首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A better understanding of cytokine biology over the last two decades has allowed the successful development of cytokine inhibitors against tumour necrosis factor and interleukin (IL)-1 and IL-6. The introduction of these therapies should be considered a breakthrough in the management of several rheumatic diseases. However, many patients will exhibit no or only partial response to these therapies, thus emphasising the importance of exploring other therapeutic strategies. In this article, we review the most recent information on novel cytokines that are often members of previously described cytokine families such as the IL-1 superfamily (IL-18 and IL-33), the IL-12 superfamily (IL-27 and IL-35), the IL-2 superfamily (IL-15 and IL-21), and IL-17. Several data derived from experimental models and clinical samples indicate that some of these cytokines contribute to the pathophysiology of arthritis and other inflammatory diseases. Targeting of some of these cytokines has already been tested in clinical trials with interesting results.  相似文献   

2.
The importance of chronic inflammation in atherogenesis and cytokine involvement in all stages of atherosclerotic plaque development is now obvious. Our approach of the significant cytokines involved in atherogenesis or cardiovascular diseases is based on a correlation between clinical research and experiments on animal models. The contribution of IL-17 in atherogenesis remains controversial. In this study we investigated the role of IL-17 in cardiovascular diseases and in atherosclerosis associated with pathological aging. We performed a case-control study, enrolling subjects aged over 65 years in both groups. We included 40 patients with cardiovascular disorders and 10 healthy volunteers. IL-17 levels were measured in the serum of patients and healthy controls, along with serum total cholesterol and triglycerides. Significantly higher levels of IL-17 were obtained in patients compared to healthy controls (p<0.001). The level of this biomarker correlated significantly with two biochemical parameters - serum total cholesterol and triglycerides (the Pearson coefficient showed statistical significance, p=0.033, respectively p=0.043). We did not find any correlation between IL-17 and these two parameters in the control group. Our study is useful in understanding the physiopathological implications of IL-17 in the atherogenesis process. This could represent a starting point for future studies, including research regarding the therapeutic potential of IL-17 in pathological aging.  相似文献   

3.
Chang SH  Dong C 《Cell research》2007,17(5):435-440
CD4+ helper T (TH) cells play crucial roles in immune responses. Recently a novel subset of TH cells, termed THIL-17, TH 17 or inflammatory TH (THi), has been identified as critical mediators of tissue inflammation. These cells produce IL-17 (also called IL-17A) and IL-17F, two most homologous cytokines sharing similar regulations. Here we report that when overexpressed in 293T cells, IL-17 and IL-17F form not only homodimers but also heterodimers, which we name as IL-17A/F. Fully differentiated mouse THi cells also naturally secrete IL-17A/F as well as IL-17 and IL-17F homodimeric cytokines. Recombinant IL-17A/F protein exhibits intermediate levels of potency in inducing IL-6 and KC (CXCL 1) as compared to homodimeric cytokines. IL-17A/F regulation of IL-6 and KC expression is dependent on IL-17RA and TRAF6. Thus, IL-17A/F cytokine represents another mechanism whereby T cells regulate inflammatory responses and may serve as a novel target for treating various immune-mediated diseases.  相似文献   

4.
Chang SH  Dong C 《Cellular signalling》2011,23(7):1069-1075
IL-17 cytokine family, though still young since discovery, has recently emerged as critical players in immunity and inflammatory diseases. The prototype cytokine, IL-17A, plays essential roles in promoting inflammation and host defense. IL-17RA, a member of the IL-17 receptor family, forms a complex with another member, IL-17RC, to mediate effective signaling for IL-17A as well as IL-17F, which is most similar to IL-17A, via Act1 and TRAF6 factors. On the other hand, IL-17RA appears to interact with IL-17RB to regulate signaling by another cytokine IL-25. IL-25, the most distant from IL-17A in the IL-17 family, is involved in allergic disease and defense against helminthic parasites. In this review, we discuss recent advancements on signaling mechanisms and biological functions of IL-17A, IL-17F and IL-25, which will shed light on the remaining IL-17 family cytokines and help understand and treat inflammatory diseases.  相似文献   

5.
Regulation of IL-17 in human CCR6+ effector memory T cells   总被引:1,自引:0,他引:1  
IL-17-secreting T cells represent a distinct CD4(+) effector T cell lineage (Th17) that appears to be essential in the pathogenesis of numerous inflammatory and autoimmune diseases. Although extensively studied in the murine system, human Th17 cells have not been well characterized. In this study, we identify CD4(+)CD45RO(+)CCR7(-)CCR6(+) effector memory T cells as the principal IL-17-secreting T cells. Human Th17 cells have a unique cytokine profile because the majority coexpress TNF-alpha but not IL-6 and a minor subset express IL-17 with IL-22 or IL-17 and IFN-gamma. We demonstrate that the cytokines that promote the differentiation of human naive T cells into IL-17-secreting cells regulate IL-17 production by memory T cells. IL-1beta alone or in association with IL-23 and IL-6 markedly increase IL-17(+) CCR6(+) memory T cells and induce IL-17 production in CCR6(-) memory T cells. We also show that T cell activation induces Foxp3 expression in T cells and that the balance between the percentage of Foxp3(+) and IL-17(+) T cells is inversely influenced by the cytokine environment. These studies suggest that the cytokine environment may play a critical role in the expansion of memory T cells in chronic autoimmune diseases.  相似文献   

6.
Th17 cells have recently emerged as a major player in inflammatory and autoimmune diseases via the production of pro-inflammatory cytokines IL-17, IL-17F, and IL-22. The differentiation of Th17 cells and the associated cytokine production is directly controlled by RORγt. Here we show that ursolic acid (UA), a small molecule present in herbal medicine, selectively and effectively inhibits the function of RORγt, resulting in greatly decreased IL-17 expression in both developing and differentiated Th17 cells. In addition, treatment with UA ameliorated experimental autoimmune encephalomyelitis. The results thus suggest UA as a valuable drug candidate or leading compound for developing treatments of Th17-mediated inflammatory diseases and cancer.  相似文献   

7.
白介素-17A(IL-17A)是一种促炎因子,是IL-17细胞因子家族中的一员。该家族的细胞因子分别被命名为IL-17A至IL-17F,IL-17A是该家族中最具代表性的成员,它能够促进炎症细胞释放多种趋化因子、细胞因子和抗菌肽等,诱导中性粒细胞的聚集和增殖,是连接固有免疫和适应性免疫的桥梁。IL-17A的家族细胞因子在很多肺部过敏性、自身免疫性甚至肿瘤性疾病的发生发展和宿主防御中发挥着关键作用,在哮喘、慢性阻塞性肺病(COPD)、囊性纤维化(CF)、结节病、支气管扩张等呼吸道慢性炎症性疾病中均存在异常表达,虽然在多种疾病中未能阐明IL-17A影响疾病发展的具体作用机制,但已证明其水平与疾病的发展存在关联,这不仅为研究相关疾病的发病机制提供了新的切入点,也为其新型治疗手段的研究提供了新的思路。本文就IL-17A在呼吸道慢性炎症性疾病中的研究进展进行综述。  相似文献   

8.
Hofstetter HH  Lühder F  Toyka KV  Gold R 《Cytokine》2006,34(3-4):184-197
IL-17 is a potent proinflammatory cytokine produced by activated memory T cells. Recent studies in both human autoimmune diseases and in their animal models have indicated that IL-17 rather than IFN-gamma might be the essential T-cell effector cytokine in the T-cell mediated autoimmune process. Since the thymus has a central role in maintaining T-cell self-tolerance and disturbance of thymic self-tolerance is implied in various autoimmune diseases, we here investigated the capability of murine thymocytes to produce IL-17. Our results indicate that thymocytes are a potent source of IL-17 in response to CD3 stimulation and various microbial immune stimuli and thereby show different patterns in the expression of the proinflammatory cytokines IFN-gamma and IL-17. In addition, strong differences between thymocytes and splenocytes were detected. Altered IL-17 production by thymocytes upon contact with foreign pathogens might be a key regulator in the education of adaptive immunity.  相似文献   

9.
Interleukin (IL)-17, the founding member of the IL-17 cytokine family, is the hallmark of a novel subset of CD4+ T cells that is regulated by TGFbeta, IL-6, and IL-23. IL-17 plays an important role in promoting tissue inflammation in host defense against infection and in autoimmune diseases. Although IL-17 has been reported to regulate the expression of proinflammatory cytokines, chemokines, and matrix metalloproteinases, the signaling mechanism of IL-17 receptor has not been understood. An earlier study found that IL-17 activates NF-kappaB and MAPK pathways and requires TRAF6 to induce IL-6. However, it is unknown what molecule(s) directly associates with IL-17 receptor to initiate the signaling. We demonstrate here that IL-17 receptor family shares sequence homology in their intracellular region with Toll-IL-1 receptor (TIR) domains and with Act1, a novel adaptor previously reported as an NF-kappaB activator. MyD88 and IRAK4, downstream signaling components of TIR, are not required for IL-17 signaling. On the other hand, Act1 and IL-17 receptor directly associate likely via homotypic interaction. Deficiency of Act1 in fibroblast abrogates IL-17-induced cytokine and chemokine expression, as well as the induction of C/EBPbeta, C/EBPdelta, and IkappaBzeta. Also, absence of Act1 results in a selective defect in IL-17-induced activation of NF-kappaB pathway. These results thus indicate Act1 as a membrane-proximal adaptor of IL-17 receptor with an essential role in induction of inflammatory genes. Our study not only for the first time reveals an immediate signaling mechanism downstream of an IL-17 family receptor but also has implications in therapeutic treatment of various immune diseases.  相似文献   

10.
IL-17A and IL-17F, produced by the Th17 CD4(+) T cell lineage, have been linked to a variety of inflammatory and autoimmune conditions. We recently reported that activated human CD4(+) T cells produce not only IL-17A and IL-17F homodimers but also an IL-17F/IL-17A heterodimeric cytokine. All three cytokines can induce chemokine secretion from bronchial epithelial cells, albeit with different potencies. In this study, we used small interfering RNA and Abs to IL-17RA and IL-17RC to demonstrate that heterodimeric IL-17F/IL-17A cytokine activity is dependent on the IL-17RA/IL-17RC receptor complex. Interestingly, surface plasmon resonance studies indicate that the three cytokines bind to IL-17RC with comparable affinities, whereas they bind to IL-17RA with different affinities. Thus, we evaluated the effect of the soluble receptors on cytokine activity and we find that soluble receptors exhibit preferential cytokine blockade. IL-17A activity is inhibited by IL-17RA, IL-17F is inhibited by IL-17RC, and a combination of soluble IL-17RA/IL-17RC receptors is required for inhibition of the IL-17F/IL-17A activity. Altogether, these results indicate that human IL-17F/IL-17A cytokine can bind and signal through the same receptor complex as human IL-17F and IL-17A. However, the distinct affinities of the receptor components for IL-17A, IL-17F, and IL-17F/IL-17A heterodimer can be exploited to differentially affect the activity of these cytokines.  相似文献   

11.
IL-17 is a proinflammatory cytokine that activates T cells and other immune cells to produce a variety of cytokines, chemokines, and cell adhesion molecules. This cytokine is augmented in the sera and/or tissues of patients with contact dermatitis, asthma, and rheumatoid arthritis. We previously demonstrated that IL-17 is involved in the development of autoimmune arthritis and contact, delayed, and airway hypersensitivity in mice. As the expression of IL-17 is also augmented in multiple sclerosis, we examined the involvement of this cytokine in these diseases using IL-17(-/-) murine disease models. We found that the development of experimental autoimmune encephalomyelitis (EAE), the rodent model of multiple sclerosis, was significantly suppressed in IL-17(-/-) mice; these animals exhibited delayed onset, reduced maximum severity scores, ameliorated histological changes, and early recovery. T cell sensitization against myelin oligodendrocyte glycoprotein was reduced in IL-17(-/-) mice upon sensitization. The major producer of IL-17 upon treatment with myelin digodendrocyte glycopritein was CD4+ T cells rather than CD8+ T cells, and adoptive transfer of IL-17(-/-) CD4+ T cells inefficiently induced EAE in recipient mice. Notably, IL-17-producing T cells were increased in IFN-gamma(-/-) cells, while IFN-gamma-producing cells were increased in IL-17(-/-) cells, suggesting that IL-17 and IFN-gamma mutually regulate IFN-gamma and IL-17 production. These observations indicate that IL-17 rather than IFN-gamma plays a crucial role in the development of EAE.  相似文献   

12.
13.
Psoriasis is a chronic genetically determined, erythemato-squamous disease associated with many comorbidities. Evidence from clinical studies and experimental models support the concept that psoriasis is a T?cell-mediated inflammatory skin disease and T?helper (Th) cells -?Th1, Th17 and Th22?- play an important role in the pathogenesis. Th1 cytokines IFNγ, IL-2, as well as Th17 cytokines IL-17A, IL-17F, IL-22, IL-26, and TNFα (Th1 and Th17 cytokine) are increased in serum and lesional skin. IL-22 produced by Th17 and new subset of T helper cells, Th22, is also increased within psoriatic lesions and in the serum. Other recently recognized cytokines of significant importance in psoriasis are IL-23, IL-20 and IL-15. The IL-23/Th17 pathway plays a dominant role in psoriasis pathogenesis. Currently due to enormous methodological progress, more and more clinical and histopathological psoriatic features could be explained by particular cytokine imbalance, which still is one of the most fascinating dermatological research fields stimulating new and new generations of researchers.  相似文献   

14.
Interleukin (IL)-18, structurally similar to IL-1-, is a member of IL-1 superfamily of cytokines. This cytokine, which is expressed by many human lymphoid and nonlymphoid cells, has an important role in inflammatory processes. The main function of IL-18 is mediated through induction of interferon-γ (IFN-γ) secretion from T helper (Th1) cells. This cytokine synergistically with IL-12 contributes to Th1 differentiation and, therefore, is important in host defense mechanisms against intracellular bacteria, viruses, and fungi. Recent evidences showing the involvement of IL-18 in Th2 differentiation and ultimately IgE production from B cells have shed a new insight on the dual effects of IL-18 on Th1 and Th2 inflammatory responses. IL-18 in combination with IL-12 can activate cytotoxic T cells (CTLs), as well as natural killer (NK) cells, to produce IFN-γ and, therefore, may contribute to tumor immunity. The biological activity of IL-18 is not limited to these cells, but it also plays a role in development of Th17 cell responses. IL-18 synergistically with IL-23 can induce IL-17 secretion from Th17 cells. The diverse biological activity of IL-18 on T-cell subsets and other immune cells has made this cytokine a good target for investigating its role in various inflammatory-based diseases. Lately, the discovery of IL-18 binding protein (IL- 18BP), a physiological inhibitor of IL-18 and a hallmark of IL-18 biology, made this cytokine an attractive target for studying its pros and cons in the treatment of various diseases. In recent years, the biology, genetics, and pathological role of IL-18 have been studied in a number of diseases. In this article, we aimed to present an updated review on these aspects regarding the contribution of IL-18 to important diseases such as cancer, autoimmunity, and inflammatory-mediated conditions including allergic diseases, metabolic syndrome, and atherosclerosis. Emerging data indicating prognostic, diagnostic, and therapeutic features of IL-18 and its related molecules will also be discussed.  相似文献   

15.
Targeting major proinflammatory cytokines such as IL-1β and TNFα is of great interest in patients with chronic inflammatory diseases, including rheumatoid arthritis, colitis, and psoriasis. The cytokine Interleukin (IL)-32 induces proinflammatory cytokines such as TNFα, IL-1β, IL-6, and chemokines. We previously used an IL-32 ligand-affinity column to purify proteinase 3, which is abundantly expressed in neutrophil and monocytic leukocytes but not in other cell types, and found that IL-32 is mainly produced by monocytic leukocytes. This evidence suggested that silencing endogenous IL-32 by short hairpin RNA (shRNA) in monocytic cells might reveal the precise function of endogenous IL-32. Indeed, lipopolysaccharide (LPS)- or phorbol myristate acetate (PMA)-induced proinflammatory cytokine production was significantly inhibited in shRNA/IL-32 stable clones as compared to control clones. Furthermore, macrophages in PMA-differentiated shRNA/IL-32 stable clones displayed remarkably impaired LPS- and IL-1β-induced proinflammatory cytokine production. These data suggest that IL-32 is not only involved in host defense against pathogens, but also might play a role in chronic inflammatory diseases. IL-32 production leads to major proinflammatory cytokine production during the initial immune response.  相似文献   

16.
Few papers have investigated the cytokine profiles of multiple cytokines in cord blood. We obtained cord blood samples from 224 infants admitted to our neonatal intensive care unit. Cytokine profiles of 17 cytokines were investigated using cytometric bead array technology. We found a wide variety of cytokines of various levels which ranged from 0.59 pg/ml (in Interleukin (IL)-4) to 222.0 pg/ml (in macrophage inflammatory protein-1β. Pro-inflammatory cytokines were highly correlated with each other and with granulocyte-colony stimulating factor and IL-8. On the contrary, IL-5, IL-13, and IL-17 did not show any significant correlation with other cytokines. Several maternal factors were strongly related to several cytokines in cord blood. IL-6, IL-8 and monocyte chemotactic protein-1 were closely related to certain neonatal diseases in preterm neonates. Some cytokines may be regulated independently of each other, while others appear to work as a network affecting physiological and pathological conditions in the fetus.  相似文献   

17.
Interleukin (IL)-17 is a proinflammatory cytokine which induces differentiation and migration of neutrophils through induction of cytokines and chemokines including granulocyte-colony stimulating factor and CXCL8/IL-8. IL-17-producing CD4(+) T cells (Th17) have pivotal role in pathogenesis of autoimmune diseases. IL-17 is also involved in protective immunity against various infections. IL-17 has important role in induction of neutrophil-mediated protective immune response against extracellular bacterial or fungal pathogens such as Klebsiella pneumoniae and Candida albicans. Importance of IL-17 in protection against intracellular pathogens including Mycobacterium has also been reported. Interestingly, not only CD4(+) T cells but atypical CD4(-)CD8(-) T cells expressing T cell receptor (TCR) gammadelta produce IL-17, and IL-17 producing cells participate in both innate and acquired immune response to infections. Furthermore, neutrophil induction may not be the only mechanism of IL-17-mediated protective immunity. IL-17 seems to participate in host defense through regulation of cell-mediated immunity or induction of antimicrobial peptides such as beta-defensins. In this review, we summarize recent progress on the role of IL-17 in immune response against infections, and discuss possible application of IL-17 in prevention and treatment of infectious diseases.  相似文献   

18.
Regular exercise offers protection against all-cause mortality, primarily by protection against cardiovascular disease and Type 2 diabetes mellitus. The latter disorders have been associated with chronic low-grade systemic inflammation reflected by a two- to threefold elevated level of several cytokines. Adipose tissue contributes to the production of TNF-alpha, which is reflected by elevated levels of soluble TNF-alpha receptors, IL-6, IL-1 receptor antagonist, and C-reactive protein. We suggest that TNF-alpha rather than IL-6 is the driver behind insulin resistance and dyslipidemia and that IL-6 is a marker of the metabolic syndrome, rather than a cause. During exercise, IL-6 is produced by muscle fibers via a TNF-independent pathway. IL-6 stimulates the appearance in the circulation of other anti-inflammatory cytokines such as IL-1ra and IL-10 and inhibits the production of the proinflammatory cytokine TNF-alpha. In addition, IL-6 enhances lipid turnover, stimulating lipolysis as well as fat oxidation. We suggest that regular exercise induces suppression of TNF-alpha and thereby offers protection against TNF-alpha-induced insulin resistance. Recently, IL-6 was introduced as the first myokine, defined as a cytokine that is produced and released by contracting skeletal muscle fibers, exerting its effects in other organs of the body. Here we suggest that myokines may be involved in mediating the health-beneficial effects of exercise and that these in particular are involved in the protection against chronic diseases associated with low-grade inflammation such as diabetes and cardiovascular diseases.  相似文献   

19.

Background

Although Type 1 cytokine responses are considered protective in pulmonary tuberculosis (PTB), their role as well as those of Type 2, 17 and immunoregulatory cytokines in tuberculous lymphadenitis (TBL) and latent tuberculosis (LTB) have not been well studied.

Aim and Methods

To identify cytokine responses associated with pulmonary tuberculosis (TB), TB lymphadenitits and latent TB, we examined mycobacterial antigen-specific immune responses of PTB, TBL and LTB individuals. More specifically, we examined ESAT-6 and CFP-10 induced Type 1, Type 2 and Type 17 cytokine production and their regulation using multiplex ELISA.

Results

PTB individuals exhibited a significantly lower baseline as well as antigen-specific production of Type 1 (IFNγ, TNFα and IL-2); Type 2 (IL-4) and Type 17 (IL-17A and IL-17F) cytokines in comparison to both TBL and LTB individuals. TBL individuals exhibited significantly lower antigen-specific IFNγ responses alone in comparison to LTB individuals. Although, IL-10 levels were not significantly higher, neutralization of IL-10 during antigen stimulation resulted in significantly enhanced production of IFNγ, IL-4 and IL-17A in PTB individuals, indicating that IL-10 mediates (at least partially) the suppression of cytokine responses in PTB.

Conclusion

Pulmonary TB is characterized by an IL-10 dependent antigen-specific suppression of Type 1, Type 2 and Type 17 cytokines, reflecting an important association of these cytokines in the pathogenesis of active TB.  相似文献   

20.
The recently identified interleukin-17 (IL-17) cytokines family, which comprises six members in mammals (IL-17A-F), plays essential roles in the host immunity against infectious diseases and chronic inflammatory diseases. The three-dimensional structures containing IL-17A or IL-17F have become available and revealed the unique structural features of IL-17s as well as their receptors. Molecular modeling in this review shows that IL-17s may adopt a “cysteine knot” fold commonly seen in nerve growth factor (NGF) and other neurotrophins. Further modeling analysis unmasks a signature interaction feature of the IL-17F/IL-17RA complex, where a small loop of IL-17RA slots into the deep groove of the interface of IL-17F homodimer. This is quite different from the interaction between the best known four-helix cytokines and their cognate receptors. On the other hand, structure of IL-17A and its monoclonal antibody (CAT-2200) shows that, albeit that the antigenic epitope of IL-17A resides outside of the IL-17A homodimer interface, its physical proximity to the receptor binding groove may explain that antibody blockage would be achieved by interfering with the ligand-receptor interaction. This review is to summarize the advance in understanding the structure and function of IL-17 family cytokines, focusing mainly on IL-17A, IL-17F and IL-17E, in the hope of gaining better knowledge of immunotherapeutic strategies against various inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号