphorylated, while 262 peptides had multiple phosphorylation sites indicating the overall effectiveness of the IMAC technique to enrich both singly and multiply phosphorylated peptides. We observed approximately 1.9-fold and approximately 3.6-fold increases in the number of identified phosphopeptides in low-dose and high-dose samples respectively, suggesting both radiation levels stimulate cell signaling pathways. A 6-fold increase in the phosphorylation of cyclin dependent kinase (cdk) motifs was observed after low- dose irradiation, while high-dose irradiation stimulated phosphorylation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) and AKT/RSK motifs 8.5- and 5.5-fold, respectively. High- dose radiation resulted in the increased phosphorylation of proteins involved in cell signaling pathways as well as apoptosis while low-dose and control phosphoproteins were broadly distributed among biological processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号