首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parker A  Gu Y  Lu AL 《Nucleic acids research》2000,28(17):3206-3215
A protein homologous to the Escherichia coli MutY glycosylase, referred to as mtMYH, has been purified from calf liver mitochondria. SDS–polyacrylamide gel electrophoresis, western blot analysis as well as gel filtration chromatography predicted the molecular mass of the purified calf mtMYH to be 35–40 kDa. Gel mobility shift analysis showed that the purified mtMYH formed specific binding complexes with A/8-oxoG, G/8-oxoG and T/8-oxoG, weakly with C/8-oxoG, but not with A/G and A/C mismatches. The purified mtMYH exhibited DNA glycosylase activity removing adenine mispaired with G, C or 8-oxoG and weakly removing guanine mispaired with 8-oxoG. The mtMYH glycosylase activity was insensitive to high concentrations of NaCl and EDTA. The purified mtMYH cross-reacted with antibodies against both intact MutY and a peptide of human MutY homolog (hMYH). DNA glycosylase activity of mtMYH was inhibited by anti-MutY antibodies but not by anti-hMYH peptide antibodies. Together with the previously described mitochondrial MutT homolog (MTH1) and 8-oxoG glycosylase (OGG1, a functional MutM homolog), mtMYH can protect mitochondrial DNA from the mutagenic effects of 8-oxoG.  相似文献   

2.
Li X  Lu AL 《Nucleic acids research》2000,28(23):4593-4603
Escherichia coli MutY is an adenine and a weak guanine DNA glycosylase active on DNA substrates containing A/G, A/8-oxoG, A/C or G/8-oxoG mismatches. A truncated form of MutY (M25, residues 1–226) retains catalytic activity; however, the C-terminal domain of MutY is required for specific binding to the 8-oxoG and is critical for mutation avoidance of oxidative damage. Using alkylation interference experiments, the determinants of the truncated and intact MutY were compared on A/8-oxoG-containing DNA. Several purines within the proximity of mismatched A/8-oxoG show differential contact by the truncated and intact MutY. Most importantly, methylation at the N7 position of the mismatched 8-oxoG and the N3 position of mismatched A interfere with intact MutY but not with M25 binding. The electrostatic contacts of MutY and M25 with the A/8-oxoG-containing DNA substrates are drastically different as shown by ethylation interference experiments. Five consecutive phosphate groups surrounding the 8-oxoG (one on the 3′ side and four on the 5′ side) interact with MutY but not with M25. The activities of the truncated and intact MutY are modulated differently by two minor groove-binding drugs, distamycin A and Hoechst 33258. Both distamycin A and Hoechst 33258 can inhibit, to a similar extent, the binding and glycosylase activities of MutY and M25 on A/G mismatch. However, binding and glycosylase activities on A/8-oxoG mismatch of intact MutY are inhibited to a lesser degree than those of M25. Overall, these results suggest that the C-terminal domain of MutY specifies additional contact sites on A/GO-containing DNA that are not found in MutY–A/G and M25–A/8-oxoG interactions.  相似文献   

3.
The base excision repair DNA glycosylase MutY homolog (MYH) is responsible for removing adenines misincorporated into DNA opposite guanine or 7,8-dihydro-8-oxo-guanine (8-oxoG), thereby preventing G:C to T:A mutations. Biallelic germline mutations in the human MYH gene predispose individuals to multiple colorectal adenomas and carcinoma. We have recently demonstrated that hMYH interacts with the mismatch repair protein hMSH6, and that the hMSH2/hMSH6 (hMutSα) heterodimer stimulates hMYH activity. Here, we characterize the functional effect of two missense mutations (R227W and V232F) associated with hMYH polyposis that lie within, or adjacent to, the putative hMSH6 binding domain. Neither missense mutation affects the physical interaction between hMYH and hMSH6. However, hMYH(R227W) has a severe defect in A/8-oxoG binding and glycosylase activities, while hMYH(V232F) has reduced A/8-oxoG binding and glycosylase activities. The glycosylase activity of the V232F mutant can be partially stimulated by hMutSα but cannot be restored to the wild-type level. Both mutants also fail to complement mutY-deficiency in Escherichia coli. These data define the pathogenic mechanisms underlying two further hMYH polyposis-associated mutations.  相似文献   

4.
Escherichia coli MutY is an adenine DNA glycosylase active on DNA substrates containing A/G, A/8-oxoG, or A/C mismatches and also has a weak guanine glycosylase activity on G/8-oxoG-containing DNA. The N-terminal domain of MutY, residues 1-226, has been shown to retain catalytic activity. Substrate binding, glycosylase, and Schiff base intermediate formation activities of the truncated and intact MutY were compared. MutY has high binding affinity with 8-oxoG when mispaired with A, G, T, C, or inosine. The truncated protein has more than 18-fold lower affinities for binding various 8-oxoG-containing mismatches when compared with intact MutY. MutY catalytic activity toward A/8-oxoG-containing DNA is much faster than that on A/G-containing DNA whereas deletion of the C-terminal domain reduces its catalytic preference for A/8-oxoG-DNA over A/G-DNA. MutY exerts more inhibition on the catalytic activity of MutM (Fpg) protein than does truncated MutY. The tight binding of MutY with GO mispaired with T, G, and apurinic/apyrimidinic sites may be involved in the regulation of MutM activity. An E. coli mutY strain that produces an N-terminal 249-residue truncated MutY confers a mutator phenotype. These findings strongly suggest that the C-terminal domain of MutY determines the 8-oxoG specificity and is crucial for mutation avoidance by oxidative damage.  相似文献   

5.
6.
The oxidized guanine lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) is highly mutagenic, resulting in G:C to T:A transversion mutations in the absence of repair. The Escherichia coli adenine glycosylase MutY and its human homolog (hMYH) play an important role in the prevention of mutations associated with OG by removing misincorporated adenine residues from OG:A mismatches. Previously, biallelic mutations of hMYH have been identified in a British family (Family N) with symptoms characteristic of familial adenomatous polyposis (FAP), which is typically associated with mutations in the adenomatous polyposis coli (APC) gene. Afflicted members of this family were compound heterozygotes for two mutations in hMYH, Y165C and G382D. These positions are highly conserved in MutY across phylogeny. The current work reveals a reduced ability of the hMYH variants compared to wild-type (WT) hMYH to complement the activity of E.coli MutY in mutY((-)) E.coli. In vitro analysis of the corresponding mutations in E.coli MutY revealed a reduction in the adenine glycosylase activity of the enzymes. In addition, evaluation of substrate affinity using a substrate analog, 2'-deoxy-2'-fluoroadenosine (FA) revealed that both mutations severely diminish the ability to recognize FA, and discriminate between OG and G. Importantly, adenine removal with both the mutant and WT E.coli enzymes was observed to be less efficient from a mismatch in the sequence context observed to be predominantly mutated in tumors of Family N. Interestingly, the magnitude of the reduced activity of the E.coli mutant enzymes relative to the WT enzyme was magnified in the "hotspot" sequence context. If the corresponding mutations in hMYH cause similar sensitivity to sequence context, this effect may contribute to the specific targeting of the APC gene. The lack of complementation of the hMYH variants for MutY, and the reduced activity of the Y82C and G253D E.coli enzymes, provide additional circumstantial evidence that the somatic mutations in APC, and the occurrence of FAP in Family N, are due to a reduced ability of the Y165C and G382D hMYH enzymes to recognize and repair OG:A mismatches.  相似文献   

7.
The MutY homolog (MYH) is responsible for removing adenines misincorporated on a template DNA strand containing G or 7,8-dihydro-8-oxoguanine (8-oxoG) and thus preventing G:C to T:A mutations. Human MYH has been shown to interact physically with human proliferating cell nuclear antigen (hPCNA). Here, we report that a similar interaction between SpMYH and SpPCNA occurs in the fission yeast Schizosaccharomyces pombe. Binding of SpMYH to SpPCNA was not observed when phenylalanine 444 in the PCNA binding motif of SpMYH was replaced with alanine. The F444A mutant of SpMYH expressed in yeast cells had normal adenine glycosylase and DNA binding activities. However, expression of this mutant form of SpMYH in a SpMYHDelta cell could not reduce the mutation frequency of the cell to the normal level. Moreover, SpMYH interacted with hPCNA, and SpPCNA interacted with hMYH but not with F518A/F519A mutant hMYH containing mutations in its PCNA binding motif. Although the SpMYHDelta cells expressing hMYH had partially reduced mutation frequency, the F518A/F519A mutant hMYH could not reduce the mutation frequency of SpMYHDelta cells. Thus, the interaction between SpMYH and SpPCNA is important for SpMYH biological function in mutation avoidance.  相似文献   

8.
Adenines mismatched with guanines or 7,8-dihydro-8-oxo-deoxyguanines that arise through DNA replication errors can be repaired by either base excision repair or mismatch repair. The human MutY homolog (hMYH), a DNA glycosylase, removes adenines from these mismatches. Human MutS homologs, hMSH2/hMSH6 (hMutSalpha), bind to the mismatches and initiate the repair on the daughter DNA strands. Human MYH is physically associated with hMSH2/hMSH6 via the hMSH6 subunit. The interaction of hMutSalpha and hMYH is not observed in several mismatch repair-defective cell lines. The hMutSalpha binding site is mapped to amino acid residues 232-254 of hMYH, a region conserved in the MutY family. Moreover, the binding and glycosylase activities of hMYH with an A/7,8-dihydro-8-oxo-deoxyguanine mismatch are enhanced by hMutSalpha. These results suggest that protein-protein interactions may be a means by which hMYH repair and mismatch repair cooperate in reducing replicative errors caused by oxidized bases.  相似文献   

9.
Pope MA  Chmiel NH  David SS 《DNA Repair》2005,4(3):315-325
Escherichia coli MutY and its eukaryotic homologues play an important role in preventing mutations by removing adenine from 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG):A mismatches. It has recently been demonstrated that inherited biallelic mutations in the genes encoding the human homologue of MutY (hMYH) are correlated with a genetic predisposition for multiple colorectal adenomas and carcinomas. The two most common hMYH variants found in patients with colorectal cancer are Y165C and G382D. In this study, we examined the equivalent variants in the murine MutY homologue (mMYH), Y150C and G365D. The Y150C mMYH enzyme showed a large decrease in the rate of adenine removal from both OG:A- and G:A-containing substrates, while G365D mMYH showed a decrease in the ability to catalyze adenine removal only with a G:A-containing substrate. Both mMYH variants exhibit a significantly decreased affinity for duplexes containing noncleavable 2'-deoxyadenosine analogues. In addition, the human apurinic/apyrimidinic endonuclease (Ape1) stimulated product formation by wild-type and G365D mMYH with an OG:A substrate under conditions of multiple-turnover ([E]<[S]). In contrast, the presence of Ape1 nearly completely inhibited adenine removal by Y150C mMYH from the OG:A mismatch substrate. The more deleterious effect of Ape1 on the glycosylase activity of Y150C relative to G365D mMYH correlated with the more compromised binding affinity of Y150C to substrate analogue duplexes. These results suggest that the equivalent hMYH variants may be significantly compromised in substrate targeting in vivo due to a decrease in binding to substrate DNA; moreover, competition with other DNA binding proteins may further reduce the effective adenine glycosylase activity in vivo.  相似文献   

10.
Li L  Lu AL 《Nucleic acids research》2003,31(12):3038-3049
Escherichia coli MutY is an adenine and a weak guanine DNA glycosylase involved in reducing mutagenic effects of 7,8-dihydro-8-oxo-guanine (8-oxoG). The C-terminal domain of MutY is required for 8-oxoG recognition and is critical for mutation avoidance of oxidative damage. To determine which residues of this domain are involved in 8-oxoG recognition, we constructed four MutY mutants based on similarities to MutT, which hydrolyzes specifically 8-oxo-dGTP to 8-oxo-dGMP. F294A-MutY has a slightly reduced binding affinity to A/G mismatch but has a severe defect in A/8-oxoG binding at 20°C. The catalytic activity of F294A-MutY is much weaker than that of the wild-type MutY. The DNA binding activity of R249A-MutY is comparable to that of the wild-type enzyme but the catalytic activity is reduced with both A/G and A/8-oxoG mismatches. The biochemical activities of F261A-MutY are nearly similar to those of the wild-type enzyme. The solubility of P262A-MutY was improved as a fusion protein containing streptococcal protein G (GB1 domain) at its N-terminus. The binding of GB1-P262A-MutY with both A/G and A/8-oxoG mismatches are slightly weaker than those of the wild-type protein. The catalytic activity of GB1-P262A-MutY is weaker than that of the wild-type enzyme at lower enzyme concentrations. Importantly, all four mutants can complement mutY mutants in vivo when expressed at high levels; however, F294A, R249A and P262A, but not F261A, are partially defective in vivo when they are expressed at low levels. These results strongly support that the C-terminal domain of MutY is involved not only in 8-oxoG recognition, but also affects the binding and catalytic activities toward A/G mismatches.  相似文献   

11.
The oxidative base damage, 8-oxo-7,8-dihydroguanine (8-oxoG) is a highly mutagenic lesion because replicative DNA polymerases insert adenine (A) opposite 8-oxoG. In mammalian cells, the removal of A incorporated across from 8-oxoG is mediated by the glycosylase MUTYH during base excision repair (BER). After A excision, MUTYH binds avidly to the abasic site and is thus product inhibited. We have previously reported that UV-DDB plays a non-canonical role in BER during the removal of 8-oxoG by 8-oxoG glycosylase, OGG1 and presented preliminary data that UV-DDB can also increase MUTYH activity. In this present study we examine the mechanism of how UV-DDB stimulates MUTYH. Bulk kinetic assays show that UV-DDB can stimulate the turnover rate of MUTYH excision of A across from 8-oxoG by 4–5-fold. Electrophoretic mobility shift assays and atomic force microscopy suggest transient complex formation between MUTYH and UV-DDB, which displaces MUTYH from abasic sites. Using single molecule fluorescence analysis of MUTYH bound to abasic sites, we show that UV-DDB interacts directly with MUTYH and increases the mobility and dissociation rate of MUTYH. UV-DDB decreases MUTYH half-life on abasic sites in DNA from 8800 to 590 seconds. Together these data suggest that UV-DDB facilitates productive turnover of MUTYH at abasic sites during 8-oxoG:A repair.  相似文献   

12.
Bai H  Lu AL 《Journal of bacteriology》2007,189(3):902-910
Escherichia coli MutY and MutS increase replication fidelity by removing adenines that were misincorporated opposite 7,8-dihydro-8-oxo-deoxyguanines (8-oxoG), G, or C. MutY DNA glycosylase removes adenines from these mismatches through a short-patch base excision repair pathway and thus prevents G:C-to-T:A and A:T-to-G:C mutations. MutS binds to the mismatches and initiates the long-patch mismatch repair on daughter DNA strands. We have previously reported that the human MutY homolog (hMYH) physically and functionally interacts with the human MutS homolog, hMutSalpha (Y. Gu et al., J. Biol. Chem. 277:11135-11142, 2002). Here, we show that a similar relationship between MutY and MutS exists in E. coli. The interaction of MutY and MutS involves the Fe-S domain of MutY and the ATPase domain of MutS. MutS, in eightfold molar excess over MutY, can enhance the binding activity of MutY with an A/8-oxoG mismatch by eightfold. The MutY expression level and activity in mutS mutant strains are sixfold and twofold greater, respectively, than those for the wild-type cells. The frequency of A:T-to-G:C mutations is reduced by two- to threefold in a mutS mutY mutant compared to a mutS mutant. Our results suggest that MutY base excision repair and mismatch repair defend against the mutagenic effect of 8-oxoG lesions in a cooperative manner.  相似文献   

13.
The human MutY homolog, hMYH, is an adenine-specific DNA glycosylase that removes adenines or 2-hydroxyadenines mispaired with guanines or 8-oxoguanines. In order to prevent mutations, this activity must be directed to the newly synthesized strand and not the template strand during DNA synthesis. The subcellular localization and expression of hMYH has been studied in serum-stimulated, proliferating MRC5 cells. Using specific antibodies, we demonstrate that endogenous hMYH protein localized both to nuclei and mitochondria. hMYH in the nuclei is distinctly distributed and co-localized with BrdU at replication foci and with proliferating cell nuclear antigen (PCNA). The levels of hMYH in the nucleus increased 3- to 4-fold during progression of the cell cycle and reached maximum levels in S phase compared to early G1. Similar results were obtained for PCNA, while there were no notable changes in expression of 8-oxoguanine glycosylase or the human MutT homolog, MTH1, throughout the cell cycle. The cell cycle-dependent expression and localization of hMYH at sites of DNA replication suggest a role for this glycosylase in immediate post-replication DNA base excision repair.  相似文献   

14.
The mitochondrial respiratory chain inevitably produces reactive oxygen species as byproducts of aerobic ATP synthesis. Mitochondrial DNA (mtDNA), which is located close to the respiratory chain, is reported to contain much more 8-oxoguanine (8-oxoG), an oxidatively modified guanine base, than nuclear DNA. Despite such a high amount of 8-oxoG in mtDNA (1-2 8-oxoG/10(4) G), mtDNA is barely cleaved by an 8-oxoG DNA glycosylase or MutM, which specifically excises 8-oxoG from a C:8-oxoG pair. We find here that about half of human mtDNA molecules are cleaved by another 8-oxoG-recognizing enzyme, an adenine DNA glycosylase or MutY, which excises adenine from an A:8-oxoG pair. The cleavage sites are mapped to adenines. The calculated number of MutY-sensitive sites in mtDNA is approximately 1.4/10(4) G. This value roughly corresponds with the electrochemically measured amount of 8-oxoG in mtDNA (2.2/10(4) G), raising the possibility that 8-oxoG mainly accumulates as an A:8-oxoG pair.  相似文献   

15.
The modified base 7,8-dihydro-8-oxo-guanine (8-oxoG) is one of the most stable deleterious products of oxidative DNA damage because it mispairs with adenine during DNA replication. In the fission yeast Schizosaccharomyces pombe, the MutY homolog (SpMYH) is responsible for removing misincorporated adenines from A/8-oxoG or A/G mismatches and thus preventing G:C to T:A mutations. In order to study the functional role of SpMYH, an SpMYH knockout strain was constructed. The SpMYH knockout strain, which does not express SpMYH and has no A/8-oxoG glycosylase activity, displays a 36-fold higher frequency of spontaneous mutations than the wild type strain. Disruption of SpMYH causes increased sensitivity to H2O2 but not to UV-irradiation. Expression of SpMYH in the mutant cells restores the adenine glycosylase activity, reduces the mutation frequency, and elevates the resistance to H2O2. Asp172 of SpMYH is conserved in a helix-hairpin-helix superfamily of glycosylases. The SpMYHA strain expressing D172N SpMYH retained the mutator phenotype. Moreover, when D172N mutant SpMYH was expressed in the wild-type cells, the mutation frequency observed was even higher than that of the parental strains. Thus, a mutant SpMYH that retains substrate-binding activity but is defective in glycosylase activity exhibits a dominant negative effect. This is the first demonstration that a MutY homolog plays an important role in protecting cells against oxidative DNA damage in eukaryotes.  相似文献   

16.
17.
Mammalian MutY homologue (MUTYH) is an adenine DNA glycosylase that excises adenine inserted opposite 8-oxoguanine (8-oxoG). The inherited variations in human MUTYH gene are known to cause MUTYH-associated polyposis (MAP), which is associated with colorectal cancer. MUTYH is involved in base excision repair (BER) with proliferating cell nuclear antigen (PCNA) in DNA replication, which is unique and critical for effective mutation-avoidance. It is also reported that MUTYH has a Zn-binding motif in a unique interdomain connector (IDC) region, which interacts with Rad9–Rad1–Hus1 complex (9–1–1) in DNA damage response, and with apurinic/apyrimidinic endonuclease 1 (APE1) in BER. However, the structural basis for the BER pathway by MUTYH and its interacting proteins is unclear. Here, we determined the crystal structures of complexes between mouse MUTYH and DNA, and between the C-terminal domain of mouse MUTYH and human PCNA. The structures elucidated the repair mechanism for the A:8-oxoG mispair including DNA replication-coupled repair process involving MUTYH and PCNA. The Zn-binding motif was revealed to comprise one histidine and three cysteine residues. The IDC, including the Zn-binding motif, is exposed on the MUTYH surface, suggesting its interaction modes with 9–1–1 and APE1, respectively. The structure of MUTYH explains how MAP mutations perturb MUTYH function.  相似文献   

18.
Adenine-DNA glycosylase MutY of Escherichia coli catalyzes the cleavage of adenine when mismatched with 7,8-dihydro-8-oxoguanine (GO), an oxidatively damaged base. The biological outcome is the prevention of C/G→A/T transversions. The molecular mechanism of base excision repair (BER) of A/GO in mammals is not well understood. In this study we report stimulation of mammalian adenine-DNA glycosylase activity by apurinic/apyrimidinic (AP) endonuclease using murine homolog of MutY (Myh) and human AP endonuclease (Ape1), which shares 94% amino acid identity with its murine homolog Apex. After removal of adenine by the Myh glycosylase activity, intact AP DNA remains due to lack of an efficient Myh AP lyase activity. The study of wild-type Ape1 and its catalytic mutant H309N demonstrates that Ape1 catalytic activity is required for formation of cleaved AP DNA. It also appears that Ape1 stimulates Myh glycosylase activity by increasing formation of the Myh–DNA complex. This stimulation is independent of the catalytic activity of Ape1. Consequently, Ape1 preserves the Myh preference for A/GO over A/G and improves overall glycosylase efficiency. Our study suggests that protein–protein interactions may occur in vivo to achieve efficient BER of A/GO.  相似文献   

19.
The MUTYH DNA glycosylase specifically removes adenine misincorporated by replicative polymerases opposite the oxidized purine 8-oxo-7,8-dihydroguanine (8-oxoG). A defective protein activity results in the accumulation of G > T transversions because of unrepaired 8-oxoG:A mismatches. In humans, MUTYH germline mutations are associated with a recessive form of familial adenomatous polyposis and colorectal cancer predisposition (MUTYH-associated polyposis, MAP). Here we studied the repair capacity of the MUTYH variants R171W, E466del, 137insIW, Y165C and G382D, identified in MAP patients. Following expression and purification of human proteins from a bacterial system, we investigated MUTYH incision capacity on an 8-oxoG:A substrate by standard glycosylase assays. For the first time, we employed the surface plasmon resonance (SPR) technology for real-time recording of the association/dissociation of wild-type and MUTYH variants from an 8-oxoG:A DNA substrate. When compared to the wild-type protein, R171W, E466del and Y165C variants showed a severe reduction in the binding affinity towards the substrate, while 137insIW and G382D mutants manifested only a slight decrease mainly due to a slower rate of association. This reduced binding was always associated with impairment of glycosylase activity, with adenine removal being totally abrogated in R171W, E466del and Y165C and only partially reduced in 137insIW and G382D. Our findings demonstrate that SPR analysis is suitable to identify defective enzymatic behaviour even when mutant proteins display minor alterations in substrate recognition.  相似文献   

20.
MutY homologue (MYH) is a DNA glycosylase which excises adenine paired with the oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxoG, or Go) during base excision repair (BER). Base excision by MYH results in an apurinic/apyrimidinic (AP) site in the DNA where the DNA sugar–phosphate backbone remains intact. A key feature of MYH activity is its physical interaction and coordination with AP endonuclease I (APE1), which subsequently nicks DNA 5′ to the AP site. Because AP sites are mutagenic and cytotoxic, they must be processed by APE1 immediately after the action of MYH glycosylase. Our recent reports show that the interdomain connector (IDC) of human MYH (hMYH) maintains interactions with hAPE1 and the human checkpoint clamp Rad9–Rad1–Hus1 (9–1–1) complex. In this study, we used NMR chemical shift perturbation experiments to determine hMYH-binding site on hAPE1. Chemical shift perturbations indicate that the hMYH IDC peptide binds to the DNA-binding site of hAPE1 and an additional site which is distal to the APE1 DNA-binding interface. In these two binding sites, N212 and Q137 of hAPE1 are key mediators of the MYH/APE1 interaction. Intriguingly, despite the fact that hHus1 and hAPE1 both interact with the MYH IDC, hHus1 does not compete with hAPE1 for binding to hMYH. Rather, hHus1 stabilizes the hMYH/hAPE1 complex both in vitro and in cells. This is consistent with a common theme in BER, namely that the assembly of protein–DNA complexes enhances repair by efficiently coordinating multiple enzymatic steps while simultaneously minimizing the release of harmful repair intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号