首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Rhodobacter capsulatus contains lhaA and pucC genes that have been implicated in light-harvesting complex 1 and 2 (LH1 and LH2) assembly. The proteins encoded by these genes, and homologues in other photosynthetic organisms, have been classified as the bacteriochlorophyll delivery (BCD) family of the major facilitator superfamily. A new BCD family phylogenetic tree reveals that several PucC, LhaA and Orf428-related sequences each form separate clusters, while plant and cyanobacterial homologues cluster more distantly. The PucC protein is encoded in the pucBACDE superoperon which also codes for LH2 α (PucA) and β (PucB) proteins. PucC was previously shown to be necessary for formation of LH2. This article gives evidence indicating that PucC has a shepherding activity that keeps the homologous α and β proteins of LH1 and LH2 apart, allowing LH1 to assemble properly. This shepherding function was indicated by a 62% reduction in LH1 levels in ΔLHII strains carrying plasmids encoding pucBA along with a C-terminally truncated pucC gene. More severe reductions in LH1 were seen when the truncated pucC gene was co-expressed in the presence of C-terminal PucC::PhoA fusion proteins. It appears that interaction between truncated PucC::PhoA fusion proteins and the truncated PucC protein disrupts LH1 assembly, pointing towards a PucC dimeric or multimeric functional unit.  相似文献   

6.
The formation of the light-harvesting complex B800-850 (LH-II) of Rhodobacter capsulatus requires, in addition to the synthesis of the polypeptides alpha and beta (the gene products of pucA and pucB), the synthesis of bacteriochlorophyll and carotenoids and the expression of at least one gene localized downstream from the pucBA operon. This was concluded from the observation that a Tn5 insertion downstream from pucBA inhibited the formation of the LH-II complex and the formation of the pucBA mRNA. The Tn5 insertion point was mapped and found to be over 500 base pairs (bp) downstream from the end of the pucA gene, suggesting the presence of additional puc genes. A region of about 3,000 bp including the pucB and pucA genes and DNA downstream from pucA was sequenced and found to contain three open reading frames (ORFs C, D, and E). The polypeptide deduced from the first ORF (C) contains 403 amino acids with strongly hydrophobic stretches and one large and three small hydrophilic domains carrying many charged residues. The other two ORFs contain 113 (D) and 118 (E) codons. The amino acid sequences of the N terminus and two tryptic peptides of an alkaline-soluble Mr-14,000 subunit of the isolated LH-II complex were identical with the deduced amino acid sequence of ORF E.  相似文献   

7.
8.
9.
10.
11.
The core complex of purple bacteria is a supramolecular assembly consisting of an array of light-harvesting LH1 antenna organized around the reaction center. It has been isolated and characterized in this work using a Rubrivivax gelatinosus mutant lacking the peripheral LH2 antenna. The purification did not modify the organization of the complex as shown by comparison with the intact membranes of the mutant. The protein components consisted exclusively of the reaction center, the associated tetraheme cyt c and the LH1 alphabeta subunits; no other protein which could play the role of pufX could be detected. The complex migrated as a single band in a sucrose gradient, and as a monomer in a native Blue gel electrophoresis. Comparison of its absorbance spectrum with those of the isolated RC and of the LH1 antenna as well as measurements of the bacteriochlorophyll/tetraheme cyt c ratio indicated that the mean number of LH1 subunits per RC-cyt c is near 16. The polypeptides of the LH1 antenna were shown to present several modifications. The alpha one was formylated at its N-terminal residue and the N-terminal methionine of beta was cleaved, as already observed for other Rubrivivax gelatinosus strains. Both modifications occurred possibly by post-translational processing. Furthermore the alpha polypeptides were heterogeneous, some of them having lost the 15 last residues of their C-terminus. This truncation of the hydrophobic C-terminal extension is similar to that observed previously for the alpha polypeptide of the Rubrivivax gelatinosus LH2 antenna and is probably due to proteolysis or to instability of this extension.  相似文献   

12.
13.
14.
A theoretical model for the cytoplasmic membrane topology of the Rhodobacter capsulatus PucC protein was derived and tested experimentally with pucC'::pho'A gene fusions. The alkaline phosphatase (AP) activities of selected fusions were assayed, and the resultant pattern of high and low activity was compared with that of the theoretical model. High AP activity correlated well with fusion joints located in regions predicted to be periplasmic, and most fusions in predicted cytoplasmic loops yield approximately 1/20th as much activity. Replacement of pho'A with lac'Z in nine of the fusions confirmed the topology, as beta-galactosidase activities were generally reciprocal to the corresponding AP activity. On the basis of the theoretical analysis and the information provided by the activities of fusions, a model for PucC topology in which there are 12 membrane-spanning segments and both the N and C termini are located in the cytoplasm is proposed. Translationally out-of-frame pucC::phoA fusions were expressed in an R. capsulatus delta pucC strain. None of the fusions missing only one or two of the proposed C-terminal transmembrane segments restored the wild-type phenotype, suggesting that the C terminus of PucC is important for function.  相似文献   

15.
16.
The light-harvesting complex LH2 of Rubrivivax gelatinosus has an oligomeric structure built from alpha-beta heterodimers containing three bacteriochlorophylls and one carotenoid each. The alpha subunit (71 residues) presents a C-terminal hydrophobic extension (residues 51-71) which is prone to attack by an endogenous protease. This extension can also be cleaved by a mild thermolysin treatment, as demonstrated by electrophoresis and by matrix-assisted laser desorption-time of flight mass spectrometry. This cleavage does not affect the pigment binding sites as shown by absorption spectroscopy. Electron microscopy was used to investigate the structures of the native and thermolysin cleaved forms of the complexes. Two-dimensional crystals of the reconstituted complexes were examined after negative staining and cryomicroscopy. Projection maps at 10 A resolution were calculated, demonstrating the nonameric ring-like organization of alpha-beta subunits. The cleaved form presents the same structural features. We conclude that the LH2 complex is structurally homologous to the Rhodopseudomonas acidophila LH2. The hydrophobic C-terminal extension does not fold back in the membrane, but lays out on the periplasmic surface of the complex.  相似文献   

17.
Light-harvesting complexes 2 (LH2) are the accessory antenna proteins in the bacterial photosynthetic apparatus and are built up of alphabeta-heterodimers containing three bacteriochlorophylls and one carotenoid each. We have used atomic force microscopy (AFM) to investigate reconstituted LH2 from Rubrivivax gelatinosus, which has a C-terminal hydrophobic extension of 21 amino acids on the alpha-subunit. High-resolution topographs revealed a nonameric organization of the regularly packed cylindrical complexes incorporated into the membrane in both orientations. Native LH2 showed one surface which protruded by approximately 6 A and one that protruded by approximately 14 A from the membrane. Topographs of samples reconstituted with thermolysin-digested LH2 revealed a height reduction of the strongly protruding surface to approximately 9 A, and a change of its surface appearance. These results suggested that the alpha-subunit of R.gelatinosus comprises a single transmembrane helix and an extrinsic C-terminus, and allowed the periplasmic surface to be assigned. Occasionally, large rings ( approximately 120 A diameter) surrounded by LH2 rings were observed. Their diameter and appearance suggest the large rings to be LH1 complexes.  相似文献   

18.
19.
20.
The mature architecture of the photosynthetic membrane of the purple phototroph Rhodobacter sphaeroides has been characterised to a level where an atomic‐level membrane model is available, but the roles of the putative assembly proteins LhaA and PucC in establishing this architecture are unknown. Here we investigate the assembly of light‐harvesting LH2 and reaction centre‐light‐harvesting1‐PufX (RC‐LH1‐PufX) photosystem complexes using spectroscopy, pull‐downs, native gel electrophoresis, quantitative mass spectrometry and fluorescence lifetime microscopy to characterise a series of lhaA and pucC mutants. LhaA and PucC are important for specific assembly of LH1 or LH2 complexes, respectively, but they are not essential; the few LH1 subunits found in ΔlhaA mutants assemble to form normal RC‐LH1‐PufX core complexes showing that, once initiated, LH1 assembly round the RC is cooperative and proceeds to completion. LhaA and PucC form oligomers at sites of initiation of membrane invagination; LhaA associates with RCs, bacteriochlorophyll synthase (BchG), the protein translocase subunit YajC and the YidC membrane protein insertase. These associations within membrane nanodomains likely maximise interactions between pigments newly arriving from BchG and nascent proteins within the SecYEG‐SecDF‐YajC‐YidC assembly machinery, thereby co‐ordinating pigment delivery, the co‐translational insertion of LH polypeptides and their folding and assembly to form photosynthetic complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号