首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
An antibody response against a thymic-dependent Ag requires cognate recognition of the Ag by B and T cells. Functional T-B cell (T-B) interaction involves binding of Ag by B cell surface Ig, internalization and processing of Ag, expression of an Ag fragment in the context of Ia, binding of Ag/Ia by the TCR and binding of T cell-derived lymphokines by B cell lymphokine receptors. It is becoming increasingly evident that B and T cell accessory molecules also are involved in T-B interactions. To determine the role of accessory molecules in T-B collaboration, we have designed a system in which T-B interaction was artificially induced in the absence of carrier protein. TNP-modified, turkey gamma-globulin-specific, Th cells were allowed to form conjugates with TNP-specific B cells in the absence of hapten-carrier complex. Both B and T cells were induced to proliferate and B cells partially differentiated into antibody-secreting cells when B cells were cultured with TNP-modified but not unmodified T cells. The activation of B cells by TNP-modified T cells was not MHC restricted but was blocked by anti-Ia antibodies, suggesting a role for Ia distinct from Ag presentation. Furthermore, B cell proliferation was also inhibited by antibodies to L3T4 and LFA-1, suggesting a functional accessory role for these molecules in induction of B cell proliferation/differentiation.  相似文献   

2.
Previous work established that binding of the 11-5.2 anti-I-A(k) mAb, which recognizes the Ia.2 epitope on I-A(k) class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-A(k) mAbs that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-A(k) molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2-bearing subset of I-A(k) class II molecules is critically necessary for effective B cell-T cell interactions, especially at low Ag doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-A(k) class II molecules possessing a β-chain-tethered hen egg lysosome peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2(-) tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous Ag to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II conformer vital to the initiation of MHC class II-restricted B cell-T cell interactions.  相似文献   

3.
Our data demonstrate that the uptake of surface Ia into an intracellular compartment of B lymphoma or normal spleen cells is limited to about 20% after 2 to 3 h. The extent of internalization does not vary with several types of stimulation, including LPS, phorbol esters, anti-Ig-plus phorbol ester-stimulated EL-4 T cell supernatant, and Con A supernatant. Resting and activated B cells had similar rates of internalization. The rate and extent of uptake of surface Ia molecules into an intracellular compartment was monitored quantitatively through the use of a mAb radiolabeled with 125I. The internalization of Ia molecules was compared to that of transferrin receptor, a receptor that undergoes rapid internalization and recycling and accumulates in a intracellular pool that can be trapped by monensin. The internalization of Ia was not affected by monensin, although its synthetic pathway is disturbed by this drug. The potential use of internalized Ia for formation of T cell-triggering complexes of Ia and Ag fragments is not ruled out by these data, but it appears unlikely that internalization provides the major mechanism permitting Ia interaction with Ag.  相似文献   

4.
The interaction between the clonally selected TCR, the processed Ag peptide and the Ia molecule is not fully understood in molecular terms. Our study intended to delineate the residues of Ab alpha molecules that function as contact sites for Ag and for the TCR of a panel of T cells specific for the A chain of insulin in combination with mixed haplotype Ab alpha:Ak beta molecules. Multiple L cell transfectants expressing alpha,beta-heterodimers composed of wild-type A beta- and chimeric or mutant A alpha-chains served as antigen presenting cells. The recombinant A alpha-chains had been generated by an exchange of allelically hypervariable regions (ahv) or amino acids. The results point out a broad spectrum of b sequence requirements for the bovine insulin-specific activation of the various T cell populations. Activation of some T cells seemed quite permissive, requiring b-haplotype amino acids in any one of the three ahv, while others had strict requirements, demanding b-haplotype sequence in all three ahv. Our data stress the role of ahvII and especially ahvIII in T cell activation. Interestingly, single amino-acid substitutions in ahvII or ahvIII of Ak alpha were sufficient to bring up full stimulation potential for two T cell hybridomas. We also found that some ahv permutations influenced the Ag preference (beef insulin versus pig insulin) of some T cells. These data suggest a critical role for the three-dimensional structure of the complex formed by Ia and the processed Ag peptide. The stability of the trimolecular complex essential for T cell activation is envisioned as being the sum of the interactions between Ag/I-A, TCR/Ag, and TCR/I-A, each variable in strength and compensated for by the others.  相似文献   

5.
The ability of an adherent Ia+, interleukin 1+ (IL-1) tumor cell line (P388AD) to present turkey gamma-globulin (TGG) to primed T lymphocytes was demonstrated and compared with normal antigen-presenting cells (APC) found in mouse spleen. P388AD tumor cells presented TGG to long-term cultures of TGG-reactive T cells (LTTC) and to lymph node-derived T cells which were enriched on nylon wool columns and subsequently depleted of endogenous antigen-presenting cells with anti-Ia antisera and complement. MHC-restricted antigen presentation by P388AD was observed when long-term cultures of TGG-reactive T cells were used as the responding T-cell population. Furthermore, antisera directed against I-region determinants expressed on the P388AD tumor cells inhibited TGG-specific T-cell proliferation in a dose-related fashion, suggesting a functional role for the tumor cell-associated Ia molecules. The kinetics of antigen presentation to LTTC by P388AD were similar to the kinetics observed for splenic APC, although the magnitude of the proliferative response to LTTC to TGG was generally lower when antigen (Ag) was presented by the tumor cells compared to splenic antigen-presenting cells (APC). However, the magnitude of T-cell proliferation of immune lymph node (LN) T cells was comparable when Ag was presented on tumor cells or splenic APC. Several experiments suggested that Ag uptake and/or processing may be less effective in P388AD tumor cells as compared to normal splenic APC. A nonadherent Ia+, IL-1- tumor cell line (P388NA), which was isolated from the same parental tumor as P388AD, was also tested for the ability to present Ag to primed T lymphocytes and Ag-reactive LTTC. In contrast, to P388AD, the nonadherent tumor cell failed to present TGG under identical culture conditions even though Ia molecules were expressed on the tumor cells and Ag uptake had occurred. However, the defect in Ag presentation by P388NA could be corrected if an exogenous source of purified interleukin 1 was supplied to the cultures. A unique opportunity thus exists with both the P388AD and P388NA tumor cell lines to decipher some of the molecular interactions leading to T-cell proliferation during antigen presentation.  相似文献   

6.
In the course of studying Ia molecules from strain 2 and strain 13 guinea pig macrophages, with the intent of comparing them to B cell Ia molecules, it was observed that guinea pig alloserum prepared by cross-immunization of guinea pig lymphocyte Ag non-identical inbred guinea pigs immunoprecipitated not only conventional class I and class II molecules, but also a 98,000-Da molecule, termed gp98. Two different forms of the molecule were detected, indicating it is polymorphic. The genes encoding gp98 were shown not to be linked to the guinea pig lymphocyte Ag complex. The molecule gp98 was found on macrophages within populations of peritoneal exudate cells, resident peritoneal cells, bone marrow cells, and spleen. All gp98-bearing macrophages were also Ia-positive. However, only a subpopulation of macrophages bore gp98. The gp98 was not found on Ly-1 or Ig-bearing cells, indicating that B and T cells do not bear Ia. Thus, gp98 appears to be a highly immunogenic polymorphic macrophage-specific molecule that allows the characterization of guinea pig macrophage subsets.  相似文献   

7.
The ability of thyroid follicular epithelial cells (TFEC) to act as APC is linked to the expression of class II (Ia) molecules of the MHC. The cloned murine thyroid-derived epithelial cell line M.5 was used to demonstrate the potential effects of virus in the direct induction of Ia molecules on TFEC. Membrane binding and replication of reovirus type 1 in TFEC was demonstrated using fluorescein-labeled antireovirus antibody and fluorescence microscopy. One consequence of the interaction between reovirus and M.5 cells was the induction of Ia Ag and augmented class I molecule expression in M.5 cells. The levels of Ia expression at three days after reovirus binding were amplified 17.3-fold over controls and were 2-fold less than that seen upon treatment of M.5 cells with IFN-gamma. Supernatant transfer experiments showed that the induction of Ia expression was directly linked to the binding of virus to M.5 cells, and was not dependent upon virus replication or the presence of IFN. These results indicate that early events of reovirus binding or receptor internalization on TFEC initiate a signaling process which results in the induction of class II and augmentation of class I MHC protein levels on the cell surface.  相似文献   

8.
Lysis of cerebral vascular endothelial cells (EC) by CD4-positive, myelin basic protein-specific encephalitogenic T cell lines was investigated. Unstimulated EC were not lysed, but culture in the presence of murine rIFN-gamma resulted in the expression of class II MHC (Ia) molecules and the concomitant ability to function as effective target cells for lysis. The possible requirement for Ia molecules was further demonstrated by antibody-blocking experiments. Lysis of EC targets also required the presence of specific Ag (myelin basic protein); PPD-specific T cell lines also lysed the PPD-pulsed EC. In all cases, lysis was directly proportional to E:T ratios. In addition, continuous passage of T cell lines resulted in the concomitant loss of encephalitogenicity and ability to affect EC lysis, indicating a possible relationship between these two factors. These results demonstrate that CD4+ T cells interact with cerebral vascular EC. It is suggested that such interactions may be important in the pathogenesis of diseases involving migrations of these cells across the blood-brain barrier.  相似文献   

9.
A mathematical model describing the time-dependent events of antigen processing and presentation is utilized to quantitatively analyze the importance of newly synthesized Ia molecules as well as Ia molecules internalized from the cell surface in the formation of Ia-antigen complexes, the T cell receptor ligand. It has recently been shown that antigen presenting cells are not selective for the proteins they process and present. Therefore, we also investigate the ability of macrophages and B cells to process and present antigen in the presence of competing proteins often present in the extracellular environment. A set of criteria is formulated based upon experimental data to determine the validity of two model variations. We draw two major conclusions from our simulations. First, we determine that macrophages and B cells can present between 1-3 Ia-antigen complexes micron-2 for antigen concentrations in the range of 4-7 microM while in the presence of approximately 0-10 microM competing proteins or peptides. Second, we find it likely that antigen presenting cells, both B cells and macrophages, need to internalize Ia molecules from the cell surface in order for a sufficient number of Ia-antigen complexes to be presented. Binding of antigen to newly synthesized Ia alone does not, given experimentally reported values for Ia synthesis, allow sufficient Ia-antigen complex formation.  相似文献   

10.
To identify prostate cancer-associated Ags, tumor-reactive T lymphocytes were generated using iterative stimulations of PBMC from a prostate cancer patient with an autologous IFN-gamma-treated carcinoma cell line in the presence of IL-2. A CD8+ T cell line and TCR alphabeta+ T cell clone were isolated that secreted IFN-gamma and TNF-alpha in response to autologous prostate cancer cells but not to autologous fibroblasts or lymphoblastoid cells. However, these T cells recognized several normal and malignant prostate epithelial cell lines without evidence of shared classical HLA molecules. The T cell line and clone also recognized colon cancers, but not melanomas, sarcomas, or lymphomas, suggesting recognition of a shared epithelium-associated Ag presented by nonclassical MHC or MHC-like molecules. Although Ag recognition by T cells was inhibited by mAb against CD8 and the TCR complex (anti-TCR alphabeta, CD3, Vbeta12), it was not inhibited by mAb directed against MHC class Ia or MHC class II molecules. Neither target expression of CD1 molecules nor HLA-G correlated with T cell recognition, but beta2-microglobulin expression was essential. Ag expression was diminished by brefeldin A, lactacystin, and cycloheximide, but not by chloroquine, consistent with an endogenous/cytosolic Ag processed through the classical class I pathway. These results suggest that prostate cancer and colon cancer cells can process and present a shared peptidic Ag to TCR alphabeta+ T cells via a nonclassical MHC I-like molecule yet to be defined.  相似文献   

11.
To induce Ia molecules on the surface of murine keratinocytes (KC), healthy mice were treated daily with i.p. injections of rIFN-gamma at a dose of 50,000 U/day for 6 days. This resulted in strong Ia expression by KC as determined by immunofluorescence of epidermal sheets or cell suspensions with anti-class II mAb. To obtain a population of Ia-bearing KC devoid of Langerhans cells, a method of depleting Langerhans cells from such suspensions was developed. Although Ia+ KC were unable to stimulate allogeneic T cells in a primary epidermal cell-lymphocyte reaction (less than 5% control), they did induce a proliferative response in an allospecific T cell line. Ia+ KC were unable to present native peptide molecules to class II restricted, Ag-specific T cell hybridomas. However, Ia+ KC were able to present a peptide fragment of pigeon cytochrome c to a hybridoma, suggesting that although these cells cannot process native protein Ag, they can present antigenic peptides. Ia+ (but not Ia-) KC also served as targets for class II restricted cytolytic T cell clones. These data indicate that the Ia expressed by KC is a functional molecule, and that Ia+ KC can participate in some immunologic reactions.  相似文献   

12.
The cells recognize a bimolecular ligand composed of a self Ia molecule and a fragment of foreign Ag that has been processed by an APC. The effect of self proteins on the processing and presentation of foreign Ag was examined in order to ascertain the mechanisms for competition between foreign and self Ag. How this competition can be overcome to allow an efficient immune response was also examined. Normal mouse serum proteins (NMS) compete for the processing and presentation of the foreign Ag bovine RNase by APC. This competition could have occurred at any of three levels in the APC: 1) Ag uptake, 2) Ag processing, or 3) the binding of Ag to an Ia molecule. No competition for either the uptake or the processing of RNase by self proteins could be demonstrated. However, self peptides do compete with foreign Ag by binding directly to Ia molecules, as has been shown previously. Thus, the observed inhibition by NMS of Ag presentation occurred because of competition for binding to the Ia molecule. We hypothesized that during the generation of an immune response this competition is overcome by enhanced uptake of foreign Ag. To test this, we compared the ability of NMS to compete for the presentation of RNase when it entered the APC via fluid-phase pinocytosis or through receptor-mediated uptake via the mannose receptor. When the RNase entered the APC through the mannose receptor, the ability of NMS to compete was dramatically reduced. Thus, self proteins constitutively compete for the presentation of foreign Ag at the level of binding to an Ia molecule, and this competition can be overcome by receptor-mediated uptake of the Ag.  相似文献   

13.
IFN-gamma is an immunomodulatory agent which is known to induce or enhance the expression of class II histocompatibility Ag (Ia Ag) on many lymphoid cells and cell lines of diverse origin. However, we have observed that IFN-gamma did not induce the expression of Ia Ag on Ia- human T cell lines. Neither did IFN-gamma enhance the expression of Ia Ag on Ia+ T cells. However, IFN-gamma was able to enhance the expression of class I histocompatibility Ag (HLA-A,B,C Ag) on a number of the T cell lines tested. Experiments with 125I-labeled IFN-gamma showed a relatively small degree of specific binding to these T cell lines. More extensive studies on two of the T cell lines demonstrated 1000 and 2600 IFN-gamma binding receptor sites/cell and binding affinities of 4.0 X 10(-10) M and 7.3 X 10(-10) M. Thus, although IFN-gamma can bind to human T cell lines and enhance class I histocompatibility Ag on these cells, IFN-gamma alone does not appear to regulate expression of class II histocompatibility Ag on T cell lines.  相似文献   

14.
The recognition of antigen-presenting cells (APCs) by T helper (TH) cells occurs in an antigen (Ag)-specific, MHC-restricted manner. Recent evidence, however, suggests that other interaction molecules may also be involved in TH:APC interaction in addition to the T-cell receptor (Ti) and class II or la antigens. We chose, therefore, to examine the role of various interaction molecules (Ia, Ti, L3T4, and LFA-1) in Ag presentation using several TH clones with distinct recognition patterns (self-Ia, self-Ia/Ag, and allogenic Ia). We describe here the use of a rapid clustering assay to study the initial binding events that occur between TH cells and APCs of various types. In all combinations of TH cells and APCs, conjugate formation was both Ag-specific and MHC-restricted. Moreover, with one exception cell clustering was prevented by the addition of monoclonal antibodies (mAb) against either the T-cell receptor or class II MHC molecules. In contrast, mAb to L3T4 and LFA-1 generally failed to inhibit cluster formation even though T-cell proliferation was profoundly inhibited. The relative importance of these interaction molecules in conjugate formation appeared to depend on the APC type as well as on the T-cell clone used. The implications of these findings for the mechanisms of Ag presentation and T-cell activation are discussed.  相似文献   

15.
In this report we report the identification of novel molecular associations involving the MHC class II (Ia) Ag expressed on the surface of Ag-presenting B lymphocytes. Biosynthetically radiolabeled murine B cells were incubated for 2 h in the presence or absence of T lymphocytes before treatment with the cleavable cross-linking reagent dimethyl-3,3'-dithiobispropionimidate. Anti-Ia immunoprecipitates of solubilized cell extracts revealed novel cross-linked products of Mr 90,000 to 95,000 which, upon cleavage of the cross-linker, could in part be resolved into native Ia and other structures of approximately Mr 67,000. The detection of the cross-linked products was significantly enhanced in B cells that had been co-cultured with T lymphocytes, but not with other cell types, and co-culture with various monoclonal T cell lines resulted in different levels of enhancement. Detection of the 90- to 95-kDa cross-linked products appeared to be independent of the foreign Ag for which the T cells were specific and could be enhanced when either cell type was replaced by a plasma membrane fraction, indicating that it resulted from direct cell-cell contact. These results suggest that some proportion of the Ia glycoproteins expressed on the surface of B cells become associated with other structures of Mr 67,000 upon Ag-non-specific interactions between T and B lymphocytes.  相似文献   

16.
Several proteins that are anchored to the surface of T lymphocytes via a phosphatidylinositol (PI) moiety can initiate cell stimulation upon cross-linking. Inasmuch as these proteins do not traverse the plasma membrane, it is not clear how they are capable of signaling across the membrane. Herein we report two distinct sets of experiments that examine the consequence of cross-linking PI-anchored molecules on murine T cells. We first analyzed the fate of antibody cross-linked TAP (Ly-6A.2) and Thy-1 molecules on T-T hybrids. Using an assay to measure receptor-mediated endocytosis, an intracellular accumulation of 125I labeled anti-TAP and anti-Thy-1 mAb was documented that was specific and Ag dependent. The internalization of these molecules was confirmed by cytotoxicity assays using antibody-toxin conjugates, and electron microscopic studies. Although the PI-anchored proteins lack a cytoplasmic domain that is necessary for the internalization of many receptors, they nevertheless can be induced to enter the cell upon cross-linking. The rate of entry of cross-linked TAP and Thy-1 into cells was shown to be 10 and 2% per hour, respectively, which is considerably less than that observed for the transferrin receptor or TCR/CD3 complex. To assess whether the internalization of TAP and Thy-1 might be of importance in their ability to stimulate T cells, we attempted to cross-link these molecules under conditions where the mAb or its cross-linked complex can not enter the cell. We observed that anti-TAP and anti-Thy-1 mAb conjugated to a cell impermeant matrix fail to stimulate T cells. This loss of stimulatory activity was observed with multiple T-T hybridomas and mAb over a wide titration of antibody concentration and was independent of the mAb isotype. Results from experiments with anti-Ig cross-linking of the mAb-PI anchored protein complex suggested that the loss of T cell stimulation upon mAb immobilization is not simply due to an alteration in the degree of antibody cross-linking. These findings were generalized to three distinct PI-anchored proteins: TAP, Thy-1, and Ly6C on normal T cells. When the same cells were stimulated through the TCR/CD3 complex, only immobilized mAb are stimulatory. These results demonstrate a marked difference in the cross-linking requirements for stimulating T cells through PI-anchored molecules in contrast to the transmembrane TCR complex. Furthermore, these findings raise the possibility that molecular internalization of Ab-PI-anchored complexes may be necessary in signaling through these molecules.  相似文献   

17.
The generation of antibody secretory cells from resting B lymphocytes after immunization with most protein Ag requires B cell signaling by Ag, direct Th cell contact and lymphokines. Previous studies suggest that cell contact-mediated signals may be transduced by Ia after Ia binding by alpha beta TCR and/or CD4. Seemingly inconsistent with this concept are findings that cross-linking of Ia molecules on quiescent B cells leads to cAMP generation that is antagonistic for B cell mitogenesis. Here we show that ligand binding to IL-4 and Ag receptors on quiescent B cells induce transition of these cells into a competent state in which Ia molecules transduce signals via a distinct mechanism. This mechanism involves the tyrosine kinase-dependent activation of phospholipase C leading to Ca2+ mobilization from intracellular stores and the extracellular space. This competence, which is seen within 4 h of priming, is not simply a function of increased Ia expression by the B cell because the response can be induced by cross-linking of less than 5% of cell surface Ia molecules on primed cells. Finally, cross-linking of Ia molecules leads to more than fivefold greater increase in [Ca2+]i than is induced by membrane Ig ligation. These findings are consistent with alpha beta TCR/CD4 delivery via Ia of proliferative signals mediated by tyrosine kinase activation, phosphoinositide hydrolysis and Ca2+ mobilization.  相似文献   

18.
Immunodominance refers to the restricted peptide specificity of T cells that are detectable after an adaptive immune response. For CD4 T cells, many of the mechanisms used to explain this selectivity suggest that events related to Ag processing play a major role in determining a peptide's ability to recruit CD4 T cells. Implicit in these models is the prediction that the molecular context in which an antigenic peptide is contained will impact significantly on its immunodominance. In this study, we present evidence that the selectivity of CD4 T cell responses to peptides contained within protein Ags is not detectably influenced by the location of the peptide in a given protein or the primary sequence of the protein that bears the test peptide. We have used molecular approaches to change the location of peptides within complex protein Ags and to change the flanking sequences that border the peptide epitope to now include a protease site, and find that immunodominance or crypticity of a peptide observed in its native protein context is preserved. Collectively, these results suggest immunodominance of peptides contained in complex Ags is due to an intrinsic factor of the peptide, based upon the affinity of that peptide for MHC class II molecules. These findings are discussed with regard to implications for vaccine design.  相似文献   

19.
Aggregation (e.g., through cross-linkage) of cell surface molecules is in various biologic systems a necessary event in cellular activation. Examining the Ia molecule on B cells we found that aggregation is a function of the surface Ag mobility; the higher the fraction of immobile molecules on the plane of the membrane, the better Ia forms aggregates and patches. We identify two factors that control Ia mobility and aggregability. One factor is the M1s-1a gene product; the other factor is an Ia-reactive immunogenic peptide. Both factors increase Ia aggregability and reduce the MHC Ag mobility.  相似文献   

20.
The activation of proliferative T lymphocytes normally involves the simultaneous recognition of a particular foreign antigen and a particular Ia molecule on the surface of antigen-presenting cells, the phenomenon of major histocompatibility complex (MHC) restriction. An analysis of T cell clones specific for pigeon cytochrome c, from B10.A and B10.S(9R) strains of mice, revealed the unusual finding that several of the clones could respond to antigen in association with Ia molecules from either strain. Using these cross-reactive clones, we performed experiments which demonstrated that both the Ia molecule and the T cell receptor contribute to the specificity of antigen recognition; however, MHC-linked low responsiveness to tuna cytochrome c (an immune response gene defect) could not be attributed solely to the efficacy with which the Ia molecules associated with the antigen. These results imply that antigen and Ia molecules are not recognized independently, but must interact at least during the process of T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号