首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A central goal of evolutionary genetics is to trace the causal pathway between mutations at particular genes and adaptation at the phenotypic level. The proximate objective is to identify adaptations through the analysis of molecular sequence data from specific candidate genes or their regulatory elements. In this paper, we consider the molecular evolution of floral color in the morning glory genus (Ipomoea) as a model for relating molecular and phenotypic evolution. To begin, flower color variation usually conforms to simple Mendelian transmission, thus facilitating genetic and molecular analyses. Population genetic studies of flower color polymorphisms in the common morning glory (Ipomoea purpurea) have shown that some morphs are subject to complex patterns of selection. Striking differences in floral color and morphology are also associated with speciation in the genus Ipomoea. The molecular bases for these adaptive shifts can be dissected because the biosynthetic pathways that determine floral pigmentation are well understood and many of the genes of flavonoid biosynthesis have been isolated and extensively studied. We present a comparative analysis of the level of gene expression in Ipomoea for several key genes in flavonoid biosynthesis. Specifically we ask: how frequently are adaptive shifts in flower color phenotypes associated with changes in regulation of gene expression versus mutations in structural genes? The results of this study show that most species differences in this crucial phenotype are associated with changes in the regulation of gene expression.  相似文献   

2.
The study of natural populations from contrasting environments has greatly enhanced our understanding of ecological‐dependent selection, adaptation and speciation. Cases of parallel evolution in particular have facilitated the study of the molecular and genetic basis of adaptive variation. This includes the type and number of genes underlying adaptive traits, as well as the extent to which these genes are exchanged among populations and contribute repeatedly to parallel evolution. Yet, surprisingly few studies provide a comprehensive view on the evolutionary history of adaptive traits from mutation to widespread adaptation. When did key mutations arise, how did they increase in frequency, and how did they spread? In this issue of Molecular Ecology, Van Belleghem et al. ( 2015 ) reconstruct the evolutionary history of a gene associated with wing size in the salt marsh beetle Pogonus chalceus. Screening the entire distribution range of this species, they found a single origin for the allele associated with the short‐winged ecotype. This allele seemingly evolved in an isolated population and rapidly introgressed into other populations. These findings suggest that the adaptive genetic variation found in sympatric short‐ and long‐winged populations has an allopatric origin, confirming that allopatric phases may be important at early stages of speciation.  相似文献   

3.
Evolutionary developmental biology and the problem of variation   总被引:11,自引:0,他引:11  
Abstract. One of the oldest problems in evolutionary biology remains largely unsolved. Which mutations generate evolutionarily relevant phenotypic variation? What kinds of molecular changes do they entail? What are the phenotypic magnitudes, frequencies of origin, and pleiotropic effects of such mutations? How is the genome constructed to allow the observed abundance of phenotypic diversity? Historically, the neo‐Darwinian synthesizers stressed the predominance of micromutations in evolution, whereas others noted the similarities between some dramatic mutations and evolutionary transitions to argue for macromutationism. Arguments on both sides have been biased by misconceptions of the developmental effects of mutations. For example, the traditional view that mutations of important developmental genes always have large pleiotropic effects can now be seen to be a conclusion drawn from observations of a small class of mutations with dramatic effects. It is possible that some mutations, for example, those in cis‐regulatory DNA, have few or no pleiotropic effects and may be the predominant source of morphological evolution. In contrast, mutations causing dramatic phenotypic effects, although superficially similar to hypothesized evolutionary transitions, are unlikely to fairly represent the true path of evolution. Recent developmental studies of gene function provide a new way of conceptualizing and studying variation that contrasts with the traditional genetic view that was incorporated into neo‐Darwinian theory and population genetics. This new approach in developmental biology is as important for micro‐evolutionary studies as the actual results from recent evolutionary developmental studies. In particular, this approach will assist in the task of identifying the specific mutations generating phenotypic variation and elucidating how they alter gene function. These data will provide the current missing link between molecular and phenotypic variation in natural populations.  相似文献   

4.
Invasive species are predicted to suffer from reductions in genetic diversity during founding events, reducing adaptive potential. Integrating evidence from two literature reviews and two case studies, we address the following questions: How much genetic diversity is lost in invasions? Do multiple introductions ameliorate this loss? Is there evidence for loss of diversity in quantitative traits? Do invaders that have experienced strong bottlenecks show adaptive evolution? How do multiple introductions influence adaptation on a landscape scale? We reviewed studies of 80 species of animals, plants, and fungi that quantified nuclear molecular diversity within introduced and source populations. Overall, there were significant losses of both allelic richness and heterozygosity in introduced populations, and large gains in diversity were rare. Evidence for multiple introductions was associated with increased diversity, and allelic variation appeared to increase over long timescales (~100 years), suggesting a role for gene flow in augmenting diversity over the long‐term. We then reviewed the literature on quantitative trait diversity and found that broad‐sense variation rarely declines in introductions, but direct comparisons of additive variance were lacking. Our studies of Hypericum canariense invasions illustrate how populations with diminished diversity may still evolve rapidly. Given the prevalence of genetic bottlenecks in successful invading populations and the potential for adaptive evolution in quantitative traits, we suggest that the disadvantages associated with founding events may have been overstated. However, our work on the successful invader Verbascum thapsus illustrates how multiple introductions may take time to commingle, instead persisting as a ‘mosaic of maladaptation’ where traits are not distributed in a pattern consistent with adaptation. We conclude that management limiting gene flow among introduced populations may reduce adaptive potential but is unlikely to prevent expansion or the evolution of novel invasive behaviour.  相似文献   

5.
Divergent evolution during an experimental adaptive radiation   总被引:2,自引:0,他引:2  
How repeatable a process is evolution? Comparative studies of multicellular eukaryotes and experimental studies with unicellular prokaryotes document the repeated evolution of adaptive phenotypes during similar adaptive radiations, suggesting that the outcome of adaptive radiation is broadly reproducible. The goal of this study was to test this hypothesis by using phenotypic traits to infer the genetic basis of adaptation to simple carbon-limited environments in an extensive adaptive radiation. We used a clone of the bacterium Pseudomonas fluorescens to found two sets of experimental lines. The first set of lines was allowed to adapt to one of 23 novel environments for 1100 generations while the second set of lines was allowed to accumulate mutations by drift for 2000 generations. All lines were then assayed in the 95 environments provided by Biolog microplates to determine the phenotypic consequences of selection and drift. Replicate selection lines propagated in a common environment evolved similar adaptive components of their phenotype but showed extensive variation in non-adaptive phenotypic traits. This variation in non-adaptive phenotypic traits primarily resulted from the ascendance of different beneficial mutations in different lines. We argue that these results reconcile experimental and comparative approaches to studying adaptation by demonstrating that the convergent phenotypic evolution that occurs during adaptive radiation may be associated with radically different sets of beneficial mutations.  相似文献   

6.
Experimental evolution (EE) is a powerful tool for addressing how environmental factors influence life‐history evolution. While in nature different selection pressures experienced across the lifespan shape life histories, EE studies typically apply selection pressures one at a time. Here, we assess the consequences of adaptation to three different developmental diets in combination with classical selection for early or late reproduction in the fruit fly Drosophila melanogaster. We find that the response to each selection pressure is similar to that observed when they are applied independently, but the overall magnitude of the response depends on the selection regime experienced in the other life stage. For example, adaptation to increased age at reproduction increased lifespan across all diets; however, the extent of the increase was dependent on the dietary selection regime. Similarly, adaptation to a lower calorie developmental diet led to faster development and decreased adult weight, but the magnitude of the response was dependent on the age‐at‐reproduction selection regime. Given that multiple selection pressures are prevalent in nature, our findings suggest that trade‐offs should be considered not only among traits within an organism, but also among adaptive responses to different—sometimes conflicting—selection pressures, including across life stages.  相似文献   

7.
Combining experimental evolution with whole‐genome resequencing is a promising new strategy for investigating the dynamics of evolutionary change. Published studies that have resequenced laboratory‐selected populations of sexual organisms have typically focused on populations sampled at the end of an evolution experiment. These studies have attempted to associate particular alleles with phenotypic change and attempted to distinguish between different theoretical models of adaptation. However, neither the population used to initiate the experiment nor multiple time points sampled during the evolutionary trajectory are generally available for examination. In this issue of Molecular Ecology, Orozco‐terWengel et al. (2012) take a significant step forward by estimating genome‐wide allele frequencies at the start, 15 generations into and at the end of a 37‐generation Drosophila experimental evolution study. The authors identify regions of the genome that have responded to laboratory selection and describe the temporal dynamics of allele frequency change. They identify two common trajectories for putatively adaptive alleles: alleles either gradually increase in frequency throughout the entire 37 generations or alleles plateau at a new frequency by generation 15. The identification of complex trajectories of alleles under selection contributes to a growing body of literature suggesting that simple models of adaptation, whereby beneficial alleles arise and increase in frequency unimpeded until they become fixed, may not adequately describe short‐term response to selection.  相似文献   

8.
Evolutionary convergence is a core issue in the study of adaptive evolution, as well as a highly debated topic at present. Few studies have analyzed this issue using a “real‐time” or evolutionary trajectory approach. Do populations that are initially differentiated converge to a similar adaptive state when experiencing a common novel environment? Drosophila subobscura populations founded from different locations and years showed initial differences and variation in evolutionary rates in several traits during short‐term (~20 generations) laboratory adaptation. Here, we extend that analysis to 40 more generations to analyze (1) how differences in evolutionary dynamics among populations change between shorter and longer time spans, and (2) whether evolutionary convergence occurs after 60 generations of evolution in a common environment. We found substantial variation in longer term evolutionary trajectories and differences between short‐ and longer term evolutionary dynamics. Although we observed pervasive patterns of convergence toward the character values of long‐established populations, populations still remain differentiated for several traits at the final generations analyzed. This pattern might involve transient divergence, as we report in some cases, indicating that more generations should lead to final convergence. These findings highlight the importance of longer term studies for understanding convergent evolution.  相似文献   

9.
Mutations that are beneficial in one environment can have different fitness effects in other environments. In the context of antibiotic resistance, the resulting genotype‐by‐environment interactions potentially make selection on resistance unpredictable in heterogeneous environments. Furthermore, resistant bacteria frequently fix additional mutations during evolution in the absence of antibiotics. How do these two types of mutations interact to determine the bacterial phenotype across different environments? To address this, I used Escherichia coli as a model system, measuring the effects of nine different rifampicin resistance mutations on bacterial growth in 31 antibiotic‐free environments. I did this both before and after approximately 200 generations of experimental evolution in antibiotic‐free conditions (LB medium), and did the same for the antibiotic‐sensitive wild type after adaptation to the same environment. The following results were observed: (i) bacteria with and without costly resistance mutations adapted to experimental conditions and reached similar levels of competitive fitness; (ii) rifampicin resistance mutations and adaptation to LB both indirectly altered growth in other environments; and (iii) resistant‐evolved genotypes were more phenotypically different from the ancestor and from each other than resistant‐nonevolved and sensitive‐evolved genotypes. This suggests genotype‐by‐environment interactions generated by antibiotic resistance mutations, observed previously in short‐term experiments, are more pronounced after adaptation to other types of environmental variation, making it difficult to predict long‐term selection on resistance mutations from fitness effects in a single environment.  相似文献   

10.
11.
Optimality models have been used to predict evolution of many properties of organisms. They typically neglect genetic details, whether by necessity or design. This omission is a common source of criticism, and although this limitation of optimality is widely acknowledged, it has mostly been defended rather than evaluated for its impact. Experimental adaptation of model organisms provides a new arena for testing optimality models and for simultaneously integrating genetics. First, an experimental context with a well‐researched organism allows dissection of the evolutionary process to identify causes of model failure – whether the model is wrong about genetics or selection. Second, optimality models provide a meaningful context for the process and mechanics of evolution, and thus may be used to elicit realistic genetic bases of adaptation – an especially useful augmentation to well‐researched genetic systems. A few studies of microbes have begun to pioneer this new direction. Incompatibility between the assumed and actual genetics has been demonstrated to be the cause of model failure in some cases. More interestingly, evolution at the phenotypic level has sometimes matched prediction even though the adaptive mutations defy mechanisms established by decades of classic genetic studies. Integration of experimental evolutionary tests with genetics heralds a new wave for optimality models and their extensions that does not merely emphasize the forces driving evolution.  相似文献   

12.
Laboratory evolution studies provide fundamental biological insight through direct observation of the evolution process. They not only enable testing of evolutionary theory and principles, but also have applications to metabolic engineering and human health. Genome‐scale tools are revolutionizing studies of laboratory evolution by providing complete determination of the genetic basis of adaptation and the changes in the organism's gene expression state. Here, we review studies centered on four central themes of laboratory evolution studies: (1) the genetic basis of adaptation; (2) the importance of mutations to genes that encode regulatory hubs; (3) the view of adaptive evolution as an optimization process; and (4) the dynamics with which laboratory populations evolve.  相似文献   

13.
An intriguing question in biology is how the evolution of gene regulation is shaped by natural selection in natural populations. Among the many known regulatory mechanisms, regulation of gene expression by microRNAs (miRNAs) is of critical importance. However, our understanding of their evolution in natural populations is limited. Studying the role of miRNAs in three‐spined stickleback, an important natural model for speciation research, may provide new insights into adaptive polymorphisms. However, lack of annotation of miRNA genes in its genome is a bottleneck. To fill this research gap, we used the genome of three‐spined stickleback to predict miRNAs and their targets. We predicted 1486 mature miRNAs using the homology‐based miRNA prediction approach. We then performed functional annotation and enrichment analysis of these targets, which identified over‐represented motifs. Further, a database resource (GAmiRdb) has been developed for dynamically searching miRNAs and their targets exclusively in three‐spined stickleback. Finally, the database was used in two case studies focusing on freshwater adaptation in natural populations. In the first study, we found 44 genomic regions overlapping with predicted miRNA targets. In the second study, we identified two SNPs altering the MRE seed site of sperm‐specific glyceraldehyde‐3‐phosphate gene. These findings highlight the importance of the GAmiRdb knowledge base in understanding adaptive evolution.  相似文献   

14.
Whole‐genome or whole‐exome sequencing (WGS/WES) of the affected proband together with normal parents (trio) is commonly adopted to identify de novo germline mutations (DNMs) underlying sporadic cases of various genetic disorders. However, our current knowledge of the occurrence and functional effects of DNMs remains limited and accurately identifying the disease‐causing DNM from a group of irrelevant DNMs is complicated. Herein, we provide a general‐purpose discussion of important issues related to pathogenic gene identification based on trio‐based WGS/WES data. Specifically, the relevance of DNMs to human sporadic diseases, current knowledge of DNM biogenesis mechanisms, and common strategies or software tools used for DNM detection are reviewed, followed by a discussion of pathogenic gene prioritization. In addition, several key factors that may affect DNM identification accuracy and causal gene prioritization are reviewed. Based on recent major advances, this review both sheds light on how trio‐based WGS/WES technologies can play a significant role in the identification of DNMs and causal genes for sporadic diseases, and also discusses existing challenges.  相似文献   

15.
Life underground has provided remarkable examples of adaptive evolution in subterranean mammals; however, genome‐wide adaptive evolution to underground stresses still needs further research. There are approximately 250 species of subterranean mammals across three suborders and six families. These species not only inhabit hypoxic and dark burrows but also exhibit evolved adaptation to hypoxia, cancer resistance, and specialized sensory systems, making them an excellent model of evolution. The adaptive evolution of subterranean mammals has attracted great attention and needs further study. In the present study, phylogenetic analysis of 5,853 single‐copy orthologous gene families of five subterranean mammals (Nannospalax galili, Heterocephalus glaber, Fukomys damarensis, Condylura cristata, and Chrysochloris asiatica) showed that they formed fou distinct clusters. This result is consistent with the traditional systematics of these species. Furthermore, comparison of the high‐quality genomes of these five subterranean mammalian species led to the identification of the genomic signatures of adaptive evolution. Our results show that the five subterranean mammalian did not share positively selected genes but had similar functional enrichment categories, including hypoxia tolerance, immunity promotion, and sensory specialization, which adapted to the environment of underground stresses. Moreover, variations in soil hardness, climate, and lifestyles have resulted in different molecular mechanisms of adaptation to the hypoxic environment and different degrees of visual degradation. These results provide insights into the genome‐wide adaptive evolution to underground stresses in subterranean mammals, with special focus on the characteristics of hypoxia adaption, immunity promotion, and sensory specialization response to the life underground.  相似文献   

16.
Genomic and genetic methods allow investigation of how frequently the same genes are used by different populations during adaptive evolution, yielding insights into the predictability of evolution at the genetic level. We estimated the probability of gene reuse in parallel and convergent phenotypic evolution in nature using data from published studies. The estimates are surprisingly high, with mean probabilities of 0.32 for genetic mapping studies and 0.55 for candidate gene studies. The probability declines with increasing age of the common ancestor of compared taxa, from about 0.8 for young nodes to 0.1–0.4 for the oldest nodes in our study. Probability of gene reuse is higher when populations begin from the same ancestor (genetic parallelism) than when they begin from divergent ancestors (genetic convergence). Our estimates are broadly consistent with genomic estimates of gene reuse during repeated adaptation to similar environments, but most genomic studies lack data on phenotypic traits affected. Frequent reuse of the same genes during repeated phenotypic evolution suggests that strong biases and constraints affect adaptive evolution, resulting in changes at a relatively small subset of available genes. Declines in the probability of gene reuse with increasing age suggest that these biases diverge with time.  相似文献   

17.
Independent or parallel evolution of similar traits is key to understanding the genetics and limitations of adaptation. Adaptation from the same genetic changes in different populations defines parallel evolution. Such genetic changes can derive from standing ancestral variation or de novo mutations and excludes instances of adaptive introgression. In this issue of Molecular Ecology, Walden et al.(2020) investigate the scale of parallel climate adaptation from standing genetic variation between two North American Arabidopsis lyrata lineages, each formed by a distinct evolutionary history during the last glacial cycle. By identifying adaptive variants correlated with three ecologically significant climatic gradients, they show that instead of the same genetic variants or even genes, parallel evolution is only observed at the level of biological processes. The evolution of independent adaptive variants to climate in two genetically close lineages is explained by their different post‐glacial demographic histories. Separate glacial refugia and strong population bottlenecks were probably sufficient to change the landscape of shared allele frequencies, hindering the possibility of parallel evolution.  相似文献   

18.
Factors affecting the type and frequency of germline mutations in animals are of significant interest from health and toxicology perspectives. However, studies in this field have been limited by the use of markers with low detection power or uncertain relevance to phenotype. Whole genome sequencing (WGS) is now a potential option to directly determine germline mutation type and frequency in family groups at all loci simultaneously. Medical studies have already capitalized on WGS to identify novel mutations in human families for clinical purposes, such as identifying candidate genes contributing to inherited conditions. However, WGS has not yet been used in any studies of vertebrates that aim to quantify changes in germline mutation frequency as a result of environmental factors. WGS is a promising tool for detecting mutation induction, but it is currently limited by several technical challenges. Perhaps the most pressing issue is sequencing error rates that are currently high in comparison to the intergenerational mutation frequency. Different platforms and depths of coverage currently result in a range of 10-10(3) false positives for every true mutation. In addition, the cost of WGS is still relatively high, particularly when comparing mutation frequencies among treatment groups with even moderate sample sizes. Despite these challenges, WGS offers the potential for unprecedented insight into germline mutation processes. Refinement of available tools and emergence of new technologies may be able to provide the improved accuracy and reduced costs necessary to make WGS viable in germline mutation studies in the very near future. To streamline studies, researchers may use multiple family triads per treatment group and sequence a targeted (reduced) portion of each genome with high (20-40 ×) depth of coverage. We are optimistic about the application of WGS for quantifying germline mutations, but caution researchers regarding the resource-intensive nature of the work using existing technology.  相似文献   

19.
Replicated ecological gradients are prime systems to study processes of molecular evolution underlying ecological divergence. Here, we investigated the repeated adaptation of the neotropical fish Poecilia mexicana to habitats containing toxic hydrogen sulphide (H2S) and compared two population pairs of sulphide‐adapted and ancestral fish by sequencing population pools of >200 individuals (Pool‐Seq). We inferred the evolutionary processes shaping divergence and tested the hypothesis of increase of parallelism from SNPs to molecular pathways. Coalescence analyses showed that the divergence occurred in the face of substantial bidirectional gene flow. Population divergence involved many short, widely dispersed regions across the genome. Analyses of allele frequency spectra suggest that differentiation at most loci was driven by divergent selection, followed by a selection‐mediated reduction of gene flow. Reconstructing allelic state changes suggested that selection acted mainly upon de novo mutations in the sulphide‐adapted populations. Using a corrected Jaccard index to quantify parallel evolution, we found a negligible proportion of statistically significant parallel evolution of Jcorr = 0.0032 at the level of SNPs, divergent genome regions (Jcorr = 0.0061) and genes therein (Jcorr = 0.0091). At the level of metabolic pathways, the overlap was Jcorr = 0.2545, indicating increasing parallelism with increasing level of biological integration. The majority of pathways contained positively selected genes in both sulphide populations. Hence, adaptation to sulphidic habitats necessitated adjustments throughout the genome. The largely unique evolutionary trajectories may be explained by a high proportion of de novo mutations driving the divergence. Our findings favour Gould's view that evolution is often the unrepeatable result of stochastic events with highly contingent effects.  相似文献   

20.
Genetics, development and evolution of adaptive pigmentation in vertebrates   总被引:6,自引:0,他引:6  
Hoekstra HE 《Heredity》2006,97(3):222-234
The study of pigmentation has played an important role in the intersection of evolution, genetics, and developmental biology. Pigmentation's utility as a visible phenotypic marker has resulted in over 100 years of intense study of coat color mutations in laboratory mice, thereby creating an impressive list of candidate genes and an understanding of the developmental mechanisms responsible for the phenotypic effects. Variation in color and pigment patterning has also served as the focus of many classic studies of naturally occurring phenotypic variation in a wide variety of vertebrates, providing some of the most compelling cases for parallel and convergent evolution. Thus, the pigmentation model system holds much promise for understanding the nature of adaptation by linking genetic changes to variation in fitness-related traits. Here, I first discuss the historical role of pigmentation in genetics, development and evolutionary biology. I then discuss recent empirically based studies in vertebrates, which rely on these historical foundations to make connections between genotype and phenotype for ecologically important pigmentation traits. These studies provide insight into the evolutionary process by uncovering the genetic basis of adaptive traits and addressing such long-standing questions in evolutionary biology as (1) are adaptive changes predominantly caused by mutations in regulatory regions or coding regions? (2) is adaptation driven by the fixation of dominant mutations? and (3) to what extent are parallel phenotypic changes caused by similar genetic changes? It is clear that coloration has much to teach us about the molecular basis of organismal diversity, adaptation and the evolutionary process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号