首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The expression of high mobility group protein A1 (HMGA1) protein has been closely related to various malignant and prognostic degrees of tumor. To investigate the influence of down-regulating HMGA1 on the tumor and the mechanism underlying antitumor of HMGA1, we transfected the HMGA1 shRNA vector into the osteogenic sarcoma MG-63 cell and observed the changes of cell proliferation, invasion abilities, and the tumor growth. HMGA1 gene expression could be efficiently inhibited, and cell proliferation, migration, invasion, and matrix metalloprotease level were also decreased. BALB/C nude mice injected with the MG-63 cells transfected HMGA1 shRNA showed the significant lower tumor weight, tumor volume, and longer tumor-forming time compared with the control group. Our results suggest that knockdown of HMGA1 could inhibit growth and metastasis potentials of MG-63 cells, which may be a therapeutic target protein for osteogenic sarcoma and may be of biological importance.  相似文献   

2.
3.
4.
The mammalian non-histone "high mobility group" A (HMGA) proteins are the primary nuclear proteins that bind to the minor groove of AT-rich DNA. They may, therefore, influence the formation and/or repair of DNA lesions that occur in AT-rich DNA, such as cyclobutane pyrimidine dimers (CPDs) induced by UV radiation. Employing both stably transfected lines of human MCF7 cells containing tetracycline-regulated HMGA1 transgenes and primary Hs578T tumor cells, which naturally overexpress HMGA1 proteins, we have shown that cells overexpressing HMGA1a protein exhibit increased UV sensitivity. Moreover, we demonstrated that knockdown of intracellular HMGA1 concentrations via two independent methods abrogated this sensitivity. Most significantly, we observed that HMGA1a overexpression inhibited global genomic nucleotide excision repair of UV-induced CPD lesions in MCF-7 cells. Consistent with these findings in intact cells, DNA repair experiments employing Xenopus oocyte nuclear extracts and lesion-containing DNA substrates demonstrated that binding of HMGA1a markedly inhibits removal of CPDs in vitro. Furthermore, UV "photo-foot-printing" demonstrated that CPD formation within a long run of Ts (T(18)-tract) in a DNA substrate changes significantly when HMGA1 is bound prior to UV irradiation. Together, these results suggest that HMGA1 directly influences both the formation and repair of UV-induced DNA lesions in intact cells. These findings have important implications for the role that HMGA protein overexpression might play in the accumulation of mutations and genomic instabilities associated with many types of human cancers.  相似文献   

5.
6.
Human ribonuclease inhibitor (RI) is a cytoplasmic acidic protein. RI is constructed almost entirely of leucine-rich repeats, which might be involved in some unknown biological functions like other structurally similar proteins besides inhibiting RNase A and angiogenin activities. Our previous experiments demonstrated that up-regulating RI might effectively inhibit some tumor growth and metastasis. However, the down-regulating RI influence on the tumor does not have any report until now, the mechanisms underlying antitumor of RI have not been fully understood. In this study, the efficient RNA interferences of RI were constructed using a plasmid vector and identified with RT-PCR, Western blot and Immunocytochemistry, then were transfected into non-invasive bladder cancer BIU-87 cells. We demonstrated that knockdown RI expression in BIU-87 cells could obviously change the cell morphology, rearrange the microfilaments and extend the lamellipodia, as well as enhance proliferation, increase migration, invasion and matrix metalloprotease level, and also reduce adhesion in vitro. BALB/C nude mice that were injected with the BIU-87 cells transfected RI siRNA showed a significant facilitation of the tumor with heavier tumor weight, higher density of microvessels, lower nm23-H1 and E-Cadherin expressions than those in the control group. Taken together, these experiments suggest that knockdown of RI could promote growth and metastasis potentials of BIU-87 cells. Our present findings reveal the novel mechanism that anti-tumor effect of RI is also involved in suppressing growth and metastasis, besides antiangiogenesis. The results show that RI may be a therapeutic target protein for bladder cancer and may be of biological importance.  相似文献   

7.
目的探讨HMGA1通过Wnt/β-Catenin通路在胃肿瘤形成中的作用。方法应用小干扰RNA介导的基因沉默、细胞增殖分析、PCR等技术完成实验。结果 HMGA1的特异敲除明显减少细胞生长。β-Catenin或下游c-myc的损失减少HMGA1表达,而Wnt3a处理增加HMGA1和c-myc的转录。结论这些数据表明,HMGA1参与胃癌细胞形成和增殖通过Wnt/β-Catenin通路。  相似文献   

8.
9.
Epithelial–mesenchymal transition (EMT) is a crucial process that plays an important role in the invasion and metastasis of human cancers. High-mobility group AT-hook 2 (HMGA2) has been found to be involved in the EMT program, with its aberrant expression having been observed in a variety of malignant tumors. However, the mechanisms regulating HMGA2 expression remain incompletely understood. The objective of this study was to investigate whether mir-154 plays a critical role in EMT by regulating HMGA2. The expression levels of HMGA2 were examined in four samples of prostate cancer (PCa) tissue and adjacent non-tumorous tissue by Western blot analysis. The effects of forced expression of miR-154 or HMGA2 knockdown on PCa cells were evaluated by cell migration and invasion assays and Western blot analysis. HMGA2 was upregulated in the PCa tissue samples compared with the adjacent normal ones. Forced expression of miR-154 or HMGA2 knockdown significantly reduced the migratory and invasive capabilities of PCa cells in vitro and inhibited EMT gene expression, increased the levels of E-cadherin, an epithelial marker, and decreased the levels of vimentin, a mesenchymal marker. HMGA2 is a direct target gene of miR-154 by dual-luciferase reporter assay. Our findings suggest that miR-154 plays a role in regulating EMT by targeting HMGA2. Understanding the targets and regulating pathways of miR-154 may provide new insights into the underlying pathogenesis of PCa.  相似文献   

10.
Glioblastoma (GBM) continues to show a poor prognosis despite advances in diagnostic and therapeutic approaches. The discovery of reliable prognostic indicators may significantly improve treatment outcome of GBM. In this study, we aimed to explore the function of verbascoside (VB) in GBM and its effects on GBM cell biological processes via let-7g-5p and HMGA2. Differentially expressed GBM-related microRNAs (miRNAs) were initially screened. Different concentrations of VB were applied to U87 and U251 GBM cells, and 50 µmol/L of VB was selected for subsequent experiments. Cells were transfected with let-7g-5p inhibitor or mimic, and overexpression of HMGA2 or siRNA against HMGA2 was induced, followed by treatment with VB. The regulatory relationships between VB, let-7g-5p, HMGA2 and Wnt/β-catenin signalling pathway were determined. The results showed that HMGA2 was a direct target gene of let-7g-5p. VB treatment or let-7g-5p overexpression inhibited HMGA2 expression and the activation of Wnt/β-catenin signalling pathway, which further inhibited cell viability, invasion, migration, tumour growth and promoted GBM cell apoptosis and autophagy. On the contrary, HMGA2 overexpression promoted cell viability, invasion, migration, tumour growth while inhibiting GBM cell apoptosis and autophagy. We demonstrated that VB inhibits cell viability and promotes cell autophagy in GBM cells by up-regulating let-7g-5p and down-regulating HMGA2 via Wnt/β-catenin signalling blockade.  相似文献   

11.
Non–small cell lung cancer (NSCLC) is the main type of lung malignancy. Early diagnosis and treatments for NSCLC are far from satisfactory due to the limited knowledge of the molecular mechanisms regarding NSCLC progression. Long noncoding RNA (lncRNA) ZNFX1 antisense RNA1 (ZFAS1) has been implicated for its functional role in the progression of malignant tumors. This study aimed to determine the ZFAS1 expression from lung cancer clinical samples and to explore the molecular mechanisms underlying ZFAS1-modulated NSCLC progression. Experimental assays revealed that clinical samples and cell lines of lung malignant tumors showed an upregulation of ZFSA1. ZFAS1 expression was markedly upregulated in the lung tissues from patients with advanced stage of this malignancy. The loss-of-function assays showed that knockdown of ZFAS1-suppressed NSCLC cell proliferative, as well as invasive potentials, increased NSCLC cell apoptotic rates in vitro and also attenuated tumor growth of NSCLC cells in the nude mice. Further experimental evidence showed that ZFAS1 inversely affected miR-150-5p expression and positively affected high-mobility group AT-hook 2 (HMGA2) expression in NSCLC cell lines. MiR-150-5p inhibition or HMGA2 overexpression counteracted the effects of ZFAS1 knockdown on NSCLC cell proliferative, invasive potentials and apoptotic rates. In light of examining the clinical lung cancer samples, miR-150-5p expression was downregulated and the HMGA2 expression was highly expressed in the lung cancer tissues compared with normal ones; the ZFAS1 expression showed a negative correlation with miR-150-5p expression but a positive correlation with HMGA2 expression in lung cancer tissues. To summarize, we, for the first time, demonstrated the inhibitory effects of ZFAS1 knockdown on NSCLC cell progression, and the results from mechanistic studies indicated that ZFAS1-mediated NSCLC progression cells via targeting miR-150-5p/HMGA2 signaling.  相似文献   

12.
Programmed cell death is characterized by posttranslational modifications of a limited and specific set of nuclear proteins. We demonstrate that during apoptosis of different types of tumor cells there is a monomethylation of the nuclear protein HMGA1a that is associated to its previously described hyperphosphorylation/dephosphorylation process. HMGA1a methylation is strictly related to the execution of programmed cell death and is a massive event that involves large amounts of the protein. In some tumor cells, HMGA1a protein is already methylated to an extent that depends on cell type. The degree of methylation in any case definitely increases during apoptosis. In the studied cell systems (human leukaemia, human prostate tumor, and rat thyroid transformed cells) among the low-molecular-mass HMG proteins, only HMGA1a was found to be methylated. A tryptic digestion map of HPLC-purified HMGA1a protein showed that methylation occurs at arginine 25 in the consensus G(24)R(25)G(26) that belongs to one of the DNA-binding AT-hooks of the protein. An increase of HMGA1a methylation could be related to heterochromatin and chromatin remodeling of apoptotic cells.  相似文献   

13.
14.
15.
Colorectal neoplasia differentially expressed (CRNDE) is a significantly upregulated long noncoding RNA in hepatocellular carcinoma (HCC). CRNDE could promote cell proliferation, migration, and invasion, while its molecular mechanisms were still largely unclear. In this study, we investigated the expression and function of CRNDE. CRNDE was significantly upregulated in tumor tissues compared with adjacent normal tissues. In vitro, we revealed that knockdown of CRNDE inhibited cell proliferation, migration, and cell invasion capacities in HCC. Animal studies indicated that CRNDE knockdown represses both growth and metastasis of HCC tumors in vivo. Moreover, knockdown of CRNDE suppressed the cell epithelial-mesenchymal transition (EMT) process by increasing the expression of E-cadherin and ZO-1, whereas, decreasing the expression of N-cadherin, slug, twist, and vimentin in HCC cells. We also revealed that knockdown of CRNDE suppressed the Wnt/β-catenin signaling in HCC. Thus, CRNDE could modulate EMT of HCC cells and knockdown of CRNDE impaired the mesenchymal properties. CRNDE increased invasion of HCC cells might be through activating the Wnt/β-catenin signaling pathway.  相似文献   

16.
17.
Angiopoietin-2 (Ang2) has been shown highly expressed in resected human pancreatic carcinoma samples, and has tightly combination with tumor angiogenesis, but the role in metastasis of it is less clear. We were, therefore, interested in exploring the effects of Ang2 silencing on the invasion and metastasis of pancreatic carcinoma. Lentivirus (LV)-mediated Ang2 small hairpin RNA (LV-RNAi) and mock lentivirus (LV-NC) were transfected into pancreatic carcinoma cell line MIA PaCa-2. Groups were designed in this study: the control group (MIA PaCa-2 cells), the LV-NC group (cells transfected with the LV-NC), the LV-RNAi-KD1 group (cells transfected with LV-RNAi of knock down sequence (1) and the LV-RNAi-KD2 group (cells transfected with LV-RNAi of knock down sequence (2). Boyden chamber transwell assay was used to detect the cell invasion change. The protein levels of Ang2, MMP-2, and MMP-9 gene and mRNA level of MMP-2, MMP-9 were detected by Western blot and real-time polymerase chain reaction, respectively. Orthotopic pancreatic carcinoma xenotransplantation model were successfully built with MIA PaCa-2 cells injection. After treatment with intraperitoneal injection of LV-RNAi-KD2 (LV-RNAi), mice growth, liver function test, tumor volume and peritoneal metastatic numbers were observed and counted. Moreover, expression of Ang2, MMP-2, MMP-9 were measured by immunohistochemistry. Ang2 expression were successfully knocked down in two LV-RNAi groups, especially in the LV-RNAi-KD2group. Compared with the control group and the LV-NC group, the mRNA and protein level of MMP-2 gene were downregulated significantly in LV-RNAi groups, also the invasion cell number decreased in boyden chamber transwell assay after LV-RNAi transfection. Meanwhile, no obvious MMP-9 gene expression changes were found among all the groups. LV-RNAi injection inhibited pancreatic carcinoma metastasis and growth in vivo by downregulating the expression of MMP-2 not MMP-9. Most importantly, LV-mediated gene therapy with Ang2 knockdown exhibited almost no toxicity in vivo. These findings demonstrate that Ang2 gene silencing exert an anti-metastasis effect in vitro and in vivo, and Ang2 targeted gene therapy has the potential to serve as a novel way for pancreatic carcinoma treatment.  相似文献   

18.
Colon cancer is a detrimental neoplasm of the digestive tract. MicroRNAs (miRNAs) as central regulators have been discovered in colon cancer. Nonetheless, the impact of miR-204-3p on colon cancer remains indistinct. The research attempted to uncover the impacts of miR-204-3p on colon cancer cells growth, migration, and invasion. miR-204-3p expression level in colon cancer tissues and diverse colon cancer cell lines were testified by the quantitative real-time polymerase chain reaction. Exploration of the impacts of miR-204-3p on cell growth, migration, invasion, and their associated factors through assessment of CCK-8, flow cytometry, Transwell, and western blot, respectively. High mobility group AT-hook 2 (HMGA2) expression was then detected in Caco-2 cells after miR-204-3p mimic and inhibitor transfection, additionally dual-luciferase activity was implemented to further uncover the correlation between HMGA2 and miR-204-3p. The impact of HMGA2 on Caco-2 cell growth, migration, and invasion was finally assessed. We found that repression of miR-204-3p was discovered in colon cancer tissues and HCT116, SW480, Caco-2, HT29 and SW620 cell lines. MiR-204-3p overexpression mitigated Coca-2 cell viability, facilitated apoptosis, simultaneously adjusted CyclinD1 and cleaved caspase-3 expression. Cell migration, invasion, and the associated factors were all suppressed by miR-204-3p overexpression. Reduction of HMGA2 was presented in Caco-2 cells with miR-204-3p mimic transfection, and HMGA2 was predicated to be a target gene of miR-204-3p. Besides, HMGA2 silence showed the inhibitory effect on Caco-2 cells growth, migration, and invasion. In conclusion, miR-204-3p repressed colon cancer cell growth, migration, and invasion through targeting HMGA2.  相似文献   

19.
20.
G protein-coupled estrogen receptor (GPER) was identified as a new member of the estrogen receptor family in recent years. It has become apparent that GPER mediates the non-genomic signaling of 17β-estradiol (E2) in a variety of estrogen-related cancers. Our previous study has found that GPER was overexpressed in human epithelial ovarian cancer and was positively correlated with the expression of matrix metalloproteinase 9 (MMP-9), which suggested GPER might promote the metastasis of ovarian cancer. However, the mechanisms underlying GPER-dependent metastasis of ovarian cancer are still not clear. In the present study, estrogen receptor α (ERα)-negative/GPER-positive OVCAR5 ovarian cancer cell line was used to investigate the role of GPER in the migration and invasion of ovarian cancer. Wound healing assay and transwell matrigel invasion assay were performed to determine the potentials of cell migration and invasion, respectively. The production and activity of MMP-9 in OVCAR5 cells were examined by Western blot and gelatin zymography analysis. The results showed that E2 and selective GPER agonist G-1 increased cell motility and invasiveness, and upregulated the production and proteolytic activity of MMP-9 in OVCAR5 cells. Small interfering RNA (siRNA) targeting GPER and G protein inhibitor pertussin toxin (PTX) inhibited the migration and invasion of OVCAR5 cells, and also reduced the expression and activity of MMP-9. Our data suggested that GPER promoted the migration and invasion of ovarian cancer cells by increasing the expression and activity of MMP-9. GPER might play an important role in the progression of ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号