首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in SOD1 cause FALS by a gain of function likely related to protein misfolding and aggregation. SOD1 mutations encompass virtually every domain of the molecule, making it difficult to identify motifs important in SOD1 aggregation. Zinc binding to SOD1 is important for structural integrity, and is hypothesized to play a role in mutant SOD1 aggregation. To address this question, we mutated the unique zinc binding sites of SOD1 and examined whether these changes would influence SOD1 aggregation. We generated single and multiple mutations in SOD1 zinc binding residues (H71, H80 and D83) either alone or in combination with an aggregate forming mutation (A4V) known to cause disease. These SOD1 mutants were assayed for their ability to form aggregates.Using an in vitro cellular SOD1 aggregation assay, we show that combining A4V with mutations in non-zinc binding domains (G37R or G85R) increases SOD1 aggregation potential. Mutations at two zinc binding residues (H71G and D83G) also increase SOD1 aggregation potential. However, an H80G mutation at the third zinc binding residue decreases SOD1 aggregation potential even in the context of other aggregate forming SOD1 mutations. These results demonstrate that various mutations have different effects on SOD1 aggregation potential and that the H80G mutation appears to uniquely act as a dominant inhibitor of SOD1 aggregation.  相似文献   

2.
Aggregate formation in Cu,Zn superoxide dismutase-related proteins   总被引:2,自引:0,他引:2  
Aggregation of Cu,Zn superoxide dismutase (SOD1) protein is a pathologic hallmark of familial amyotrophic lateral sclerosis linked to mutations in the SOD1 gene, although the structural motifs within mutant SOD1 that are responsible for its aggregation are unknown. Copper chaperone for SOD1 (CCS) and extracellular Cu,Zn superoxide dismutase (SOD3) have some sequence identity with SOD1, particularly in the regions of metal binding, but play no significant role in mutant SOD1-induced disease. We hypothesized that it would be possible to form CCS- or SOD3-positive aggregates by making these molecules resemble mutant SOD1 via the introduction of point mutations in codons homologous to a disease causing G85R SOD1 mutation. Using an in vitro assay system, we found that expression of wild type human CCS or a modified intracellular wild type SOD3 does not result in significant aggregate formation. In contrast, expression of G168R CCS or G146R SOD3 produced aggregates as evidenced by the presence of high molecular weight protein complexes on Western gels or inclusion bodies on immunofluorescence. CCS- and SOD3-positive inclusions appear to be ubiquitinated and localized to aggresomes. These results suggest that proteins sharing structural similarities to mutant SOD1 are also at risk for aggregate formation.  相似文献   

3.
Mutant forms of Cu,Zn-superoxide dismutase (SOD1) that cause familial amyotrophic lateral sclerosis (ALS) exhibit toxicity that promotes the death of motor neurons. Proposals for the toxic properties typically involve aberrant catalytic activities or protein aggregation. The striking thermodynamic stability of mature forms of the ALS mutant SOD1 (Tm>70 degrees C) is not typical of protein aggregation models that involve unfolding. Over 44 states of the polypeptide are possible, depending upon metal occupancy, disulfide status, and oligomeric state; however, it is not clear which forms might be responsible for toxicity. Recently the intramolecular disulfide has been shown to be required for SOD1 activity, leading us to examine these states of several disease-causing SOD1 mutants. We find that ALS mutations have the greatest effect on the most immature form of SOD1, destabilizing the metal-free and disulfide-reduced polypeptide to the point that it is unfolded at physiological temperatures (Tm<37 degrees C). We also find that immature states of ALS mutant (but not wild type) proteins readily form oligomers at physiological concentrations. Furthermore, these oligomers are more susceptible to mild oxidative stress, which promotes incorrect disulfide cross-links between conserved cysteines and drives aggregation. Thus it is the earliest disulfide-reduced polypeptides in the SOD1 assembly pathway that are most destabilized with respect to unfolding and oxidative aggregation by ALS-causing mutations.  相似文献   

4.
Protein aggregation is a hallmark of various neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS) in humans. Mutations in Cu/Zn superoxide dismutase (SOD1) protein were found to be a prominent cause behind the majority of the familial ALS cases with abnormal protein aggregates. Herein, we report the biophysical characterization of the beneficial mutation C111S that stabilizes the SOD1 harboring A4V mutation, one of the most lethal diseases causing mutant that leads to protein destabilization and aggregation. In this study, we utilized discrete molecular dynamics (DMD) simulations, which stipulated an outlook over the systematic action of C111S mutation in the A4V mutant that stabilizes the protein and impedes the formation of protein aggregation. Herewith, the findings from our study manifested that the mutation of C111S in SOD1 could aid in regaining the protein structural conformations that protect against the formation of toxic aggregates, thereby hindering the disease pathogenicity subtly. Hence, our study provides a feasible pharmaceutical strategy in developing the treatment for incurable ALS affecting the mankind.  相似文献   

5.
Fourteen years after the discovery that mutations in Cu, Zn superoxide dismutase (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS), the mechanism by which mutant SOD1 exerts toxicity remains unknown. The two principle hypotheses are (a) oxidative damage stemming from aberrant SOD1 redox chemistry, and (b) misfolding of the mutant protein. Here we review the structure and function of wild-type SOD1, as well as the changes to the structure and function in mutant SOD1. The relative merits of the two hypotheses are compared and a common unifying principle is outlined. Lastly, the potential for therapies targeting SOD1 misfolding is discussed.  相似文献   

6.
Mutations in Cu,Zn-superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (ALS). It has been proposed that neuronal cell death might occur due to inappropriately increased Cu interaction with mutant SOD1. Using Cu immobilized metal-affinity chromatography (IMAC), we showed that mutant SOD1 (A4V, G85R, and G93A) expressed in transfected COS7 cells, transgenic mouse spinal cord tissue, and transformed yeast possessed higher affinity for Cu than wild-type SOD1. Serine substitution for cysteine at the Cys111 residue in mutant SOD1 abolished the Cu interaction on IMAC. C111S substitution reversed the accelerated degradation of mutant SOD1 in transfected cells, suggesting that the Cys111 residue is critical for the stability of mutant SOD1. Aberrant Cu binding at the Cys111 residue may be a significant factor in altering mutant SOD1 behavior and may explain the benefit of controlling Cu access to mutant SOD1 in models of familial ALS.  相似文献   

7.
A subset of superoxide dismutase 1 (Cu/Zn-SOD1) mutants that cause familial amyotrophic lateral sclerosis (FALS) have heightened reactivity with (-)ONOO and H(2)O(2) in vitro. This reactivity requires a copper ion bound in the active site and is a suggested mechanism of motor neuron injury. However, we have found that transgenic mice that express SOD1-H46R/H48Q, which combines natural FALS mutations at ligands for copper and which is inactive, develop motor neuron disease. Using a direct radioactive copper incorporation assay in transfected cells and the established tools of single crystal x-ray diffraction, we now demonstrate that this variant does not stably bind copper. We find that single mutations at copper ligands, including H46R, H48Q, and a quadruple mutant H46R/H48Q/H63G/H120G, also diminish the binding of radioactive copper. Further, using native polyacrylamide gel electrophoresis and a yeast two-hybrid assay, the binding of copper was found to be related to the formation of the stable dimeric enzyme. Collectively, our data demonstrate a relationship between copper and assembly of SOD1 into stable dimers and also define disease-causing SOD1 mutants that are unlikely to robustly produce toxic radicals via copper-mediated chemistry.  相似文献   

8.
Mutations in copper-zinc superoxide dismutase (CuZnSOD) cause 25% of familial amyotrophic lateral sclerosis (FALS) cases. This paper examines one such mutant, H46R, which has no superoxide dismutase activity yet presumably retains the gain-of-function activity that leads to disease. We demonstrate that Cu(2+) does not bind to the copper-specific catalytic site of H46R CuZnSOD and that Cu(2+) competes with other metals for the zinc binding site. Most importantly, Cu(2+) was found to bind strongly to a surface residue near the dimer interface of H46R CuZnSOD. Cysteine was identified as the new binding site on the basis of multiple criteria including UV-vis spectroscopy, RR spectroscopy, and chemical derivatization. Cysteine 111 was pinpointed as the position of the reactive ligand by tryptic digestion of the modified protein and by mutational analysis. This solvent-exposed residue may play a role in the toxicity of this and other FALS CuZnSOD mutations. Furthermore, we propose that the two cysteine 111 residues, found on opposing subunits of the same dimeric enzyme, may provide a docking location for initial metal insertion during biosynthesis of wild-type CuZnSOD in vivo.  相似文献   

9.
Human superoxide dismutase (Cu/Zn SOD1) is a homodimeric enzyme. Mutations in Cu/Zn SOD1 causes a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. Though a majority of the mutations are point substitutions, there are a few changes that result in amino acid deletions or truncations of the polypeptide. These pathogenic mutations are scattered throughout the three-dimensional structure of the dimeric enzyme, which creates a puzzling pattern to investigate the molecular determinants of fALS. The most common hypothesis proposed that the misfolding of SOD1 mutants are primarily triggered by decreased affinity for metal ions. However, this hypothesis is challenging, as a significant number of disease-causing mutations are located far away from the metal-binding site and dimer interface. So in the present study, we have investigated the influence of such a far positioned pathogenic mutation, V14M, in altering the stability and folding of the Cu/Zn SOD1. Though the location of Val14 is far positioned, it has a vital role in the stability of SOD1 by preserving its hydrophobic cluster at one end of the β barrel domain. We have performed MD simulations of the V14M mutant for 80 ns timescale. The results reveal the fact that irrespective of its location, V14M mutation triggers a conformational change that is more similar to that of the metal-deficient holo form and could resemble an intermediate state in the folding reaction which results in protein misfolding and aggregation.  相似文献   

10.
11.
This study presents the initial characterization of transgenic mice with mutations in a primary zinc-binding residue (H80), either alone or with a G93A mutation. H80G;G93A superoxide dismutase 1 (SOD1) transgenic mice developed paralysis with motor neuron loss, and ubiquitin inclusion-type rather than mitochondrial vacuolar pathology. Unlike G93A SOD1-related disease, the course was not accelerated by over-expression of copper chaperone for SOD1. H80G SOD1 transgenic mice did not manifest disease at levels of SOD1 transgene expressed. The H80G mutation altered certain biochemical parameters of both human wild-type SOD1 and G93A SOD1. The H80G mutation does not substantially change the age-dependent accumulation of G93A SOD1 aggregates and hydrophobic species in spinal cord. However, both H80G;G93A SOD1 and H80G SOD1 lack dismutase activity, the ability to form homodimers, and co-operativity with copper chaperone for SOD1, indicating that their dimerization interface is abnormal. The H80G mutation also made SOD1 susceptible to protease digestion. The H80G mutation alters the redox properties of SOD1. G93A SOD1 exists in either reduced or oxidized form, whereas H80G;G93A SOD1 and H80G SOD1 exist only in a reduced state. The inability of SOD1 with an H80G mutation to take part in normal oxidation-reduction reactions has important ramifications for disease mechanisms and pathology in vivo.  相似文献   

12.
LIN-1 is an ETS domain protein. A receptor tyrosine kinase/Ras/mitogen-activated protein kinase signaling pathway regulates LIN-1 in the P6.p cell to induce the primary vulval cell fate during Caenorhabditis elegans development. We identified 23 lin-1 loss-of-function mutations by conducting several genetic screens. We characterized the molecular lesions in these lin-1 alleles and in several previously identified lin-1 alleles. Nine missense mutations and 10 nonsense mutations were identified. All of these lin-1 missense mutations affect highly conserved residues in the ETS domain. These missense mutations can be arranged in an allelic series; the strongest mutations eliminate most or all lin-1 functions, and the weakest mutation partially reduces lin-1 function. An electrophoretic mobility shift assay was used to demonstrate that purified LIN-1 protein has sequence-specific DNA-binding activity that required the core sequence GGAA. LIN-1 mutant proteins containing the missense substitutions had dramatically reduced DNA binding. These experiments identify eight highly conserved residues of the ETS domain that are necessary for DNA binding. The identification of multiple mutations that reduce the function of lin-1 as an inhibitor of the primary vulval cell fate and also reduce DNA binding suggest that DNA binding is essential for LIN-1 function in an animal.  相似文献   

13.
Niu YF  Xiong HL  Wu JJ  Chen Y  Qiao K  Wu ZY 《遗传》2011,33(7):720-724
应用PCR技术结合DNA直接测序方法对8例临床确诊为家族性肌萎缩侧索硬化(Familiar amyotrophic lateral sclerosis,FALS)家系的先证者进行铜锌超氧化物歧化酶基因(SOD1)的突变筛查,在3例先证者中检出2种SOD1基因突变,其中,2例携带了位于4号外显子的错义突变Cys111Tyr(c.332G>A),另1例携带了位于5号外显子的错义突变Gly147Asp(c.440G>A),这2种突变在中国ALS患者中属首次报道。该结果扩大了中国FALS患者的SOD1基因突变谱,对研究中国FALS患者SOD1基因突变特点和分布规律有一定帮助。分析携带这2个突变患者的临床特点,提示Cys111Tyr突变导致的临床表型相对温和,而Gly147Asp突变可导致病情进展较快。该结果有待在更多的病例中进行证实。  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a heterogeneous group of fatal neurodegenerative diseases characterized by a selective loss of motor neurons in the brain and spinal cord. Creation of transgenic mice expressing mutant Cu/Zn superoxide dismutase (SOD1), as ALS models, has made an enormous impact on progress of the ALS studies. Recently, it has been recognized that genetic background and gender affect many physiological and pathological phenotypes. However, no systematic studies focusing on such effects using ALS models other than SOD1(G93A) mice have been conducted. To clarify the effects of genetic background and gender on gross phenotypes among different ALS models, we here conducted a comparative analysis of growth curves and lifespans using congenic lines of SOD1(G93A) and SOD1(H46R) mice on two different genetic backgrounds; C57BL/6N (B6) and FVB/N (FVB). Copy number of the transgene and their expression between SOD1(G93A) and SOD1(H46R) lines were comparable. B6 congenic mutant SOD1 transgenic lines irrespective of their mutation and gender differences lived longer than corresponding FVB lines. Notably, the G93A mutation caused severer disease phenotypes than did the H46R mutation, where SOD1(G93A) mice, particularly on a FVB background, showed more extensive body weight loss and earlier death. Gender effect on survival also solely emerged in FVB congenic SOD1(G93A) mice. Conversely, consistent with our previous study using B6 lines, lack of Als2, a murine homolog for the recessive juvenile ALS causative gene, in FVB congenic SOD1(H46R), but not SOD1(G93A), mice resulted in an earlier death, implying a genetic background-independent but mutation-dependent phenotypic modification. These results indicate that SOD1(G93A)- and SOD1(H46R)-mediated toxicity and their associated pathogenic pathways are not identical. Further, distinctive injurious effects resulted from different SOD1 mutations, which are associated with genetic background and/or gender, suggests the presence of several genetic modifiers of disease expression in the mouse genome.  相似文献   

15.
Cu/Zn superoxide dismutase (SOD) mutations are involved in about 20% of all cases of familial amyotrophic lateral sclerosis (FALS). Recently, it has been proposed that aberrant copper activity may be occurring within SOD at an alternative binding, and cysteine 111 has been identified as a potential copper ligand. Using a commercial source of human SOD isolated from erythrocytes, an anomalous absorbance at 325 nm was identified. This unusual property, which does not compromise SOD activity, had previously been shown to be consistent with a sulfhydryl modification at a cysteine residue. Here, we utilized limited trypsin proteolysis and mass spectrometry to show that the modification has a mass of 32 daltons and is located at cysteine 111. The reaction of SOD with sodium sulfide, which can react with cysteine to form a persulfide group, and with potassium cyanide, which can selectively remove persulfide bonds, confirmed the addition of a persulfide group at cysteine 111. Gel electrophoresis and glutaraldehyde cross-linking revealed that this modification makes the acid-induced denaturation of SOD fully irreversible. Furthermore, the modified protein exhibits a slower acid-induced unfolding, and is more resistant to oxidation-induced aggregation caused by copper and hydrogen peroxide. Thus, these results suggest that cysteine 111 can have a biochemical and biophysical impact on SOD, and suggest that it can interact with copper, potentially mediating the copper-induced oxidative damage of SOD. It will be of interest to study the role of cysteine 111 in the oxidative damage and aggregation of toxic SOD mutants.  相似文献   

16.
Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS) cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles.  相似文献   

17.
Cystic fibrosis (CF) is the most common genetic disease among Caucasians, and accordingly the cystic fibrosis transmembrane conductance regulator (CFTR) protein has perhaps the best characterized disease mutation spectrum with more than 1,500 causative mutations having been identified. In this study, we took advantage of that wealth of mutational information in an effort to relate site-specific evolutionary parameters with the propensity and severity of CFTR disease-causing mutations. To do this, we devised a scoring scheme for known CFTR disease-causing mutations based on the Grantham amino acid chemical difference matrix. CFTR site-specific evolutionary constraint values were then computed for seven different evolutionary metrics across a range of increasing evolutionary depths. The CFTR mutational scores and the various site-specific evolutionary constraint values were compared in order to evaluate which evolutionary measures best reflect the disease-causing mutation spectrum. Site-specific evolutionary constraint values from the widely used comparative method PolyPhen2 show the best correlation with the CFTR mutation score spectrum, whereas more straightforward conservation based measures (ConSurf and ScoreCons) show the greatest ability to predict individual CFTR disease-causing mutations. While far greater than could be expected by chance alone, the fraction of the variability in mutation scores explained by the PolyPhen2 metric (3.6%), along with the best set of paired sensitivity (58%) and specificity (60%) values for the prediction of disease-causing residues, were marginal. These data indicate that evolutionary constraint levels are informative but far from determinant with respect to disease-causing mutations in CFTR. Nevertheless, this work shows that, when combined with additional lines of evidence, information on site-specific evolutionary conservation can and should be used to guide site-directed mutagenesis experiments by more narrowly defining the set of target residues, resulting in a potential savings of both time and money.  相似文献   

18.
Abstract: Some cases of autosomal-dominant familial amyotrophic lateral sclerosis (FALS) have been associated with mutations in SOD1 , the gene that encodes Cu/Zn superoxide dismutase (Cu/Zn SOD). We determined the concentrations (µg of Cu/Zn SOD/mg of total protein), specific activities (U/µg of total protein), and apparent turnover numbers (U/µmol of Cu/Zn SOD) of Cu/Zn SOD in erythrocyte lysates from patients with known SOD1 mutations. We also measured the concentrations and activities of Cu/Zn SOD in FALS patients with no identifiable SOD1 mutations, sporadic ALS (SALS) patients, and patients with other neurologic disorders. The concentration and specific activity of Cu/Zn SOD were decreased in all patients with SOD1 mutations, with mean reductions of 51 and 46%, respectively, relative to controls. In contrast, the apparent turnover number of the enzyme was not altered in these patients. For the six mutations studied, there was no correlation between enzyme concentration or specific activity and disease severity, expressed as either duration of disease or age of onset. No significant alterations in the concentration, specific activity, or apparent turnover number of Cu/Zn SOD were detected in the FALS patients with no identifiable SOD1 mutations, SALS patients, or patients with other neurologic disorders. That Cu/Zn SOD concentration and specific activity are equivalently reduced in erythrocytes from patients with SOD1 mutations suggests that mutant Cu/Zn SOD is unstable in these cells. That concentration and specific activity do not correlate with disease severity suggests that an altered, novel function of the enzyme, rather than reduction of its dismutase activity, may be responsible for the pathogenesis of FALS.  相似文献   

19.
Abstract: Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease that is inherited as an autosomal dominant trait in ~ 10% of cases. Recently we and others identified several single-base mutations in the Cu/Zn superoxide dismutase (SOD1) gene in patients with familial ALS (FALS). Using single-strand conformational polymorphism, we studied the C to G mutation in exon 2 of the SOD1 gene (resulting in a leucine to valine substitution in position 38) in affected and unaffected members of a large Belgian family with FALS. We measured the SOD1 activity in red blood cell lysates in 14 members of this family, including the only surviving clinically affected patient. SOD1 activity of the family members carrying the mutation was less than half that of members without the mutation. In addition, in 11 patients with sporadic ALS and 11 age- and sex-matched controls, red blood cell SOD1 activity was normal. These studies indicate that SOD1 activity is reduced in these FALS patients but not in sporadic ALS patients. Moreover, this SOD1 enzyme abnormality is detectable years before onset of clinical ALS in carriers of this FALS mutation.  相似文献   

20.
We examined the positive and negative effects of somatic mutation on antibody function using saturation mutagenesis in vitro to mimic the potential of the in vivo process to diversify antibodies. Identical mutations were introduced into the second complementarity determining region of two anti-phosphocholine antibodies, T15 and D16, which share the same germline VH gene sequence. T15 predominates in primary responses and does not undergo affinity maturation. D16 is representative of antibodies that co-dominate in memory responses and do undergo affinity maturation. We previously reported that > 50% of T15 mutants had decreased antigen binding capacity. To test if this high frequency of binding loss was unique to T15 or a consequence of random point mutations applicable to other combining sites, we analyzed the same mutations in D16. We show that D16 suffers a similar loss of function, indicating an equally high potential for B-cell wastage. However, only D16 displayed the capacity for somatic mutation to improve antigen binding, which should enhance its persistence in memory responses. Mutation of residues contacting the haptenic group, as determined by molecular modeling, did not improve binding. Instead, productive mutations occurred in residues that either contacted carrier protein or were distant from the antigen binding site, possibly increasing binding site flexibility through long-range effects. Targeting such residues for mutation should aid in the rational design of improved antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号