首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
河豚毒-抵抗性(TTX-R)Nav1.5 Na 通道是心肌的特异性Na 通道,虽然研究发现神经元中也存在河豚毒-抵抗性Na 电流及Nav1.5/SCN5A mRNA的表达,但其确切的cDNA序列尚不清楚.采用RT-PCR法对人脑组织Nav1.5/SCN5A基因cDNA进行克隆发现:人脑组织Nav1.5/SCN5A基因cDNA有2种变构体,hB1和hB2(accession number EF629346,EF629347),其中hB1全长6201个碱基,其开放读码框架(ORF)参与编码2016个氨基酸,和人心肌Nav1.5 Na 通道氨基酸序列相同率高达98%,共有28个不同的氨基酸,其中7个集中位于第6A外显子与第6外显子编码区.与人心肌Nav1.5/SCN5A基因cDNA不同的是,在对人脑组织Nav1.5/SCN5A基因cDNA的克隆中未发现该基因第18外显子的选择性剪接,但却发现其第24外显子的选择性剪接,2种选择性剪接体(hB1和hB2)在脑组织中基本同时表达,表达比率接近1∶1,但在心脏中二者的表达比率却与年龄有关.人Nav1.5/SCN5A基因的第24外显子定位于染色体3P21区,共有54个碱基,参与编码18个氨基酸.RT-PCR法证实第24外显子的选择性剪接也可发生在大鼠心脑之外的其他组织中,竞争性PCR法证明,不同组织中2种选择性剪接体的表达比率不同,且随着周龄的增加,2种选择性剪接体在各组织中表达的变化趋势不同.此外,RT-PCR法还发现Wistar大鼠全身16种组织中均可检测到Nav1.5/SCN5A mRNA的表达.上述实验结果说明,Nav1.5 Na 通道在全身组织中分布广泛,但编码人脑组织Nav1.5 Na 通道与心肌组织该离子通道的cDNA序列不同,是Nav1.5/SCN5A基因的2种变构体,这为深入研究不同组织中Nav1.5 Na 通道的功能提供了基础.  相似文献   

2.
大鼠脑组织Nav1.5钠通道的基因克隆及分布分析   总被引:2,自引:0,他引:2       下载免费PDF全文
为了阐明大鼠脑组织Nav1.5钠通道α亚单位的编码基因、分子特性及其在不同发育阶段各脑叶的分布差异,应用逆转录聚合酶链反应(RT-PCR)方法,对大鼠脑组织Nav1.5钠通道α亚单位进行了克隆(命名为rN1),并比较其在不同发育阶段各脑叶的分布情况.rN1基因编码2016个氨基酸残基,序列分析显示,其与rH1氨基酸相似性为96.53%,与hNbR1相似性为96.13%.在DI-S3~S4发现与rH1不同的一个新的外显子(第7外显子),同时发现DⅡ~Ⅲ选择性剪切了第20外显子(53个氨基酸残基)的异构体(命名为rN1-2).分布结果显示,大鼠脑组织Nav1.5钠通道α亚单位在不同发育阶段各脑叶分布有明显的差异,研究证实,Nav1.5钠通道在大鼠脑组织显著表达,存在脑叶的分布差异,而且随着脑组织的发育,其表达逐渐趋于稳定,实验证实Nav1.5钠通道基因编码了一个新的外显子而且其表达范围更加广泛.  相似文献   

3.
Long QT syndrome type 3 (LQT3) has been traced to mutations of the cardiac Na(+) channel (Na(v)1.5) that produce persistent Na(+) currents leading to delayed ventricular repolarization and torsades de pointes. We performed mutational analyses of patients suffering from LQTS and characterized the biophysical properties of the mutations that we uncovered. One LQT3 patient carried a mutation in the SCN5A gene in which the cysteine was substituted for a highly conserved tyrosine (Y1767C) located near the cytoplasmic entrance of the Na(v)1.5 channel pore. The wild-type and mutant channels were transiently expressed in tsA201 cells, and Na(+) currents were recorded using the patch-clamp technique. The Y1767C channel produced a persistent Na(+) current, more rapid inactivation, faster recovery from inactivation, and an increased window current. The persistent Na(+) current of the Y1767C channel was blocked by ranolazine but not by many class I antiarrhythmic drugs. The incomplete inactivation, along with the persistent activation of Na(+) channels caused by an overlap of voltage-dependent activation and inactivation, known as window currents, appeared to contribute to the LQTS phenotype in this patient. The blocking effect of ranolazine on the persistent Na(+) current suggested that ranolazine may be an effective therapeutic treatment for patients with this mutation. Our data also revealed the unique role for the Y1767 residue in inactivating and forming the intracellular pore of the Na(v)1.5 channel.  相似文献   

4.
Diacylglycerol kinase (DGK) catalyzes phosphorylation of a second messenger diacylglycerol (DG) to phosphatidic acid in cellular signal transduction. Previous studies have revealed that DGK consists of a family of isozymes including our rat clones. In this study we isolated from rat brain cDNA library the cDNA clones for a rat homologue of DGKiota (rDGKiota-1) that contains two zinc finger-like sequences, the highly conserved DGK catalytic domain, a bipartite nuclear localization signal, and four ankyrin repeats at the carboxyl terminus. In addition, we found novel splice variants, which contain either insertion 1 (71 bp) or insertion 2 (19 bp) or both in the carboxyl-terminal portion. Each of the insertions causes a frameshift, and the resultant premature stop codons produce two truncated forms (termed rDGKiota-2 and -iota-3), the former lacking the ankyrin repeats at the carboxyl terminus and the latter lacking a part of the catalytic domain and the ankyrin repeats. Truncation of the carboxyl-terminal portion clearly exerts effects on the detergent solubility and enzymatic activity of the splice variants, although all three variants showed similar cytoplasmic localization in cDNA-transfected cultured neurons despite the continued presence of the nuclear localization signal sequence. Immunoblot analysis using anti-rDGKiota antibody raised against the common amino-terminal portion clearly shows that these rDGKiota variants are indeed expressed in the brain. These results suggest that the carboxyl-terminal truncated forms of rDGKiota-2 and -iota-3 that exhibit reduced enzymatic activities might show a dominant negative effect against the intact rDGKiota-1, and that the modulation of signal transduction by the splice variants may play some roles in the physiologic and/or pathologic conditions of neurons.  相似文献   

5.
The voltage-gated sodium channel Na(v)1.8 is only expressed in subsets of neurons in dorsal root ganglia (DRG) and trigeminal and nodose ganglia. We have isolated mouse partial length Na(v)1.8 cDNA clones spanning the exon 17 sequence, which have 17 nucleotide substitutions and 12 predicted amino acid differences from the published sequence. The absence of a mutually exclusive alternative exon 17 was confirmed by sequencing 4.1 kilobases of genomic DNA spanning exons 16-18 of Scn10a. A novel cDNA isoform was identified, designated Na(v)1.8c, which results from alternative 3'-splice site selection at a CAG/CAG motif to exclude the codon for glutamine 1031 within the interdomain cytoplasmic loop IDII/III. The ratio of Na(v)1.8c (CAG-skipped) to Na(v)1.8 (CAG-inclusive) mRNA in mouse is approximately 2:1 in adult DRG, trigeminal ganglion, and neonatal DRG. A Na(v)1.8c isoform also occurs in rat DRG, but is less common. Of the two other tetrodotoxin-resistant channels, no analogous alternative splicing of mouse Na(v)1.9 was detected, whereas rare alternative splicing of Na(v)1.5 at a CAG/CAG motif resulted in the introduction of a CAG trinucleotide. This isoform, designated Na(v)1.5c, is conserved in rat and encodes an additional glutamine residue that disrupts a putative CK2 phosphorylation site. In summary, novel isoforms of Na(v)1.8 and Na(v)1.5 are each generated by alternative splicing at CAG/CAG motifs, which result in the absence or presence of predicted glutamine residues within the interdomain cytoplasmic loop IDII/III. Mutations of sodium channels within this cytoplasmic loop have previously been demonstrated to alter electrophysiological properties and cause cardiac arrhythmias and epilepsy.  相似文献   

6.
编码脑组织Nav1.5钠通道新外显子的克隆、鉴定和分布   总被引:1,自引:0,他引:1  
Nav1.5电压-门控钠通道(VGSC)被认为是心肌的特异性通道,但最近的研究发现,该通道在脑组织尤其是边缘系统中亦广泛分布.此前,在对人神经母细胞瘤细胞钠通道的基因克隆中,发现Nav1.5/SCN5A基因的第6A外显子参与编码该通道.采用人及鼠脑组织,通过RT-PCR法对Nav1.5钠通道基因进行克隆发现:Nav1.5/SCN5A基因中的第6A外显子参与编码了该通道,而心肌等其他组织却是第6外显子参与编码该通道.人Nav1.5/SCN5A基因的第6A和第6外显子都定位于3号染色体,共有92个碱基,都可以编码产生30个氨基酸,但却有7个氨基酸不同.人和鼠脑组织Nav1.5/SCN5A基因的第6A外显子仅有一个碱基不同,却产生相同的氨基酸序列.RT-PCR法证实第6A外显子在鼠脑的不同部位表达不同,第6外显子在大鼠不同组织中的表达也不同,这为深入研究不同系统中Nav1.5钠通道的功能提供了基础.  相似文献   

7.
Cloning of two additional catecholamine receptors from rat brain   总被引:4,自引:0,他引:4  
An approach based on the polymerase chain reaction (PCR) was used to isolate additional members of the G-linked receptor family from a rat striatal lambda gtII cDNA library. Priming with one degenerate probe corresponding to highly conserved consensus sequences in the third transmembrane (TM) domain of 15 G-linked receptors and sequences in the phage vector resulted in one clone (G-13) encoding a dopamine D2 receptor variant with a 29 amino acid insert in the third cytoplasmic loop. In addition, the amino acid sequence encoded by clone G-36 contained conserved sequences characteristic of the G-linked class of receptors and displayed sequence homology in TM domains with the beta 2-adrenergic receptor (48%). Two conserved serine residues in TM5 postulated to be part of a ligand binding site in the adrenergic receptor, suggests that G-36 encodes a catecholaminergic receptor. Northern blot analysis confirmed the expression of G-36 in rat brain, but not in kidney, heart and lung. Several strong hybridizing bands to G-36 were obtained in both human and rat genomic DNA. The general PCR strategy employed here should prove to be extremely useful for the isolation of other members of the G-linked receptor family.  相似文献   

8.
9.

Brugada syndrome (BrS) is a rare hereditary arrhythmia syndrome that increases an individual’s risk for sudden cardiac death (SCD) due to ventricular fibrillation. This disorder is regarded as a notable cause of death in individuals aged less than 40 years, responsible for up to 40% of sudden deaths in cases without structural heart disease, and is reported to be an endemic in Asian countries. Mutations in SCN5A are found in approximately 30% of patients with Brugada syndrome. This study aimed to investigate mutations in the SCN5A gene in a group of Iranian Brugada syndrome patients. Nine probands (n = 9, male, mean age = 39) diagnosed with Brugada syndrome were enrolled in this study. Exon 2 to 29 were amplified by PCR and subjected to direct sequencing. Eight in silico prediction tools were used to anticipate the effects of non-synonymous variants. Seven known polymorphisms and 2 previously reported disease-causing mutations, including H558R and G1406R, were found in the studied cases. Twenty novel variants were identified: 15 missense, 2 frameshift, 2 synonymous, and one nonsense variants. In silico tools predicted 11 non-synonymous variants to have damaging effects, whereas frameshift and nonsense variants were considered inherently pathogenic. The novel variants identified in this study, alongside previously reported mutations, are highly likely to be the cause of the Brugada syndrome phenotype observed in the patient group. Further analysis is required to understand the physiological effects caused by these variants.

  相似文献   

10.
11.
12.
13.
14.
Ca2+/calmodulin-dependent protein kinase I (CaMKI), originally identified as a protein kinase phosphorylating synapsin I, has been shown to constitute a family of closely related isoforms (alpha, beta and gamma). Here, we have isolated and determined the complete primary structures of two alternatively splicing isoforms of CaMKI termed CaMKI gamma 1 and -gamma 2. CaMKI gamma 1 and -gamma 2 contain an identical N-terminal catalytic domain with different C-terminal regions due to the deletion of the 425-bp nucleotide sequence of CaMKI gamma 1 in CaMKI gamma 2. In vitro kinase assay has demonstrated the marked enhancement of the Ca2+/CaM-dependent activity of CaMKI gamma 1 by the preincubation with Ca2+/calmodulin-dependent protein kinase kinase (CaMKK), but no significant activation of CaMKI gamma 2. Northern blot analysis has demonstrated the predominant expression of CaMKI gamma in the brain. RT-PCR analysis has revealed similar expression patterns between CaMKI gamma 1 and CaMKI gamma 2 in various brain regions. In situ hybridization analysis has demonstrated that CaMKI gamma mRNA is expressed in a distinct pattern from other isoforms of CaMKI with predominant expression in some restricted brain regions such as the olfactory bulb, hippocampal pyramidal cell layer of CA3, central amygdaloid nuclei, ventromedial hypothalamic nucleus and pineal gland. In the primary hippocampal neurons and NG108-15 cells, transfected CaMKI gamma 1 and -gamma 2 are localized primarily in the cytoplasm and neurites but not in the nucleus. These findings suggest that both isoforms of CaMKI gamma may be involved in Ca2+ signal transduction in the cytoplasmic compartment of certain neuronal population.  相似文献   

15.
The human and rat genes for a fifth muscarinic receptor have been cloned and expressed in mammalian cells. The 532 amino acid human protein has 89% sequence identity to the 531 amino acid rat protein and is most closely related to the m3 receptor. Both proteins are encoded by single exons. The receptor has intermediate affinity for pirenzepine and low affinity for AF-DX 116, and it increases metabolism of phosphatidylinositol when stimulated with carbachol. Expression of mRNA has yet to be observed in brain or selected peripheral tissues, suggesting that either it is substantially less abundant than m1-m4 or its distribution is quite different.  相似文献   

16.
Two similar membrane bound guanylate cyclases (GC-A and GC-B) are known as natriuretic peptide receptors, but have not been well characterized yet. In this study, we have isolated two forms of GC-B cDNA clones along with GC-A cDNA clones from rat brain. The two forms of rat GC-B differ from each other only by 75bp deletion at 3'-flanking region of the putative transmembrane domain, the shorter form lacking the nucleotide binding site by the deletion. Expression of these cDNAs on mammalian cells revealed that (1) GC-B is a specific receptor for CNP whereas GC-A is stimulated effectively both by ANP and BNP, and (2) the two forms of GC-B possess practically the same high binding affinity for CNP while the shorter form could not induce cGMP production by the binding of CNP. These data indicate that in rat brain is present the non-functional receptor for CNP caused by the short deletion.  相似文献   

17.
The aim of this study was to investigate if p-chloroamphetamine (PCA), which is neurotoxic to serotonin (5-HT) nerve terminals, was able to induce, like 3,4-methylenedioxymethamphetamine, a region-specific regulation of 5-HT1A receptor mRNA expression. The effect of PCA on the expression of 5-HT7 receptors, which share some pharmacological properties with 5-HT1A receptors, was comparatively studied. PCA (2 x 5 mg/kg) produced a lasting depletion of 5-HT content in the rat frontal cortex and hippocampus. In the hippocampus, the maximal 5-HT depletion was found on day 21 (-70%), whereas in the cortex, the highest 5-HT depletion was found on day 14 (-73%), with a partial but significant recovery on day 21. At the latter time point, 5-HT1A receptor mRNA expression was increased by 80% in the cortex and decreased by 50% in the hippocampus. The 5-HT1A receptor mRNA expression was also enhanced after exposure to PCA of rat cortical but not of hippocampal primary cultures. In regard to 5-HT7 receptor mRNA expression, the most remarkable change after PCA was the great increase (+200%) in the brain-stem. Binding studies to 5-HT1A receptors matched the changes in receptor mRNA expression. Gel shift assays revealed enhanced nuclear protein binding to the KB sequence with use of cortical but not hippocampal extracts of PCA-treated rats. Overall, the data show region-specific changes in 5-HT receptor-type expression that may not be entirely dependent on the neurotoxic effect of PCA on 5-HT terminals.  相似文献   

18.
Voltage-gated Na+ channels (VGSCs) are expressed in excitable cells (e.g. neurons and muscles), as well as in some classically ‘non-excitable’ cells (e.g. fibroblasts), and in carcinomas. In general, functional expression of VGSCs in plasma membrane (PM) is hierarchical and dynamic. Previously, we have shown that an activity-dependent positive feedback mechanism involving cAMP-dependent protein kinase A (PKA) plays a significant role in upregulation of VGSCs in strongly metastatic rat prostate cancer Mat-LyLu cells expressing Nav1.7. Here, we investigated the possible role of PKA in VGSC regulation and its functional consequences in strongly metastatic human breast cancer (BCa) MDA-MB-231 cells, where the neonatal splice form of Nav1.5 (nNav1.5) is the predominant VGSC present. Treatment with the PKA activator forskolin for 24 h increased mRNA and PM protein levels of nNav1.5, without changing the total VGSC protein level. Opposite effects were obtained by application of the PKA inhibitor KT5720 or the highly specific VGSC blocker tetrodotoxin (TTX), the latter implying activity-dependent upregulation. We tested the possibility, therefore, that the activity dependence of VGSC (nNav1.5) expression involved PKA. Indeed, TTX pretreatment reduced the level of phosphorylated PKA and eliminated basal and PKA-stimulated cellular migration. These data suggested that activity-dependent positive feedback mediated by PKA plays an important role in the functional expression of nNav1.5 in BCa, and in turn, this enhances the cells’ metastatic potential.  相似文献   

19.
20.
Late Na(+) current (I(NaL)) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) are both increased in the diseased heart. Recently, CaMKII was found to phosphorylate the Na(+) channel 1.5 (Na(v)1.5), resulting in enhanced I(NaL). Conversely, an increase of I(NaL) would be expected to cause elevation of intracellular Ca(2+) and activation of CaMKII. However, a relationship between enhancement of I(NaL) and activation of CaMKII has yet to be demonstrated. We investigated whether Na(+) influx via Na(v)1.5 leads to CaMKII activation and explored the functional significance of this pathway. In neonatal rat ventricular myocytes (NRVM), treatment with the I(NaL) activators anemone toxin II (ATX-II) or veratridine increased CaMKII autophosphorylation and increased phosphorylation of CaMKII substrates phospholamban and ryanodine receptor 2. Knockdown of Na(v)1.5 (but not Na(v)1.1 or Na(v)1.2) prevented ATX-II-induced CaMKII phosphorylation, providing evidence for a specific role of Na(v)1.5 in CaMKII activation. In support of this view, CaMKII activity was also increased in hearts of transgenic mice overexpressing a gain-of-function Na(v)1.5 mutant (N(1325)S). The effects of both ATX-II and the N(1325)S mutation were reversed by either I(NaL) inhibition (with ranolazine or tetrodotoxin) or CaMKII inhibition (with KN93 or autocamtide 2-related inhibitory peptide). Furthermore, ATX-II treatment also induced CaMKII-Na(v)1.5 coimmunoprecipitation. The same association between CaMKII and Na(v)1.5 was also found in N(1325)S mice, suggesting a direct protein-protein interaction. Pharmacological inhibitions of either CaMKII or I(NaL) also prevented ATX-II-induced cell death in NRVM and reduced the incidence of polymorphic ventricular tachycardia induced by ATX-II in rat perfused hearts. Taken together, these results suggest that a Na(v)1.5-dependent increase in Na(+) influx leads to activation of CaMKII, which in turn phosphorylates Na(v)1.5, further promoting Na(+) influx. Pharmacological inhibition of either CaMKII or Na(v)1.5 can ameliorate cardiac dysfunction caused by excessive Na(+) influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号