首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 540 毫秒
1.
In a paper in this issue of the Biochemical Journal that questions the role of c-IAP1 (cellular inhibitor of apoptosis 1) in inflammation, new results from the Duckett laboratory remind us of the importance of truly knowing the mice we depend on. It turns out that c-IAP1 is tightly linked to caspase 11 and cannot be segregated by recombination. This disturbing result implies that immune functions ascribed to c-IAP1 may be due to the caspase 11 mutation that is co-inherited with the locus.  相似文献   

2.
Nonobese diabetic (NOD) mice carrying a segment of chromosome flanking the disrupted IFN-gamma receptor gene from original 129 ES cells are resistant to development of diabetes. However, extended backcrossing of this mouse line to the NOD mouse resulted in a segregation of the IFN-gammaR-deficient genotype from the diabetes-resistant phenotype. These results indicate that the protection of NOD mice from the development of diabetes is not directly linked to the defective IFN-gamma receptor gene but, rather, is influenced by the presence of a diabetes-resistant gene(s) closely linked to the IFN-gammaR loci derived from the 129 mouse strain.  相似文献   

3.
To study the physiological role of the creatine kinase/phosphocreatine (CK/PCr) system in cells and tissues with a high and fluctuating energy demand we have concentrated on the site-directed inactivation of the B- and M-CK genes encoding the cytosolic CK protein subunits. In our approach we used homologous recombination in mouse embryonic stem (ES) cells from strain 129/Sv. Using targeting constructs based on strain 129/Sv isogenic DNA we managed to ablate the essential exons of the B-CK and M-CK genes at reasonably high frequencies. ES clones with fully disrupted B-CK and two types of M-CK gene mutations, a null (M-CK) and leaky (M-CK1) mutation, were used to generate chimaeric mutant mice via injection in strain C57BL/6 derived blastocysts. Chimaeras with the B-CK null mutation have no overt abnormalities but failed to transmit the mutation to their offspring. For the M-CK and M-CK1 mutations successful transmission was achieved and heterozygous and homozygous mutant mice were bred. Animals deficient in MM-CK are phenotypically normal but lack muscular burst activity. Fluxes through the CK reaction in skeletal muscle are highly impaired and fast fibres show adaptation in cellular architecture and storage of glycogen. Mice homozygous for the leaky M-CK allele, which have 3-fold reduced MM-CK activity, show normal fast fibres but CK fluxes and burst activity are still not restored to wildtype levels.  相似文献   

4.
Mice have been successfully cloned from both somatic cells and hybrid embryonic stem (ES) cells. Heterozygosity of the donor ES cell genome has been suggested as a crucial factor for long-term survival of cloned mice. In the present study, an inbred ES cell line, HM-1 (129/Ola), and a well-tested ES cell line, R1 (129/Sv x 129/Sv-CP), were used as donor cells to evaluate the developmental potential of nuclear transfer embryos. We found that ES cell confluence dramatically affects the developmental potential of reconstructed embryos. With the ES cell line HM-1 and 80-90% confluence, 49% of reconstructed embryos developed to the morula/blastocyst stage, 9% of these embryos developed to live pups when transferred to the surrogate mothers, and 5 of 18 live pups survived to adulthood. By contrast, at 60-70% confluence, only 22% of embryos developed to the morula/blastocyst stage, and after transfer, only a single fetus reached term. Consistent with previous reports, the nuclei of R1 ES cells were also shown to direct development to term, but no live pups were derived from cells at later passages (>20). Our results show that the developmental potential of reconstructed embryos is determined by both cell confluence and cell passage. These results also demonstrate that the inbred ES cell line, HM-1, can be used to produce viable cloned mice, although less efficiently than most heterozygous ES cell lines.  相似文献   

5.
The majority of gene-targeting experiments in mice are performed in 129Sv-derived embryonic stem (ES) cell lines, which are generally considered to be more reliable at colonizing the germ line than ES cells derived from other strains. Gene targeting is reliant on homologous recombination of a targeting vector with the host ES cell genome. The efficiency of recombination is affected by many factors, including the isogenicity (H. te Riele et al., 1992, Proc. Natl. Acad. Sci. USA 89, 5128-5132) and the length of homologous sequence of the targeting vector and the location of the target locus. Here we describe the double-end sequencing and mapping of 84,507 bacterial artificial chromosomes (BACs) generated from AB2.2 ES cell DNA (129S7/SvEvBrd-Hprtb-m2). We have aligned these BACs against the mouse genome and displayed them on the Ensembl genome browser, DAS: 129S7/AB2.2. This library has an average insert size of 110.68 kb and average depth of genome coverage of 3.63- and 1.24-fold across the autosomes and sex chromosomes, respectively. Over 97% of the mouse genome and 99.1% of Ensembl genes are covered by clones from this library. This publicly available BAC resource can be used for the rapid construction of targeting vectors via recombineering. Furthermore, we show that targeting vectors containing DNA recombineered from this BAC library can be used to target genes efficiently in several 129-derived ES cell lines.  相似文献   

6.
Gene targeting is a powerful method of specifically modifying genes of interest. It has been most consistently successful in the 129 mouse strain, because the embryonic stem (ES) cells of 129 mice are relatively easy to culture. In gene-targeting experiments, the use of ES cell-derived genomic clones as a source of homology arms is desirable, because the genetic variation among mouse strains results in a reduced frequency of homologous recombination. In this study, we generated an arrayed mouse 129/Ola BAC library derived from E14.1 ES cells, one of the frequently used ES cell lines. More than 135,000 BAC clones with a mean insert size of 110 kb were isolated. This library is estimated to represent a 5.5-fold mouse genome coverage. The BAC clones can be screened within 2 days by PCR. Considering that all 8 loci so far examined are contained in this BAC library, we believe it will be a useful resource for gene targeting studies using E14 ES cells as well as for genome analysis.  相似文献   

7.
品系对小鼠胚胎干细胞分离效率的影响   总被引:4,自引:0,他引:4  
为了充分利用小鼠胚胎干(ES)细胞,就必须从众多小鼠品系中分离ES细胞系。本研究通过传统的成纤维细胞饲养层法,从CD-1、129/Sv、C57BL/6J和129/Sv×C57BL/6J四种不同遗传背景的小鼠中分离得到12个ES细胞系,而从KM小鼠没有得到ES细胞系。所有的ES细胞系都具有典型的ES细胞特征,AKP染色呈阳性。从四种不同遗传背景的ES细胞系得到了包含多种组织的畸胎瘤;与桑椹胚聚合后,都得到了生殖系嵌合体。结果表明:品系对小鼠ES细胞的分离有显著影响,利用129小鼠以及包含129小鼠遗传背景的杂交小鼠都较容易分离ES细胞,由ES细胞得到生殖系嵌合体的效率在不同品系间有显著差异,从杂交ES细胞比近交ES细胞中更容易得到生殖系嵌合体。  相似文献   

8.
Although the functions of granzyme A (GzmA) and GzmB are well-defined, a number of orphan granzymes of unknown function are also expressed in cytotoxic lymphocytes. Previously, we showed that a targeted loss-of-function mutation for GzmB was associated with reduced expression of several downstream orphan granzyme genes in the lymphokine-activated killer cell compartment. To determine whether this was caused by the retained phosphoglycerate kinase I gene promoter (PGK-neo) cassette in the GzmB gene, we retargeted the GzmB gene with a LoxP-flanked PGK-neo cassette, then removed the cassette in embryonic stem cells by transiently expressing Cre recombinase. Mice homozygous for the GzmB null mutation containing the PGK-neo cassette (GzmB-/-/+PGK-neo) displayed reduced expression of the closely linked GzmC and F genes in their MLR-derived CTLs and lymphokine-activated killer cells; removal of the PGK-neo cassette (GzmB-/-/DeltaPGK-neo) restored the expression of both genes. Cytotoxic lymphocytes derived from mice with the retained PGK-neo cassette (GzmB-/-/+PGK-neo) had a more severe cytotoxic defect than those deficient for GzmB only (GzmB-/-/DeltaPGK-neo). Similarly, GzmB-/-/+PGK-neo mice displayed a defect in the allogeneic clearance of P815 tumor cells, whereas GzmB-/-/DeltaPGK-neo mice did not. These results suggest that the retained PGK-neo cassette in the GzmB gene causes a knockdown of GzmC and F expression, and also suggest that these granzymes are relevant for the function of cytotoxic lymphocytes in vitro and in vivo.  相似文献   

9.
Gene-targeting technology using mouse embryonic stem (ES) cells has become the “gold standard” for analyzing gene functions and producing disease models. Recently, genetically modified mice with multiple mutations have increasingly been produced to study the interaction between proteins and polygenic diseases. However, introduction of an additional mutation into mice already harboring several mutations by conventional natural crossbreeding is an extremely time- and labor-intensive process. Moreover, to do so in mice with a complex genetic background, several years may be required if the genetic background is to be retained. Establishing ES cells from multiple-mutant mice, or disease-model mice with a complex genetic background, would offer a possible solution. Here, we report the establishment and characterization of novel ES cell lines from a mouse model of Alzheimer’s disease (3xTg-AD mouse, Oddo et al. in Neuron 39:409–421, 2003) harboring 3 mutated genes (APPswe, TauP301L, and PS1M146V) and a complex genetic background. Thirty blastocysts were cultured and 15 stable ES cell lines (male: 11; female: 4) obtained. By injecting these ES cells into diploid or tetraploid blastocysts, we generated germline-competent chimeras. Subsequently, we confirmed that F1 mice derived from these animals showed similar biochemical and behavioral characteristics to the original 3xTg-AD mice. Furthermore, we introduced a gene-targeting vector into the ES cells and successfully obtained gene-targeted ES cells, which were then used to generate knockout mice for the targeted gene. These results suggest that the present methodology is effective for introducing an additional mutation into mice already harboring multiple mutated genes and/or a complex genetic background.  相似文献   

10.
Traditionally, knockout experiments are performed in ES cells derived from the 129 mouse strain, followed by backcrossing with the more robust C57BL/6 strain. C57BL/6-derived ES cells have only occasionally been used in this process. We compared C57BL/6- with 129-derived ES cells directly and reviewed the literature. We found that, although some steps are less efficient, the advantages of C57BL/6 mice more than compensate for these drawbacks.  相似文献   

11.
Typically, embryonic stem (ES) cells derived from 129 mouse substrains are used to generate genetically altered mouse models. Resulting chimeric mice were then usually converted to a C57BL/6 background, which takes at least a year, even in the case of speed congenics. In recent years, embryonic stem cells have been derived from various mouse strains. However, 129 ES cells are still widely used partially due to poor germline transmission of ES cells derived from other strains. Availability of highly germline-competent C57BL/6 ES cells would enormously facilitate generation of genetically altered mice in a pure C57BL/6 genetic background by eliminating backcrossing time, and thus significantly reducing associated costs and efforts. Here, we describe establishment of a C57BL/6 ES cell line (LK1) and compare its efficacy to a widely used 129SvJ ES cell line (GSI-1) in generating germline chimeras. In contrast to earlier studies, our data shows that highly germline-competent C57BL/6 ES cell lines can be derived using a simple approach, and thus support broader use of C57BL/6 ES cell lines for genetically engineered mouse models. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
You  Yun  Bersgtram  Rebecca  Klemm  Martina  Nelson  Heather  Jaenisch  Rudolf  Schimenti  John 《Mammalian genome》1998,9(3):232-234
We have previously reported a method for making nested deletion complexes in mice by irradiation of ES cells. The key to this technology is that F1 hybrid ES cells (called v17.2) of the genotype (BALB/cTa × 129/SvJae) retain germline colonizing ability after exposure to levels of ionizing radiation that induce chromosomal deletions. In an effort to identify other genotypes of ES cells that are suitable for this technology, the radiation sensitivity of the cell line v6.4, which is of the genotype (C57BL/6J × 129/SvJae), was investigated. After treatment with a range of radiation exposures, the developmental potential of these cells was assayed by injecting them into blastocysts to generate chimeric mice. These experiments showed that while cell lethality increased as the level of radiation increased, the surviving ES cells retained full totipotency at all exposure levels, up to 400 Rads. Because polymorphism between parental microsatellite alleles in the F1 hybrid ES cells is important for ascertaining the sizes of induced deletions, the 129/SvJ and 129/SvJae allele sizes of 48 microsatellite loci on chromosome (Chr) 17 were determined. This revealed a higher level of polymorphism between 129 and C57BL/6J on Chr 17. The radiation tolerance, high polymorphism between parental strains, and presence of the widely used C57BL/6J strain component make v6.4 ES cells an attractive cell line for generating radiation-induced chromosomal deletions. Received: 11 August 1997 / Accepted: 13 November 1997  相似文献   

13.
高效建立129/ter、C57BL/6J小鼠胚胎干细胞系的方法学探讨   总被引:11,自引:0,他引:11  
小鼠胚胎干细胞 (ES细胞 )是从小鼠囊胚内细胞团(ICM)分离出来的、在体外培养过程中可维持未分化状态、正常二倍体核型及无限增殖能力 ,具有多能性或全能性的细胞系[1~ 3 ] 。ES细胞广泛应用于克隆动物制作、转基因动物生产、动物医学模型建立、真核细胞基因表达与调控的研究、细胞分化机制的探索、人及哺乳动物基因功能的研究以及细胞、组织、和器官的修复与移植研究。胚胎干细胞的研究和应用已成为生命科学研究的热点和前沿领域之一[4~ 8] 。自第一株 12 9小鼠ES细胞系建立以来 ,人们在生物学和医学等多个领域进行了广泛深入的…  相似文献   

14.
Inbred ES lines, though useful for generating targeted mutations in mice, are used infrequently. To appreciate the relative efficiency of inbred ES lines, a C57BL/6 ES line was compared with 129 strain ES lines for effectiveness in chimera formation leading to the establishment of targeted mutations in mice. Data from a transgenic facility spanning 7 years were collected. C57BL/6 ES cells injected into Balb/c embryos results in lower coat color chimerism than do 129 ES cells injected into C57BL/6 embryos. Combined data indicate that five independent targeted C57BL/6 clones should be injected as compared to three independent 129 clones to generate enough chimeras to effectively test for germ-line transmission. Thus, although less efficient than 129 ES lines, the C57BL/6 ES line is a relatively competent line and useful for the routine generation of targeted mutations in mice on a defined genetic background.  相似文献   

15.
Vitamin D-binding protein (DBP) has been reported to contribute to innate immunity. To verify prior in vitro and cell-based observations supporting this role, we assessed the ability of a recently developed DBP-null mouse line to recruit neutrophils and macrophages to a site of chemical inflammation. The interrupted DBP allele had been generated by homologous recombination in 129X1/SvJ embryonic stem cells and these cells were subsequently used to generate a line of DBP(-/-) (null) mice. Initial studies revealed a marked defect in the ability of these DBP(-/-) mice to recruit cells to the peritoneum after localized thioglycolate injection. However, progressive outcrossing of the DBP(-/-) mice to the C57BL/6J strain, conducted to provide a uniform genetic background for comparison of DBP-null and control mice, resulted in a progressive increase in cell recruitment by the DBP(-/-) mice and a loss in their apparent recruitment defect when compared with the DPB wild-type controls. These data suggested that the observed recruitment phenotype initially attributed to the absence of DBP was not linked to the DBP locus, but instead reflected the underlying genetic composition of the 129X1/SvJ ES cells used for the initial DBP gene disruption. A profound cell recruitment defect was confirmed in the 129X1/SvJ mice by direct analysis. Each of three commonly used inbred lines was discovered to have a distinct level of cell recruitment to a uniform stimulus (C57BL/6J > BALB/c > CD1 > 129X1/SvJ). Thus, this study failed to support a unique role for DBP in cellular recruitment during a model inflammatory response. Instead, the data revealed a novel and profound defect of cell recruitment in 129X1/SvJ mice, the strain most commonly used for gene deletion studies.  相似文献   

16.
Apoptosis plays an important role during embryonic development. Apoptotic cell death is executed by caspases and can be regulated by the Bcl-2 family of genes. Ribonuclease protection assay was used to investigate the expression of selected apoptosis-related genes of the Bcl-2 family, pro-apoptotic Bax, Bad and anti-apoptotic Bcl-2, during differentiation of murine embryonic stem cells (ES) mediated by all-trans-retinoic acid. The mRNA expression of caspase 3, caspase 6 and certain pro-inflammatory cytokines was also investigated simultaneously. ES cells exposed to 1 microM all-trans-retinoic acid on day 8, 9 and 10 of differentiation revealed increased expression of Bax and Bad compared to the vehicle-treated cells. No effect on Bcl-2 mRNA was noted after all-trans-retinoic acid treatment. Increased mRNA expression of caspase 3 and caspase 6 in all-trans-retinoic acid-exposed ES cells suggested that caspases play an important role in retinoic acid-mediated apoptosis during ES differentiation. Increase in the expression of TNF alpha and macrophage migration inhibitory factor (MIF) was noted in retinoic acid-treated cells on day 14. Significant increase observed in interferon gamma inducing factor (IGIF/IL-18) mRNA expression in all-trans-retinoic acid-treated cells on day 14 and 17 did not translate to increased INF gamma expression. No change in the expression of other pro-inflammatory cytokines was noted with all-trans-retinoic acid treatment. The function of TNF alpha, IGIF/IL-18 and MIF in all-trans-retinoic acid-treated cells during ES differentiation and apoptosis is still speculatory. Results suggested that RA-mediated apoptosis during neural differentiation of ES cells involves up-regulation of caspase 3, caspase 6, Bad, and Bax.  相似文献   

17.
B6.129S7-Gtrosa26 (ROSA26) mice carry a LacZ-neo R insertion on Chromosome (Chr) 6, made by promoter trapping with AB1 129 ES cells. Female C57BL/6J Apc Min /+ (B6 Min/+) mice are very susceptible to the induction of mammary tumors after treatment with ethylnitrosourea (ENU). However, ENU-treated B6 mice carrying both Apc Min and ROSA26 are resistant to mammary tumor formation. Thus, ROSA26 mice carry a modifier of Min-induced mammary tumor susceptibility. We have previously mapped the modifier to a 4-cM interval of 129-derived DNA that also contains the ROSA26 insertion. Here we report additional evidence for the effect of the ROSA26 insertion on mammary tumor formation. To test the hypothesis that the resistance was due to a linked modifier locus, we utilized two approaches. We have derived and tested two lines of mice that are congenic for 129-derived DNA within the minimal modifier interval and show that they are as susceptible to mammary tumors as are B6 mice. Additionally, we analyzed a backcross population segregating for the insertion and show that mice carrying the insertion are more resistant to mammary tumor development than are mice not carrying the insertion. Thus, the resistance is not due to a 129-derived modifier allele, but must be due to the ROSA26 insertion. In addition, the effect of the ROSA26 insertion can be detected in a backcross population segregating for other mammary modifiers. Received: 29 December 2000 / Accepted: 4 April 2001  相似文献   

18.
Genealogy of the 129 inbred strains: 129/SvJ is a contaminated inbred strain   总被引:20,自引:0,他引:20  
The 129 mouse is the most widely used strain in gene targeting experiments. However, numerous substrains exist with demonstrable physiological differences. In this study a set of simple sequence length polymorphisms (SSLPs) was used to determine the relatedness of selected 129 substrains. 129/SvJ was significantly different from the other 129 substrains and is more accurately classified as a recombinant congenic strain (129cX/Sv), being derived from 129/Sv and an unknown strain. This mixed genetic background could complicate gene targeting experiments by reducing homologous recombination efficiency when constructs and ES cells are not derived from the same 129 substrain. Additionally, discrepancies due to different genetic backgrounds may arise when comparing phenotypes of genes targeted in different 129-derived ES cell lines. Received: 2 December 1996 / Accepted: 10 February 1997  相似文献   

19.
20.
B6.129S7-Gtrosa26 (B6.R26) mice carry a LacZ-neoR insertion on Chromosome (Chr) 6, made by promoter trapping with 129 ES cells. Female C57BL/6J Apc Min /+ (B6Min/+) mice are highly susceptible to intestinal tumors and to the induction of mammary tumors after treatment with ethylnitrosourea (ENU). However, B6.R26/+Min/+ females develop fewer mammary and intestinal tumors after ENU treatment than do B6 Min/+ mice. B6.R26/+ mice from two independently derived congenic lines show this modifier effect. Each of these congenic lines carries approximately 20 cM of 129-derived DNA flanking the insertion, raising the possibility that the resistance is due to a linked modifier locus. To further map the modifier locus, we have generated several lines of mice carrying different regions of the congenic interval. We have found that resistance to mammary and intestinal tumors in ENU-treated Min/+ mice maps to a minimum 4-cM interval that includes the ROSA26 LacZ-neoR insertion. Therefore, the resistance to tumor development is due to either the ROSA26 insertion or a very tightly linked modifier locus. Received: 10 May 2000 / Accepted: 25 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号