首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
During preimplantation mouse embryo development expression of Cdx2 is induced in outer cells, which are the trophectoderm (TE) precursors. The mechanism of Cdx2 upregulation in these cells remains unclear. However, it has been suggested that the cell position and polarization may play a crucial role in this process. In order to elucidate the role of these two parameters in the formation of TE we analyzed the expression pattern of Cdx2 in the embryos in which either the position of cells and the time of polarization or only the position of cells was experimentally disrupted. Such embryos developed from the blastomeres that were isolated from 8-cell embryos either before or after the compaction, i.e. before or after the cell polarization took place. We found that in the embryos developed from polar blastomeres originated from the 8-cell compacted embryo, the experimentally imposed outer position was not sufficient to induce the Cdx2 in these blastomeres which in the intact embryo would form the inner cells. However, when the polarization at the 8-cell stage was disrupted, the embryos developed from such an unpolarized blastomeres showed the increased number of cells expressing Cdx2. We found that in such experimentally obtained embryos the polarization was delayed until the 16-cell stage. These results suggest that the main factor responsible for upregulation of Cdx2 expression in outer blastomeres, i.e. TE precursors, is their polarity.  相似文献   

3.
4.
Present studies were performed to investigate what factors affect the morphogenesis of preimplantation mouse embryos, and to find the action mechanism of that factor by using cytoplasm removal and its reconstitution from a different developmental stage embryo. Half (HP group) or one-third of cytoplasm (TP group) was removed from 1-cell mouse embryos by micromanipulation, and their morphogenesis and genome expression were compared with sham-operated embryos (SP group). The compaction and blastocoel formation of embryos in both the HP and TP groups were accelerated in time and cell stage when compared with those of the SP group. However, the total activity and time of RNA synthesis, and gene expression of ZO-1alpha+ isoform were not different. To change the cytoplasm composition without altering the nucleus/cytoplasmic ratio, half a 1-cell embryo with both pronuclei was reconstituted with the half enucleated cytoplasm of 1-cell embryo (P + P group), 2-cell (P + 2 group) or 4-cell (P + 4 group) by electrofusion. Embryonic compaction, timing of RNA synthesis, and stage-specific gene expression of the ZO-1alpha(+) isoform in the P + 2 and P + 4 groups were accelerated in time and cell stage than that in the P + P group, but not different between the P + 2 and P + 4 groups. In addition, a blastomere of 2-cell embryo was reconstituted with the enucleated cytoplasm of 1-cell embryo (2 + P group) or 2-cell (2 + 2 group) in equal volume by electrofusion. Also, the karyoplast of 2-cell was fused with the enucleated 1-cell embryo (2 + PP group). Embryonic development, total activity of RNA synthesis, and gene expression of the ZO-1alpha(+) isoform of embryos in the 2 + P and 2 + PP groups were delayed when compared with those of the 2 + 2 group. Also, the phenomena of compaction and blastocoel formation were delayed in the development time and cell stage. From these results, the nucleus/cytoplasm ratio was found to have no direct effect on the regulation of embryonic morphogenesis, although it accelerated compaction and blastocoel formation. However, cytoplasmic factors that altered between 1- and 2-cell stages regulate embryonic morphogenesis, especially compaction, of preimplantation mouse embryos in concentration-dependent manner.  相似文献   

5.
In this study, cytoplasmic effects on the development of nuclear transplant embryos were examined. In addition, the production of offspring from nuclear transplant embryos was attempted. Nuclei from cleavage-stage embryos were transplanted to enucleated zygotes at different cell cycle stages and with different cytoplasmic volumes. A greater developmental rate to the blastocyst stage was observed in reconstituted late stage zygotes that received nuclei from late 2-cell stage embryos than in early stage zygotes (46.3% vs. 16.9%). A further increase in developmental rate to the blastocyst stage (85.5%) and in cell number was obtained in reconstituted late stage zygotes with reduced cytoplasmic volume. However, developmental potential of nuclei from 4- and 8-cell stage embryos was very limited, although they were transferred to enucleated late stage zygotes with reduced cytoplasm. After the transfer of blastocysts derived from nuclear transplant embryos to recipient females, live young were obtained from reconstituted embryos that received nuclei from late 2-cell stage embryos (28.6%). These results confirm that the development of nuclear transplant embryos can be affected by recipient cell cycle stage and cytoplasmic volume. Furthermore, the nuclei from late 2-cell stage embryos in which activation of the embryonic genome had occurred can be reprogrammed to a certain extent when transplanted into enucleated zygotes, especially late stage zygotes with reduced cytoplasmic content.  相似文献   

6.
The core planar polarity proteins are required to specify the orientation of structures that are polarised in the plane of the epithelium. In the Drosophila melanogaster wing, the core proteins localise asymmetrically at either proximal or distal cell edges. Asymmetric localisation is thought to be biased by long-range cues, causing asymmetric complexes to become aligned with the tissue axes. Core proteins are then thought to participate in feedback interactions that are necessary to amplify asymmetry, and in order for such feedback interactions to operate correctly, the levels of the core proteins at junctions must be tightly regulated. We have investigated regulation of the core protein Prickle (Pk) in the pupal wing. The core protein Strabismus (Stbm) is required to recruit Pk into asymmetric complexes at proximal cell ends, and we report here that it also promotes proteasomal degradation of excess Pk, probably via a Cullin-1 dependent process. We also show for the first time that Pk is farnesylated in vivo, and this is essential for Pk function in the wing. Notably, farnesylation of Pk is necessary for it to be recruited into asymmetric complexes and function in feedback amplification, probably by reinforcing weak direct interactions between Stbm and Pk. Furthermore, farnesylation is also required for Stbm to promote proteasomal degradation of Pk. We propose that Stbm recruits farnesylated Pk into asymmetric complexes, but also promotes degradation of excess Pk that would otherwise perturb feedback amplification.  相似文献   

7.
Chen YJ  Shen JL  Feng XQ  Shan ZY  Yan XF  Dong JJ  Zhong SQ  Lei L 《生理学报》2008,60(1):105-112
为了观察蛋白激酶Cα(protein kinase Cα,PKCα在昆明白小鼠受精卵、孤雌激活和四倍体胚胎早期发育阶段的亚细胞定位和致密化进程中的表达变化,本实验利用免疫荧光化学染色与激光共聚焦显微镜观察相结合的方法,对受精卵、孤雌激活和四倍体胚胎早期发育阶段PKCα的表达进行了定位观察,并利用Western blot对三组胚胎致密化进程中PKCα的表达进行定量分析.结果显示,PKCα在上述三组胚胎发育的2-细胞期至囊胚期均有表达,虽然不同胚胎PKCα的分布在同一发育阶段存在差异,却表现出在各胚胎期主要分布于卵裂球核染色质内,以及在胚胎致密化开始,PKCα在卵裂球连接处发生重新分布的共同特点.此外,三组胚胎PKCα在致密化进程中的表达呈升高趋势,即致密化后的表达高于敛密化前.结果表明,PKCct对胚胎致密化的调节具有重要作用,其在8-细胞/4-细胞期的重新分布是胚胎进入桑椹胚期的必然事件,是胚胎致密化的前提,同时伴随蛋白表达增多.此外,PKCα在囊胚期发生了植入前的第二次重新分布.PKCα在三组胚胎各发育阶段表达情况各不相同,它对小鼠胚胎发育的影响体现在整个早期发育阶段.PKCα在小鼠受精卵早期发育阶段的两次重新分布可能与在致密化开始时启动的细胞黏附事件存在某种必然联系.  相似文献   

8.
9.
In preimplantation mouse embryos, the Hippo signaling pathway plays a central role in regulating the fates of the trophectoderm (TE) and the inner cell mass (ICM). In early blastocysts with more than 32 cells, the Par‐aPKC system controls polarization of the outer cells along the apicobasal axis, and cell polarity suppresses Hippo signaling. Inactivation of Hippo signaling promotes nuclear accumulation of a coactivator protein, Yap, leading to induction of TE‐specific genes. However, whether similar mechanisms operate at earlier stages is not known. Here, we show that slightly different mechanisms operate in 16‐cell stage embryos. Similar to 32‐cell stage embryos, disruption of the Par‐aPKC system activated Hippo signaling and suppressed nuclear Yap and Cdx2 expression in the outer cells. However, unlike 32‐cell stage embryos, 16‐cell stage embryos with a disrupted Par‐aPKC system maintained apical localization of phosphorylated Ezrin/Radixin/Moesin (p‐ERM), and the effects on Yap and Cdx2 were weak. Furthermore, normal 16‐cell stage embryos often contained apolar cells in the outer position. In these cells, the Hippo pathway was strongly activated and Yap was excluded from the nuclei, thus resembling inner cells. Dissociated blastomeres of 8‐cell stage embryos form polar–apolar couplets, which exhibit different levels of nuclear Yap, and the polar cell engulfed the apolar cell. These results suggest that cell polarization at the 16‐cell stage is regulated by both Par‐aPKC‐dependent and ‐independent mechanisms. Asymmetric cell division is involved in cell polarity control, and cell polarity regulates cell positioning and most likely controls Hippo signaling.  相似文献   

10.
The process of cell polarization in mouse 8-cell embryos includes the formation of a polar cluster of cytoplasmic endocytotic organelles (endosomes) subjacent to an apical surface pole of microvilli. A similar polar morphology, supplemented by basally localized secondary lysosomes, is evident following division to the 16-cell stage in outside blastomeres, precursors of the trophectodermal lineage. The roles of microfilaments and microtubules in generating and stabilizing endocytotic and surface features of polarity (visualized by horseradish peroxidase incubation and indirect immunofluorescence labeling, respectively) have been evaluated by exposure of 8- and 16-cell embryos and 8-cell couplets to drugs (cytochalasin D, colcemid, nocodazole) that disrupt the cytoskeleton. The generation of endocytotic polarity is dependent upon intact microtubules and microfilaments, but the newly established endocytotic pole in blastomeres from compacted 8-cell embryos appears to be stabilized exclusively by microtubules. Polarized endocytotic organelles at the 16-cell stage are more resistant to drug treatment than at the 8-cell stage (probably due to microfilament interactions) indicating a maturation phase in the polar cell lineage. Microtubules are also responsible for the orientation of endocytotic clusters along the cell's axis of polarity. In contrast, the generation and stability of polarity at the cell surface appears relatively independent of cytoskeletal integrity. The results are discussed in relation to the mechanisms that may control the development and stabilization of polarization during cleavage.  相似文献   

11.
12.
A study was conduced on early cleavage divisions and timing of compaction in bovine preimplantation-stage embryos. Zygotes were produced using conventional in vitro maturation and fertilization procedures. Twenty hours post insemination, the zygotes were denuded and cultured with oviduct epithelial cells in B2 medium + 10% estrous cow serum. Starting at 24 hours post insemination, the embryos (n=657) were evaluated every 6 hours and then were put into different co-culture drops according to their cell number. Starting from 78 hours post insemination, the cleavage rate was evaluated every 12 hours. Embryos were stained with Hoechst 33342 at the compacted morula stage or when they were degenerated, at 162 hours post insemination. Developmentally capable embryos were characterized by a rapid cleavage rate in the first 3 cell cycles and by an extended 8- to 16-cell stage. Peak concentrations of 2-, 4-, 8- and 16-cell stages emerged at 36, 42, 60 and 102 hours post insemination, respectively. Compaction did not occur until 126 hours post insemination. The rate of compaction was significantly higher in embryos that were at the 2-cell stage before or at 36 hours post insemination (P < 0.05). The mean cell numbers of compacted morulae that were identified at 126 and 138 hours post insemination were 30.9 +/- 6.8 and 31.6 +/- 7.7, respectively. These results indicate that developmentally capable bovine embryos reach the 2-cell stage at 36 hours post insemination, and that they become compacted at the 32-cell stage, which usually occurs between 126 and 138 hours post insemination.  相似文献   

13.
The p120 family of cell adhesion molecules   总被引:9,自引:0,他引:9  
p120 is the prototypic member of the p120 subfamily of armadillo-related proteins that includes p0071, delta-catenin/NPRAP, ARVCF and the more distantly related plakophilins 1-3. Like armadillo, beta-catenin and plakoglobin these proteins are involved in mediating cell-cell adhesion. Besides their junctional localization they also reveal a cytoplasmic and nuclear localization. Non-cadherin-associated, cytoplasmic p120 functions in Rho signaling and regulation of cytoskeletal organization and actin dynamics. The nuclear function remains largely unsolved. Some characteristics seem to be shared by the various members of the family but it seems unlikely that p120-related proteins have solely redundant functions and compete for interactions with identical binding partners. Stabilization of cadherins at the membrane seems a common function of p120, p0071, delta-catenin and ARVCF but it is not yet known if and how these proteins confer distinct properties to cellular junctions. Moreover, p0071, NPRAP and ARVCF have a C-terminal PDZ-binding motif that is lacking in p120 pointing to distinct roles of these proteins. PDZ domains are found in a series of proteins involved in establishing cell polarity in epithelial cells. Thus, p120 proteins may not only be master regulators of cadherin abundance and activity but play additional roles in regulating cell polarity. This review focuses on the putative roles of p120 proteins in cell polarity.  相似文献   

14.
The nuclear lamina is a complex meshwork of nuclear lamin filaments that lies on the interface of the nuclear envelope and chromatin and is important for cell maintenance, nucleoskeleton support, chromatin remodeling, and protein recruitment to the inner nucleolus. Protein and mRNA patterns for the major nuclear lamins were investigated in bovine in vitro fertilized (IVF) and nuclear transfer embryos. Expression of lamins A/C and B were examined in IVF bovine germinal vesicle (GV) oocytes, metaphase II oocytes, zygotes, 2-cell, 8-cell, 16-32-cell embryos, morulae, and blastocysts (n = 10). Lamin A/C was detected in 9/10 immature oocytes, 10/10 zygotes, 8/10 2-cell embryos, 4/10 morulae, 10/10 blastocysts but absent during the maternal embryonic transition. Lamin B was ubiquitously expressed during IVF preimplantation development but was only detected in 4/10 GV oocytes. Messenger RNA expression confirms that the major lamins, A/C and B1 are expressed throughout preimplantation development and transcribed by the embryo proper. Lamin A/C and B expression were observed (15 min, 30 min, 60 min, 120 min) following somatic cell nuclear transfer using adult fibroblasts and at the 2-cell, 8-cell, 16-32-cell, morula and blastocyst stage (n = 5). Altered expression levels and localization of nuclear lamins A/C and B was determined in nuclear transfer embryos during the first 2 hr post fusion, coincidental with only partial nuclear envelope breakdown as well as during the initial cleavage divisions, but was restored by the morula stage. This mechanical and molecular disruption of the nuclear lamina provides key evidence for incomplete nuclear remodeling and reprogramming following somatic cell nuclear transfer.  相似文献   

15.
Early cleavage stage (4- and uncompacted 8-cell) embryos from experimental (+/tw32 X +/t32) and control (male +/tw32 X female +/T) matings were recovered at 56 hours post coitum, cultured, separated into uncompacted and compacted 8-cell embryo groups, and either analyzed histologically for cytoplasmic lipids or cultured through the morula-to-blastocyst transformation. Abnormal compaction was associated with excess cytoplasmic lipids at the 8-cell stage (P less than 0.01). Also, 89.2% (33/37) of the original uncompacted experimental embryos underwent developmental arrest characteristic of tw32 homozygous lethals. Thus, aberrant compaction, a newly reported symptom of the tw32/tw21 syndrome, affords a visual means to identify tw32 homozygotes at 8-cell stages.  相似文献   

16.
Phospholipase C-zeta (PLCzeta), a strong candidate of the egg-activating sperm factor, causes intracellular Ca2+ oscillations and egg activation, and is subsequently accumulated into the pronucleus (PN), when expressed in mouse eggs by injection of RNA encoding PLCzeta. Changes in the localization of expressed PLCzeta were investigated by tagging with a fluorescent protein. PLCzeta began to translocate into the PN formed at 5-6 h after RNA injection and increased there. Observation in the same embryo revealed that PLCzeta in the PN dispersed to the cytoplasm upon nuclear envelope breakdown and translocated again into the nucleus after cleavage. The dynamics was found in the second mitosis as well. When RNA was injected into fertilization-originated 1-cell embryos or blastomere(s) of 2-8-cell embryos, the nuclear localization of expressed PLCzeta was recognized in every embryo up to blastocyst. Thus, PLCzeta exhibited alternative cytoplasm/nucleus localization during development. This supports the view that the sperm factor could control cell cycle-dependent generation of Ca2+ oscillations in early embryogenesis.  相似文献   

17.
Frizzled (Fz) signaling regulates the establishment of planar cell polarity (PCP). The PCP genes prickle (pk) and strabismus (stbm) are thought to antagonize Fz signaling. We show that they act in the same cell, R4, adjacent to that in which the Fz/PCP pathway is required in the Drosophila eye. We demonstrate that Stbm and Pk interact physically and that Stbm recruits Pk to the cell membrane. Through this interaction, Pk affects Stbm membrane localization and can cause clustering of Stbm. Pk is also known to interact with Dsh and is thought to antagonize Dsh by affecting its membrane localization. Thus our data suggest that the Stbm/Pk complex modulates Fz/Dsh activity, resulting in a symmetry-breaking step during polarity signaling.  相似文献   

18.
We report the cloning and characterization of MOEP19, a novel 19 kDa RNA binding protein that marks a defined cortical cytoplasmic domain in oocytes and provides evidence of mammalian oocyte polarity and a form of pre-patterning that persists in zygotes and early embryos through the morula stage. MOEP19 contains a eukaryotic type KH-domain, typical of the KH-domain type I superfamily of RNA binding proteins, and both recombinant and native MOEP19 bind polynucleotides. By immunofluorescence, MOEP19 protein was first detected in primary follicles throughout the ooplasm. As oocytes expanded in size during oogenesis, MOEP19 increased in concentration. MOEP19 localized in the ovulated egg and early zygote as a symmetrical spherical cortical domain underlying the oolemma, deep to the zone of cortical granules. MOEP19 remained restricted to a cortical cytoplasmic crescent in blastomeres of 2-, 4- and 8-cell embryos. The MOEP19 domain was absent in regions underlying cell contacts. In morulae, the MOEP19 domain was found at the apex of outer, polarized blastomeres but was undetectable in blastomeres of the inner cell mass. In early blastocysts, MOEP19 localized in both mural and polar trophectoderm and a subset of embryos showed inner cell mass localization. MOEP19 concentration dramatically declined in late blastocysts. When blastomeres of 4- to 8-cell stages were dissociated, the polarized MOEP19 domain assumed a symmetrically spherical localization, while overnight culture of dissociated blastomeres resulted in formation of re-aggregated embryos in which polarity of the MOEP19 domain was re-established at the blastomere apices. MOEP19 showed no evidence of translation in ovulated eggs, indicating that MOEP19 is a maternal effect gene. The persistence during early development of the MOEP19 cortical oocyte domain as a cortical crescent in blastomers suggests an intrinsic pre-patterning in the egg that is related to the apical-basolateral polarity of the embryo. Although the RNAs bound to MOEP19 are presently unknown, we predict that the MOEP19 domain directs RNAs essential for normal embryonic development to specific locations in the oocyte and early embryo.  相似文献   

19.
Upregulation of Cdx2 expression in outer cells is a key event responsible for cell lineage segregation between the inner cell mass and the trophoderm (TE) in mouse morula‐stage embryos. In TE cells, polarization can regulate Hippo and Rho‐associated kinase (Rho‐ROCK) signaling to induce the nuclear location of YAP, which has been demonstrated to further induce the expression of Cdx2. However, we found that CDX2 expression could not be detected in the outer cells of porcine morula‐stage embryos but only in some TE cells at the early blastocyst stage. The biological significance and the regulation mechanism of this species‐specific CDX2 expression pattern have still not been determined. We show here that an asynchronous CDX2 expression pattern exists in porcine TE cells during the development of the blastocyst. We demonstrate that CDX2 expression in porcine TE cells depends on the nuclear localization of YAP and polarization of the embryo through Y27632 treatment. We found that the polarization process in the morula to the late blastocyst stage porcine embryos was asynchronous, which was revealed by the apical localization of phosphorylated EZRIN staining. Artificially enhancing the number of polarized blastomeres by culturing the separated blastomeres of four‐cell stage porcine embryos resulted in increased CDX2‐positive cell numbers. These results indicate that the mechanism of CDX2 expression regulation is conserved, but the polarization progress is not conserved between the pig and the mouse, and results in a species‐specific trophoblast determination progress model.  相似文献   

20.
The effects of phorbol myristate acetate (PMA) and other activators of protein kinase C on the cytoskeletal organization of mouse oocytes and early embryos have been examined. The effects observed depended on the developmental stage on exposure to PMA. PMA had little effect on the cytoskeletal or microvillous organization of unfertilized oocytes. Interphase cells from embryos prior to compaction showed limited disruption and loss of microvilli when exposed to PMA and foci of polymerized actin remained visible in the cytocortex of embryos up to the early 8-cell stage. When compacted late 8-cell embryos were exposed to PMA, most microvilli were lost and little polymerized actin remained in the cytocortex. PMA also caused loss of microtubules from compact 8-cell embryos under some experimental conditions. Intercellular flattening was both prevented and reversed. The relevance of these observations to the rearrangement of cell-cell contacts and cytoskeletal organization seen during compaction at the 8-cell stage is discussed and a possible role for protein kinase C in the generation of cell polarity proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号