首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land‐use and climate change are significantly affecting stream ecosystems, yet understanding of their long‐term impacts is hindered by the few studies that have simultaneously investigated their interaction and high variability among future projections. We modeled possible effects of a suite of 2030, 2060, and 2090 land‐use and climate scenarios on the condition of 70,772 small streams in the Chesapeake Bay watershed, United States. The Chesapeake Basin‐wide Index of Biotic Integrity, a benthic macroinvertebrate multimetric index, was used to represent stream condition. Land‐use scenarios included four Special Report on Emissions Scenarios (A1B, A2, B1, and B2) representing a range of potential landscape futures. Future climate scenarios included quartiles of future climate changes from downscaled Coupled Model Intercomparison Project ‐ Phase 5 (CMIP5) and a watershed‐wide uniform scenario (Lynch2016). We employed random forests analysis to model individual and combined effects of land‐use and climate change on stream conditions. Individual scenarios suggest that by 2090, watershed‐wide conditions may exhibit anywhere from large degradations (e.g., scenarios A1B, A2, and the CMIP5 25th percentile) to small degradations (e.g., scenarios B1, B2, and Lynch2016). Combined land‐use and climate change scenarios highlighted their interaction and predicted, by 2090, watershed‐wide degradation in 16.2% (A2 CMIP5 25th percentile) to 1.0% (B2 Lynch2016) of stream kilometers. A goal for the Chesapeake Bay watershed is to restore 10% of stream kilometers over a 2008 baseline; our results suggest meeting and sustaining this goal until 2090 may require improvement in 11.0%–26.2% of stream kilometers, dependent on land‐use and climate scenario. These results highlight inherent variability among scenarios and the resultant uncertainty of predicted conditions, which reinforces the need to incorporate multiple scenarios of both land‐use (e.g., development, agriculture, etc.) and climate change in future studies to encapsulate the range of potential future conditions.  相似文献   

2.
In the present study, two isoforms of somatostatin receptor subtype one, previously obtained from the brain of rainbow trout, Tsst1A and Tsst1B, were stably transfected in the Chinese hamster ovary cell line (CHO-K1) and their binding properties were characterized. High affinity binding of somatostatin by expressed receptors was saturable and ligand selective. Both Tsst1A and Tsst1B preferentially bound peptides derived from preprosomatostatin I (PPSS I; e.g., SS-14-I) over those derived from PPSS II (containing Tyr7, Gly10-SS-14-I at their C-terminus; e.g., SS-25-II). The rank order of ligand affinities for Tsst1A was SS-28-I>SS-14-I>SS-26-I?SS-28-II>SS-14-II>SS-25-II. The rank order for Tsst1B was SS-14-I>SS-28-I>SS-26-1?SS-28-II>SS-25-II>SS-14-II. Agonist-induced regulation of Tsst1A and Tsst1B was also investigated. After 30 min of SS-14-I exposure, both Tsst1A and Tsst1B underwent rapid internalization; ca. 60% of membrane Tsst1A was internalized and only about 40% of membrane Tsst1B was internalized. Prolonged agonist exposure (up to 48 h) induced up-regulation of membrane-expressed Tsst1A, but had no effect on Tsst1B. These results indicate that Tsst1s display both distinct and overlapping ligand binding and agonist-induced regulation features. Such features may form the basis of ligand-selection and have important consequences on target organ responsiveness.  相似文献   

3.
4.
A chlorate-resistant mutant B25 of Arabidopsis thaliana (L.) Heinh. was isolated, which has very little or no in vitro nitrate reductase activity and grows poorly on a substrate with nitrate as the sole nitrogen source. The mutation of B25 ( rgn ) is monogenic and recessive, tightly linked to the marker gene an on chromosome 1. Nitrate induces cytochrome- c reductase activity in the mutant but to a lower level than in the wildtype. After sucrose gradient centrifugation the greatest part of the cytochrome- c reductase from induced wildtype is found as 8s type whereas cytochrome- c reductase from B25 under the same conditions is found as 4s type. Nitrate reductase is found at the 8s position. It is suggested that B25 has lost the ability to assemble two 4s subunits showing cytochrome- c reductase activity and a Mo-bearing co-factor into the functional nitrate reductase. Nitrate rather than nitrite is the inducing agent for nitrite reductase, since in B25 nitrite reductase is even more rapidly induced than in the wildtype after addition of nitrate. Both the wildtype and B25 contain a nitrate reductase inhibiting factor when grown on ammonium. This inhibiting factor is a small protein, possibly similar to the nitrate reductase inactivating enzyme reported for other plants.  相似文献   

5.
Entry into mitosis by mammalian cells is triggered by the activation of the cdc2/cyclin B holoenzyme. This is accomplished by the specific dephosphorylation of key residues by the cdc25C phosphatase. The polo-like kinases are a family of serine/threonine kinases which are also implicated in the control of mitotic events, but their exact regulatory mechanism is not known. Recently, a Xenopus homologue, PLX1, was reported to phosphorylate and activate cdc25, leading to activation of cdc2/cyclin B. Jurkat T leukemia cells were chemically arrested and used to verify that PLK protein expression and its phosphorylation state is regulated with respect to cell cycle phase (i.e., protein is undetectable at G1/S, accumulates at S phase and is modified at G2/M). Herein, we show for the first time that endogenous human PLK protein immunoprecipitated from the G2/M-arrested Jurkat cells directly phosphorylates human cdc25C. In addition, we demonstrate that recombinant human (rh) PLK also phosphorylates rhcdc25C in a time- and concentration-dependent manner. Phosphorylation of endogenous cdc25C and recombinant cdc25C by PLK resulted in the activation of the phosphatase as assessed by dephosphorylation of cdc2/cyclin B. These data are the first to demonstrate that human PLK is capable of phosphorylating and positively regulating human cdc25C activity, allowing cdc25C to dephosphorylate inactive cdc2/cyclin B. As this event is required for cell cycle progression, we define at least one key regulatory mode of action for human PLK in the initiation of mitosis.  相似文献   

6.
Oxysterols such as 7 alpha, 25-dihydroxycholesterol (7α,25-OHC) are natural ligands for the Epstein-Barr virus (EBV)-induced gene 2 (EBI2, aka GPR183), a G protein-coupled receptor (GPCR) highly expressed in immune cells and required for adaptive immune responses. Activation of EBI2 by specific oxysterols leads to chemotaxis of B cells in lymphoid tissues. While the ligand gradient necessary for this critical process of the adaptive immune response is established by a stromal cells subset here we investigate the involvement of the oxysterol/EBI2 system in the innate immune response. First, we show that primary human macrophages express EBI2 and the enzymes needed for ligand production such as cholesterol 25-hydroxylase (CH25H), sterol 27-hydroxylase (CYP27A1), and oxysterol 7α-hydroxylase (CYP7B1). Furthermore, challenge of monocyte-derived macrophages with lipopolysaccharides (LPS) triggers a strong up-regulation of CH25H and CYP7B1 in comparison to a transient increase in EBI2 expression. Stimulation of EBI2 expressed on macrophages leads to calcium mobilization and to directed cell migration. Supernatants of LPS-stimulated macrophages are able to stimulate EBI2 signaling indicating that an induction of CH25H, CYP27A1, and CYP7B1 results in an enhanced production and release of oxysterols into the cellular environment. This is a study characterizing the oxysterol/EBI2 pathway in primary monocyte-derived macrophages. Given the crucial functional role of macrophages in the innate immune response these results encourage further exploration of a possible link to systemic autoimmunity.  相似文献   

7.
Isabella tiger moths (Pyrrharctia isabella) overwinter as caterpillars (i.e., woolly bears) that can survive freezing at moderate subzero temperatures. We observed an increase in hemolymph osmolality for field-collected woolly bears during October (325 +/- 47 to 445 +/- 27 mOsmol/liter) and tested the influence of temperature and moisture levels on cryoprotectant production. Laboratory acclimation was done at 5 degrees C in moist conditions and at 25 degrees C acclimation in both dry and moist conditions. Body water contents were diminished by dehydration at 25 degrees C for 4 days (57 +/- 4%). Caterpillars collected in early October did not alter their hemolymph osmolality during cold acclimation, but caterpillars increased by 45% (to 647 +/- 90 mOsmol/liter) after 4 days at 5 degrees C following their collection in late October. Hemolymph composition was markedly changed in caterpillars experiencing dehydration at 25 degrees C (1042 +/- 200 mOsmol/liter; 507 +/- 225 mmol glycerol/liter), whereas caterpillars showed no change in their hemolymph composition when kept moist at 25 degrees C. Our experiments reveal that both dehydration and cold acclimation rapidly induce cryoprotectant synthesis in P. isabella caterpillars. J. Exp. Zool. 286:367-371, 2000.  相似文献   

8.
HeLa cells exposed to Escherichia coli cytolethal distending toxins (CDT) arrest their cell cycle at the G2/M transition. We have shown previously that in these cells the CDK1/cyclin B complex is inactive and can be reactivated in vitro using recombinant CDC25 phosphatase. Here we have investigated in vivo the effects of CDC25 on this cell cycle checkpoint. We report that overexpression of CDC25B or CDC25C overrides an established CDT-induced G2 cell cycle arrest and leads the cells to accumulate in an abnormal mitotic stage with condensed chromatin and high CDK1 activity. This effect can be counteracted by coexpression of the WEE1 kinase. In contrast, overexpression of CDC25B or C prior to CDT treatment prevents G2 arrest and allows most of the cells to progress through mitosis with only a low percentage of cells arrested in abnormal mitosis. The implications of these results on the biochemical nature of the CDT-induced cell cycle arrest are discussed.  相似文献   

9.
以东方百合杂种系(Oriental hybrids group)品种‘Siberia’为母本,OT杂种系(interspecific hybrids betweenOriental and Longiflorum/OT group)品种‘Manissa’为父本杂交获得种间杂交F1代,对亲本及F1代株系的染色体数目和形态特征进行了分析。结果显示,母本东方百合‘Siberia’为二倍体即24条染色体,而父本‘Manissa’是高度杂合后代,为三倍体即36条染色体。杂交F1代的8个株系中有6个株系为二倍体即24条染色体,有2个株系为非整倍体,染色体条数分别为25和26条。母本‘Siberia’的核型为4m(1SAT)+10st(1SAT)+10t,父本‘Manis-sa’的核型为3m+18st(1SAT)+15t(1SAT),均属3B型。杂种F1代核型出现了多种类型,其中株系a、b、h为3B型,株系c、d、e、f为3A型,株系g为4B型。与亲本染色体形态相比,F1代株系出现了随体及端部着丝点染色体较多等染色体形态结构特征,而亲本没有这些特征。从染色体的形态、随体来看,子代为真杂种,在遗传上均偏向于母本。  相似文献   

10.
Cyclin-dependent kinase (CDK)-activating phosphatases, CDC25A and CDC25B, are labile proteins, and their levels vary in a cell cycle-dependent manner. Immediate-early response IER5 protein negatively regulates the cellular CDC25B levels, and stress-induced IER5 expression potentiates G2/M arrest. IER5 binds to protein phosphatase PP2A and regulates the PP2A substrate specificity. We show that IER5 binds to CDC25B and assists PP2A to convert CDC25B to hypophosphorylated forms. Hypophosphorylation at Ser323 results in the dissociation of CDC25B from 14‐3-3 phospho-binding proteins. In IER5 expressing cells, CDC25B dissociated from 14‐3-3 is unstable but slightly activated, because 14‐3-3 inhibits CDC25B polyubiquitination and CDC25B binding to CDK1. The 14‐3-3 binding to CDC25A also impedes CDC25A degradation and CDC25A-CDK2 interaction. We propose that 14‐3-3 is an important regulator of CDC25A and CDC25B and that PP2A/IER5 controls the stability and activity of CDC25B through regulating the interaction of CDC25B and 14‐3-3.  相似文献   

11.
Cdc25 phosphatases are key activators of the eukaryotic cell cycle and compelling anticancer targets because their overexpression has been associated with numerous cancers. However, drug discovery targeting these phosphatases has been hampered by the lack of structural information about how Cdc25s interact with their native protein substrates, the cyclin-dependent kinases. Herein, we predict a docked orientation for Cdc25B with its Cdk2-pTpY-CycA protein substrate by a rigid-body docking method and refine the docked models with full-scale molecular dynamics simulations and minimization. We validate the stable ensemble structure experimentally by a variety of in vitro and in vivo techniques. Specifically, we compare our model with a crystal structure of the substrate-trapping mutant of Cdc25B. We identify and validate in vivo a novel hot-spot residue on Cdc25B (Arg492) that plays a central role in protein substrate recognition. We identify a hot-spot residue on the substrate Cdk2 (Asp206) and confirm its interaction with hot-spot residues on Cdc25 using hot-spot swapping and double mutant cycles to derive interaction energies. Our experimentally validated model is consistent with previous studies of Cdk2 and its interaction partners and initiates the opportunity for drug discovery of inhibitors that target the remote binding sites of this protein-protein interaction.  相似文献   

12.
H(2)O(2) produced by stimulation of the macrophage NADPH oxidase is involved both in bacterial killing and as a second messenger in these cells. Protein tyrosine phosphatases (PTPs) are targets for H(2)O(2) signaling through oxidation of their catalytic cysteine, resulting in inhibition of their activity. Here, we show that, in the rat alveolar macrophage NR8383 cell line, H(2)O(2) produced through the ADP-stimulated respiratory burst induces the formation of a disulfide bond between PTP1B and GSH that was detectable with an antibody to glutathione-protein complexes and was reversed by DTT addition. PTP1B glutathionylation was dependent on H(2)O(2) as the presence of catalase at the time of ADP stimulation inhibited the formation of the conjugate. Interestingly, other PTPs, i.e., SHP-1 and SHP-2, did not undergo glutathionylation in response to ADP stimulation of the respiratory burst, although glutathionylation of these proteins could be shown by reaction with 25 mM glutathione disulfide in vitro. While previous studies have suggested the reversible oxidation of PTP1B during signaling or showed PTP1B glutathionylation in vitro, the present study directly demonstrates that physiological stimulation of H(2)O(2) production results in PTP1B glutathionylation in intact cells, which may affect downstream signaling.  相似文献   

13.
The Cdc25 family of protein phosphatases positively regulates cell division by activating cyclin-dependent protein kinases (CDKs). In humans and rodents, there are three Cdc25 family members--denoted Cdc25A, Cdc25B, and Cdc25C--that can be distinguished based on their subcellular compartmentalizations, their abundances and/or activities throughout the cell cycle, the CDKs that they target for activation, and whether they are overexpressed in human cancers. In addition, murine forms of Cdc25 exhibit distinct patterns of expression throughout development and in adult tissues. These properties suggest that individual Cdc25 family members contribute distinct biological functions in embryonic and adult cell cycles of mammals. Interestingly, mice with Cdc25C disrupted are healthy, and cells derived from these mice exhibit normal cell cycles and checkpoint responses. Cdc25B-/- mice are also generally normal (although females are sterile), and cells derived from Cdc25B-/- mice have normal cell cycles. Here we report that mice lacking both Cdc25B and Cdc25C are obtained at the expected Mendelian ratios, indicating that Cdc25B and Cdc25C are not required for mouse development or mitotic entry. Furthermore, cell cycles, DNA damage responses, and Cdc25A regulation are normal in cells lacking Cdc25B and Cdc25C. These findings indicate that Cdc25A, or possibly other phosphatases, is able to functionally compensate for the loss of Cdc25B and Cdc25C in mice.  相似文献   

14.
Chen W  Wilborn M  Rudolph J 《Biochemistry》2000,39(35):10781-10789
Cdc25 is a dual-specificity phosphatase that catalyzes the activation of the cyclin-dependent kinases, thus causing initiation and progression of successive phases of the cell cycle. Although it is not significantly structurally homologous to other well-characterized members, Cdc25 belongs to the class of well-studied cysteine phosphatases as it contains their active site signature motif. However, the catalytic acid needed for protonation of the leaving group has yet to be identified. To elucidate the role and identity of this key catalytic residue, we have performed a detailed pH-dependent kinetic analysis of Cdc25B. The pK(a) of the catalytic cysteine was found to be 5.6-6.3 in steady state and one-turnover burst experiments using the small molecule substrates p-nitrophenyl phosphate and 3-O-methylfluorescein phosphate. Interestingly, Cdc25B does not exhibit the typical bell-shaped pH-rate profile with small molecule substrates seen in other cysteine phosphatases and indicative of the catalytic acid because it lacks pH dependence between 6.5 and 9. Reactions of Cdc25B with the natural substrate Cdk2-pTpY/CycA, however, did yield a bell-shaped pH-rate profile with a pK(a) of 6.1 for the catalytic acid residue. Recent structural studies of Cdc25 have suggested that Glu474 [Fauman, E. B., et al. (1998) Cell 93, 617-625] or Glu478 [Reynolds, R. A., et al. (1999) J. Mol. Biol. 293, 559-568] could function as the catalytic acid in Cdc25B. Using site-directed mutagenesis and truncation experiments, however, we found that neither of these residues, nor the unstructured C-terminus, is responsible for the observed pH dependence. These results indicate that the catalytic acid does not appear to lie within the known structure of Cdc25B and may lie on its protein substrate.  相似文献   

15.
Summary Using restriction enzyme digests of genomic DNA extracted from the leaves of 25 hexaploid wheat (Triticum aestivum L. em. Thell.) cultivars and their hybrids, restriction fragment length polymorphisms of the spacer DNA which separates the ribosomal-RNA genes have been examined. (From one to three thousand of these genes are borne on chromosomes 1B and 6B of hexaploid wheat). The data show that there are three distinct alleles of the 1B locus, designated Nor-B1a, Nor-B1b, and Nor-B1c, and at least five allelic variants of the 6B locus, designated Nor-B2a, Nor-B2b, Nor-B2c, Nor-B2d, and Nor-B2e. A further, previously reported allele on 6B has been named Nor-B2f. Chromosome 5D has only one allelic variant, Nor-D3. Whereas the major spacer variants of the 1B alleles apparently differ by the loss or gain of one or two of the 133 bp sub-repeat units within the spacer DNA, the 6B allelic variants show major differences in their compositions and lengths. This may be related to the greater number of rDNA repeat units at this locus. The practical implications of these differences and their application to wheat breeding are discussed.  相似文献   

16.
Some amphibian brain-melanotrope cell systems are used to study how neuronal and (neuro)endocrine mechanisms convert environmental signals into physiological responses. Pituitary melanotropes release alpha-melanophore-stimulating hormone (alpha-MSH), which controls skin color in response to background light stimuli. Xenopus laevis suprachiasmatic neurons receive optic input and inhibit melanotrope activity by releasing neuropeptide Y (NPY), dopamine (DA) and gamma-aminobutyric acid (GABA) when animals are placed on a light background. Under this condition, they strengthen their synaptic contacts with the melanotropes and enhance their secretory machinery by upregulating exocytosis-related proteins (e.g. SNAP-25). The inhibitory transmitters converge on the adenylyl cyclase system, regulating Ca(2+) channel activity. Other messengers like thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH, from the magnocellular nucleus), noradrenalin (from the locus coeruleus), serotonin (from the raphe nucleus) and acetylcholine (from the melanotropes themselves) stimulate melanotrope activity. Ca(2+) enters the cell and the resulting Ca(2+) oscillations trigger alpha-MSH secretion. These intracellular Ca(2+) dynamics can be described by a mathematical model. The oscillations travel as a wave through the cytoplasm and enter the nucleus where they may induce the expression of genes involved in biosynthesis and processing (7B2, PC2) of pro-opiomelanocortin (POMC) and release (SNAP-25, munc18) of its end-products. We propose that various environmental factors (e.g. light and temperature) act via distinct brain centers in order to release various neuronal messengers that act on the melanotrope to control distinct subcellular events (e.g. hormone biosynthesis, processing and release) by specifically shaping the pattern of melanotrope Ca(2+) oscillations.  相似文献   

17.
To gain an understanding of the causes of decreased biological activity in insulins bearing amino acid substitutions at position B25 and the importance of the PheB25 side chain in directing hormone-receptor interactions, we have prepared a variety of insulin analogs and have studied both their interactions with isolated canine hepatocytes and their abilities to stimulate glucose oxidation by isolated rat adipocytes. The semisynthetic analogs fall into three structural classes: (a) analogs in which the COOH-terminal 5, 6, or 7 residues of the insulin B-chain have been deleted, but in which the COOH-terminal residue of the B-chain has been derivatized by alpha-carboxamidation; (b) analogs in which PheB25 has been replaced by unnatural aromatic or natural L-amino acids; and (c) analogs in which the COOH-terminal 5 residues of the insulin B-chain have been deleted and in which residue B25 has been replaced by selected alpha-carboxamidated amino acids. Our results showed that (a) insulin residues B26-B30 can be deleted without decrease in biological potency, whereas deletion of residues B25-B30 and B24-B30 causes a marked and cumulative decrease in potency; (b) replacement of PheB25 in insulin by Leu or Ser results in analogs with biological potency even less than that observed when residues B25-B30 are deleted; (c) the side chain bulk of naphthyl(1)-alanine or naphthyl(2)-alanine at position B25 is well tolerated during insulin interactions with receptor, whereas that of homophenylalanine is not; and (d) the decreased biological potency attending substitution of insulin PheB25 by Ala, Ser, Leu, or homophenylalanine is reversed, in part or in total, by deletion of COOH-terminal residues B26-B30. Additional experiments showed that the rate of dissociation of receptor-bound 125I-labeled insulin from isolated hepatocytes is enhanced by incubating cells with insulin or [naphthyl(2)-alanineB25]insulin, but not with analogs in which PheB25 is replaced by serine, leucine, or homophenylalanine; deletion of residues B26-B30, however, results in analogs that enhance the rate of dissociation of receptor-bound insulin in all cases studied. We conclude that (a) steric hindrance involving the COOH-terminal domain of the B chain plays a major role in directing the interaction of insulin with its receptor; (b) the initial negative effect of this domain is reversed upon the filling of a site reflecting interaction of the receptor and the beta-aromatic ring of the PheB25 side chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The CDC25 phosphatases play an essential role in the spatial and temporal regulation of the control of entry into mitosis. These enzymes dephosphorylate and activate the CDK-cyclin complexes, in particular CDK1-cyclin B1, the master regulator of mitosis. Three CDC25 genes in exist in humans (CDC25A, CDC25B and CDC25C), and the original model of their function proposed that they acted sequentially at discrete cell cycle transitions, i.e., that CDC25A was dedicated to the activation of the G1/S progression-associated CDKs, CDC25B controlled early prophase events, while CDC25C was thought to achieve the full activation of CDK1-cyclin B1 at entry into mitosis. Indeed, the situation appears much more complicated than this, and current evidence shows that all three CDC25 phosphatases act at a variety of mitotic stages, with and considerable experimental evidence to indicate that all three are involved in orchestrating cell cycle progression in mitosis.1 Previous work has led to the proposal that CDC25B acts as the starter of mitosis. Additionally, a number of recent studies have shown that CDC25B also localizes to the centrosome where its activating role on CDK-cyclin complexes appears to be regulated by multiple activatory and inhibitory kinases.2-5 As such, it has been proposed that CDC25B might act as a central centrosomal integrator and a trigger for the initial events that set up the sequence of events leading to mitosis.6 As a target of the first small pool of activated CDK1-cyclin B1 that translocates to the nucleus, CDC25C was thought to subsequently be responsible for the massive activation of the nuclear pool of CDK1-cyclin B1 that occurs at entry into mitosis. A report from the group headed by May Morris presented in this issue of Cell Cycle (Bonnet et al., pp. 1990–7) provides new insight into the dynamics of these events and in the understanding of the involvement of both CDC25B and CDC25C in the earliest stages of the G2/M transition. Bonnet and collaborators show for the first time, as has long been suspected but until now never observed, the localization of a fraction of CDC25C at the centrosome during interphase. This centrosomal localization occurs from S-phase onward and is also present during mitosis. Using FRAP analysis, their study elegantly shows that this centrosomal population of CDC25C is highly dynamic. Furthermore, the authors show that mutations of CDC25C that impair its catalytic activity or its binding to its CDK-cyclin substrates promote its centrosomal accumulation, thus suggesting an active role in the dephosphorylation and activation of CDK-cyclins at this location. Together with previous reports showing that the activity of CDC25C is amplified following its mitotic phosphorylation by CDK1-cyclin B1 while the activity of CDC25B is not,7 these new findings lead to the proposition of an alternative regulatory model for the control of the G2/M transition. In this model, the CDK1-cyclin B1 complex is activated at the centrosomal level both by the initial action of CDC25B (as has already been suggested8) as well as by the centrosomal pool of activated CDC25C that subsequently amplifies the process through its own phosphorylation and activation (Fig. 1). While CDC25B can be considered as a “starter”, CDC25C plays the role of the “gas pedal” that speeds up entry into mitosis by amplifying the signaling cascade from the centrosome and finally increasing nuclear levels. This model is certainly too simplistic and does not integrate many major issues that remain to be investigated. Among these unsolved questions is the role that the multiple splice variants of the CDC25 phosphatases might play. There are at least five variants for both CDC25B and CDC25C whose specific regulation and roles in the dephosphorylation of individual CDK-cyclins substrates is still unknown.5 Likely related to this question is the issue of the presence of both CDC25B and CDC25C until late stages of mitosis. Why is CDC25C associated with the centrosome when, according to the dogma, the entire pool of CDK1-cyclin B1 has been fully activated? An attractive hypothesis is to speculate that the CDC25 phosphatases might continue to play discrete roles in the dephosphorylation and the activation of sub-populations of CDK-cyclins throughout the entire process of mitosis to ensure a fine tuning of the kinase activities that are involved in the many architectural and functional aspects of the mitotic figure. Centrosomes are made up of numerous proteins whose amino acid sequence suggests a coiled-coil tertiary structure. Increasing evidence indicates that this molecular structure may be well-designed for the organization of multiprotein scaffolds that can anchor a diversity of activities ranging from protein complexes involved in microtubule nucleation to multicomponent pathways for cellular regulation.9 By physically linking components of a common pathway, molecular scaffolds can increase the local concentration of components, limit nonspecific interactions, and provide spatial control for regulatory pathways by positioning by positioning them at specific sites in proximity to downstream targets or upstream modulators. On the basis of the increasing number of regulatory molecules anchored at the centrosome, it is likely that this organelle serves as a centralized control center for regulating a diversity of cellular activities. Recent studies have provided some of the first functional links between centrosomes and regulatory networks in cell cycle transitions from G1 to S-phase, G2 to M-phase and metaphase to anaphase. The findings by Bonnet et al. support this line of evidence.

References

Boutros R, Dozier C, Ducommun B. The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 2006; 18:185-91. Dutertre S, Cazales M, Quaranta M, Froment C, Trabut V, Dozier C, Mirey G, Bouche J, Theis-Febvre N, Schmitt E, Monsarrat B, Prigent C, Ducommun B. Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2/M transition. J Cell Science 2004; 117:2523-31. Schmitt E, Boutros R, Froment C, Monsarrat B, Ducommun B, Dozier C. CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J Cell Sci 2006; 119:4269-75. Boutros R, Ducommun B. Asymmetric localization of the CDC25B phosphatase to the mother centrosome during interphase. Cell Cycle 2008; 7:401-6. Boutros R, Lobjois V, Ducommun B. CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 2007; 7:495-507. Lindqvist A, Kallstrom H, Lundgren A, Barsoum E, Rosenthal CK. Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J Cell Biol 2005; 171:35-45. Baldin V, Pelpel K, Cazales M, Cans C, Ducommun B. Nuclear Localization of CDC25B1 and Serine 146 Integrity Are Required for Induction of Mitosis. J Biol Chem 2002; 277:35176-82. Jackman M, Lindon C, Nigg EA, Pines J. Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 2003; 5:143-8. Kramer A, Lukas J, Bartek J. Checking out the centrosome. Cell Cycle 2004; 3:1390-3.  相似文献   

19.
Mutations in the photoreceptor protein peripherin-2 (also known as RDS) cause severe retinal degeneration. RDS and its homolog ROM-1 (rod outer segment protein 1) are synthesized in the inner segment and then trafficked into the outer segment where they function in tetramers and covalently linked larger complexes. Our goal is to identify binding partners of RDS and ROM-1 that may be involved in their biosynthetic pathway or in their function in the photoreceptor outer segment (OS). Here we utilize several methods including mass spectrometry after affinity purification, in vitro co-expression followed by pull-down, in vivo pull-down from mouse retinas, and proximity ligation assay to identify and confirm the SNARE proteins Syntaxin 3B and SNAP-25 as novel binding partners of RDS and ROM-1. We show that both covalently linked and non-covalently linked RDS complexes interact with Syntaxin 3B. RDS in the mouse is trafficked from the inner segment to the outer segment by both conventional (i.e., Golgi dependent) and unconventional secretory pathways, and RDS from both pathways interacts with Syntaxin3B. Syntaxin 3B and SNAP-25 are enriched in the inner segment (compared to the outer segment) suggesting that the interaction with RDS/ROM-1 occurs in the inner segment. Syntaxin 3B and SNAP-25 are involved in mediating fusion of vesicles carrying other outer segment proteins during outer segment targeting, so could be involved in the trafficking of RDS/ROM-1.  相似文献   

20.
The entry into mitosis is controlled by Cdc2/cyclin B, also known as maturation or M-phase promoting factor (MPF). In Xenopus egg extracts, the inhibitory phosphorylations of Cdc2 on Tyr-15 and Thr-14 are controlled by the phosphatase Cdc25 and the kinases Myt1 and Wee1. At mitosis, Cdc25 is activated and Myt1 and Wee1 are inactivated through phosphorylation by multiple kinases, including Cdc2 itself. The Cdc2-associated Suc1/Cks1 protein (p9) is also essential for entry of egg extracts into mitosis, but the molecular basis of this requirement has been unknown. We find that p9 strongly stimulates the regulatory phosphorylations of Cdc25, Myt1, and Wee1 that are carried out by the Cdc2/cyclin B complex. Overexpression of the prolyl isomerase Pin1, which binds to the hyperphosphorylated forms of Cdc25, Myt1, and Wee1 found at M-phase, is known to block the initiation of mitosis in egg extracts. We have observed that Pin1 specifically antagonizes the stimulatory effect of p9 on phosphorylation of Cdc25 by Cdc2/cyclin B. This observation could explain why overexpression of Pin1 inhibits mitotic initiation. These findings suggest that p9 promotes the entry into mitosis by facilitating phosphorylation of the key upstream regulators of Cdc2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号