首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Khare SD  Wilcox KC  Gong P  Dokholyan NV 《Proteins》2005,61(3):617-632
Diverse point mutations in the enzyme Cu, Zn superoxide dismutase (SOD1) are linked to its aggregation in the familial form of the disease amyotrophic lateral sclerosis. The disease-associated mutations are known to destabilize the protein, but the structural basis of the aggregation of the destabilized protein and the structure of aggregates are not well understood. Here, we investigate in silico the sequence and structural determinants of SOD1 aggregation: (1) We identify sequence fragments in SOD1 that have a high aggregation propensity, using only the sequence of SOD1, and (2) we perform molecular dynamics simulations of the SOD1 dimer folding and misfolding. In both cases, we identify identical regions of the protein as having high propensity to form intermolecular interactions. These regions correspond to the N- and C-termini, and two crossover loops and two beta-strands in the Greek-key native fold of SOD1. Our results suggest that the high aggregation propensity of mutant SOD1 may result from a synergy of two factors: the presence of highly amyloidogenic sequence fragments ("hot spots"), and the presence of these fragments in regions of the protein that are structurally most likely to form intermolecular contacts under destabilizing conditions. Therefore, we postulate that the balance between the self-association of aggregation-prone sequences and the specific structural context of these sequences in the native state determines the aggregation propensity of proteins.  相似文献   

2.
Misfolding and aggregation of Cu, Zn Superoxide Dismutase (SOD1) is often found in amyotrophic lateral sclerosis (ALS) patients. The central apo SOD1 barrel was involved in protein maturation and pathological aggregation in ALS. In this work, we employed atomistic molecular dynamics (MD) simulations to study the conformational dynamics of SOD1barrel monomer in different concentrations of trifluoroethanol (TFE). We find concentration dependence unusual structural and dynamical features, characterized by the local unfolding of SOD1barrel. This partially unfolded structure is characterized by the exposure of hydrophobic core, is highly dynamic in nature, and is the precursor of aggregation seen in SOD1barrel. Our computational studies supports the hypothesis of the formation of aggregation ‘building blocks’ by means of local unfolding of apo monomer as the mechanism of SOD1 fibrillar aggregation. The non-monotonic TFE concentration dependence of protein conformational changes was explored through simulation studies. Our results suggest that altered protein conformation and dynamics within its structure may underlie the aggregation of SOD1 in ALS.  相似文献   

3.
Neurodegenerative diseases belong to a larger group of protein misfolding disorders, known as proteinopathies. There is increasing experimental evidence implicating prion-like mechanisms in many common neurodegenerative disorders, including Alzheimer disease, Parkinson disease, the tauopathies, and amyotrophic lateral sclerosis (ALS), all of which feature the aberrant misfolding and aggregation of specific proteins. The prion paradigm provides a mechanism by which a mutant or wild-type protein can dominate pathogenesis through the initiation of self-propagating protein misfolding. ALS, a lethal disease characterized by progressive degeneration of motor neurons is understood as a classical proteinopathy; the disease is typified by the formation of inclusions consisting of aggregated protein within and around motor neurons that can contribute to neurotoxicity. It is well established that misfolded/oxidized SOD1 protein is highly toxic to motor neurons and plays a prominent role in the pathology of ALS. Recent work has identified propagated protein misfolding properties in both mutant and wild-type SOD1, which may provide the molecular basis for the clinically observed contiguous spread of the disease through the neuroaxis. In this review we examine the current state of knowledge regarding the prion-like properties of SOD1 and comment on its proposed mechanisms of intercellular transmission.  相似文献   

4.
5.
Cu, Zn superoxide dismutase (SOD1) has been implicated in the familial form of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). It has been suggested that mutant mediated SOD1 misfolding/aggregation is an integral part of the pathology of ALS. We study the folding thermodynamics and kinetics of SOD1 using a hybrid molecular dynamics approach. We reproduce the experimentally observed SOD1 folding thermodynamics and find that the residues which contribute the most to SOD1 thermal stability are also crucial for apparent two-state folding kinetics. Surprisingly, we find that these residues are located on the surface of the protein and not in the hydrophobic core. Mutations in some of the identified residues are found in patients with the disease. We argue that the identified residues may play an important role in aggregation. To further characterize the folding of SOD1, we study the role of cysteine residues in folding and find that non-native disulfide bond formation may significantly alter SOD1 folding dynamics and aggregation propensity.  相似文献   

6.
Cu, Zn superoxide dismutase (SOD1) forms a crucial component of the cellular defence against oxidative stress. Zn-deficient wild-type and mutant human SOD1 have been implicated in the disease familial amyotrophic lateral sclerosis (FALS). We present here the crystal structures of holo and metal-deficient (apo) wild-type protein at 1.8A resolution. The P21 wild-type holo enzyme structure has nine independently refined dimers and these combine to form a "trimer of dimers" packing motif in each asymmetric unit. There is no significant asymmetry between the monomers in these dimers, in contrast to the subunit structures of the FALS G37R mutant of human SOD1 and in bovine Cu,Zn SOD. Metal-deficient apo SOD1 crystallizes with two dimers in the asymmetric unit and shows changes in the metal-binding sites and disorder in the Zn binding and electrostatic loops of one dimer, which is devoid of metals. The second dimer lacks Cu but has approximately 20% occupancy of the Zn site and remains structurally similar to wild-type SOD1. The apo protein forms a continuous, extended arrangement of beta-barrels stacked up along the short crystallographic b-axis, while perpendicular to this axis, the constituent beta-strands form a zig-zag array of filaments, the overall arrangement of which has a similarity to the common structure associated with amyloid-like fibrils.  相似文献   

7.
1. Amyotrophic lateral sclerosis (ALS) is a degenerative disorder characterized by selective damage to the neural system that mediates voluntary movement. Although the pathophysiologic process of ALS remains unknown, about 5 to 10% of cases are familial. According to genetic linkage studies, the familial ALS (FALS) gene has been mapped on chromosome 21 in some families and recent work identified some different missense mutations in the Cu/Zn superoxide dismutase gene in FALS families.2. We recently identified five mutations in six FALS families. The mutations identified in our FALS families are H46R, L84V, I104F, S134N, and V148I. The H46R mutation that locates in the active site of Cu/Zn SOD gene is associated with two Japanese families with very slow progression of ALS. On the other hand, the L84V mutation associated with a rapidly progressive loss of motor function with predominant lower motor neuron manifestations.3. In the family with the V148I, the phenotype of the patient varied very much among the affected members. One case had weakness of the lower extremities at first and died without bulbar paresis. The second case first noticed wasting of the upper limbs with bulbar symptoms, but the third had weakness of upper extremities without developing dysarthria nor dysphagia until death. These mutations account for 50% of all FALS families screened, although Cu/Zn SOD gene mutations are responsible for less than about 13–21% in the Western population.4. Our results indicate that the progression of disease with mutations of Cu/Zn SOD is well correlated with each mutation. The exact mechanism by which the abnormal Cu/Zn SOD molecules selectively affect the function of motor neurons is still unknown.  相似文献   

8.
Aggregation of Cu,Zn superoxide dismutase (SOD1) is implicated in amyotrophic lateral sclerosis. Glutathionylation and phosphorylation of SOD1 is omnipresent in the human body, even in healthy individuals, and has been shown to increase SOD1 dimer dissociation, which is the first step on the pathway toward SOD1 aggregation. We found that post-translational modification of SOD1, especially glutathionylation, promotes dimer dissociation. We discovered an intermediate state in the pathway to dissociation, a conformational change that involves a “loosening” of the β-barrels and a loss or shift of dimer interface interactions. In modified SOD1, this intermediate state is stabilized as compared to unmodified SOD1. The presence of post-translational modifications could explain the environmental factors involved in the speed of disease progression. Because post-translational modifications such as glutathionylation are often induced by oxidative stress, post-translational modification of SOD1 could be a factor in the occurrence of sporadic cases of amyotrophic lateral sclerosis, which represent 90% of all cases of the disease.  相似文献   

9.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of motor function and eventual death as a result of degeneration of motor neurons in the spinal cord and brain. The discovery of mutations in SOD1, the gene encoding the antioxidant enzyme Cu/Zn-superoxide dismutase (CuZnSOD), in a subset of ALS patients has led to new insight into the pathophysiology of ALS. Utilizing a novel adenovirus gene delivery system, our laboratory has developed a human cell culture model using chemically differentiated neuroblastoma cells to investigate how mutations in SOD1 lead to neuronal death. Expression of mutant SOD1 (G37R) resulted in a time and dose-related death of differentiated neuroblastoma cells. This cell death was inhibited by overexpression of the antioxidant enzyme manganese superoxide dismutase (MnSOD). These observations support the hypothesis that mutant SOD1-associated neuronal death is associated with alterations in oxidative stress, and since MnSOD is a mitochondrial enzyme, suggest that mitochondria play a key role in disease pathogenesis. Our findings in this model of inhibition of mutant SOD1-associated death by MnSOD represent an unique approach to explore the underlying mechanisms of mutant SOD1 cytotoxicity and can be used to identify potential therapeutic agents for further testing.  相似文献   

10.
Amyotrophic lateral sclerosis (ALS), a fatal adult-onset degenerative neuromuscular disorder with a poorly defined etiology, progresses in an orderly spatiotemporal manner from one or more foci within the nervous system, reminiscent of prion disease pathology. We have previously shown that misfolded mutant Cu/Zn superoxide dismutase (SOD1), mutation of which is associated with a subset of ALS cases, can induce endogenous wild-type SOD1 misfolding in the intracellular environment in a templating fashion similar to that of misfolded prion protein. Our recent observations further extend the prion paradigm of pathological SOD1 to help explain the intercellular transmission of disease along the neuroaxis. It has been shown that both mutant and misfolded wild-type SOD1 can traverse cell-to-cell either as protein aggregates that are released from dying cells and taken up by neighboring cells via macropinocytosis, or released to the extracellular environment on the surface of exosomes secreted from living cells. Furthermore, once propagation of misfolded wild-type SOD1 has been initiated in human cell culture, it continues over multiple passages of transfer and cell growth. Propagation and transmission of misfolded wild-type SOD1 is therefore a potential mechanism in the systematic progression of ALS pathology.  相似文献   

11.
Superoxide dismutases (SODs) are a group of important antioxidant defense enzymes. In this study, a putative extracellular Cu/Zn superoxide dismutase (ecCuZnSOD) complementary DNA was cloned and characterized from the whitefly, Bemisia tabaci. Quantitative polymerase chain reaction analysis showed that the expression level of Bt‐ecCuZnSOD was more than 10‐fold higher in the invasive Middle East Asia Minor 1 (MEAM1) than in the native Asia II 3 species of the B. tabaci species complex. After exposure to low temperature (4 °C), the expression of Bt‐ecCuZnSOD gene was significantly up‐regulated in MEAM1 but not in Asia II 3. Furthermore, the expression level of B. tabaci intracellular CuZnSOD (Bt‐icCuZnSOD), Bt‐ecCuZnSOD and mitochondrial MnSOD (Bt‐mMnSOD) was compared after transferring MEAM1 and Asia II 3 whiteflies from favorable (cotton) to unfavorable host plants (tobacco). On cotton, both CuZnSOD genes were expressed at a higher level in MEAM1 compared with Asia II 3. Interestingly, after transferring onto tobacco, the expression of Bt‐ecCuZnSOD was significantly induced in Asia II 3 but not in MEAM1. On the other hand, while Bt‐mMnSOD was expressed equally in both species on cotton, Bt‐mMnSOD messenger RNA was up‐regulated in MEAM1 on tobacco. Consistently, enzymatic activity assays of CuZnSOD and MnSOD demonstrated that CuZnSOD might play an important protective role against oxidative stress in Asia II 3, whereas MnSOD activation was critical for MEAM1 whiteflies during host adaptation. Taken together, our results suggest that the successful invasion of MEAM1 is correlated with its constitutive high activity of CuZnSOD and inducible expression of MnSOD under stress conditions.  相似文献   

12.
Misfolding of mutant Cu/Zn‐superoxide dismutase (SOD1) is a pathological hallmark in a familial form of amyotrophic lateral sclerosis. Pathogenic mutations have been proposed to monomerize SOD1 normally adopting a homodimeric configuration and then trigger abnormal oligomerization of SOD1 proteins. Despite this, a misfolded conformation of SOD1 leading to the oligomerization at physiological conditions still remains ambiguous. Here, we show that, around the body temperature (~37°C), mutant SOD1 maintains a dimeric configuration but lacks most of its secondary structures. Also, such an abnormal SOD1 dimer with significant structural disorder was prone to irreversibly forming the oligomers crosslinked via disulfide bonds. The disulfide‐crosslinked oligomers of SOD1 were detected in the spinal cords of the diseased mice expressing mutant SOD1. We hence propose an alternative pathway of mutant SOD1 misfolding that is responsible for oligomerization in the pathologies of the disease.  相似文献   

13.
Mutations in human copper zinc superoxide dismutase (hSOD) that are associated with amyotrophic lateral sclerosis (ALS) have been proposed to destabilize the protein and thereby enhance toxic protein aggregation. In previous studies, denaturation of metallated (holo) hSODs was found to be irreversible, and complicated by the formation of intermolecular disulfide bonds. Here, ALS-associated mutations (E100G, G93A, G85R and A4V) are introduced into a pseudo wild-type background containing no free cysteine residues. The guanidinium chloride-induced denaturation of the holo proteins is generally found to be highly reversible (except for A4V, which tended to aggregate), enabling quantitative analysis of the effects of the mutations on protein stability. Denaturation and renaturation curves were monitored by tryptophan fluorescence, circular dichroism, enzyme activity, chemical cross-linking and analytical sedimentation, as a function of equilibration time and protein concentration. There is strong kinetic hysteresis, with curves requiring exceptionally long times (many days for pseudo wild-type) to reach equilibrium, and evidence for the formation of kinetic and equilibrium intermediate(s), which are more highly populated at lower protein concentrations. The effects of metal dissociation were included in the data fitting. The full protein concentration dependence is best described using a three-state model involving metallated native dimer, metallated monomeric intermediate and unfolded monomers with no bound metals; however, at high protein concentrations the unfolding approaches a two-state transition with metal binding to both the native dimers and unfolded monomers. We show that the E100G, G93A and G85R mutations decrease overall protein stability, largely by decreasing monomer stability with little effect on dimer dissociation. Comparison of the chemical denaturation data with ALS disease characteristics suggests that aggregation of some mutant hSOD may occur through increased population of partially folded states that are less stable than the monomeric intermediate and accessed from the destabilized holo protein.  相似文献   

14.
Xia XG  Zhou H  Zhou S  Yu Y  Wu R  Xu Z 《Journal of neurochemistry》2005,92(2):362-367
Amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease) is a neurodegenerative disease characterized by motor neuron degeneration, paralysis and death. One cause of this disease is mutations in the Cu,Zn superoxide dismutase (SOD1) gene. As mutant SOD1 acquires a toxic property that kills motor neurons, by reducing the mutant protein the disease progression may be slowed or prevented. While mutant SOD1 is toxic, the wild-type SOD1 is indispensable for motor neuron health. Therefore, the ideal therapeutic strategy would be to inhibit selectively the mutant protein expression. Previously we have demonstrated that RNA interference (RNAi) can selectively inhibit some mutant SOD1 expression. However, more than 100 SOD1 mutants can cause ALS and all mutants cannot be inhibited selectively by RNAi. To overcome this obstacle, we have designed a replacement RNAi strategy. Using this strategy, all mutants and wild-type genes are inhibited by RNAi. The wild-type SOD1 function is then replaced by designed wild-type SOD1 genes that are resistant to the RNAi. Here we demonstrate the concept of this strategy.  相似文献   

15.
SH-SY5Y cells transfected with the enzymatically inactive Cu,Zn superoxide dismutase mutant H46R were more resistant to S-nitrosoglutathione (GSNO)-induced apoptosis. Cytochrome c release from mitochondria, caspase 3 activation, p53 up-regulation, p21 cleavage and Bcl-2 modulation, all involved in the apoptotic process, were significantly less altered with respect to untransfected cells. The H46R resistance to NO was associated with a higher content of reduced glutathione (GSH) and was abolished by blockage of glutathione synthesis. On the other hand, H46R cells were as sensitive as SH-SY5Y cells to puromycin-induced apoptosis; furthermore, they were more susceptible to apoptosis elicited by the superoxide-generating drug paraquat and to cell necrosis provoked by t-butyl hydroperoxide. These results confirm that the level of superoxide dismutase activity is fundamental for protecting cells against oxygen free radical challenge. Its impairment is not detrimental to cells exposed to NO, as long as the overall reducing power represented by GSH is assured. These results are relevant to explain a milder progression of the familial amyotrophic lateral sclerosis disease when associated with the H46R mutation.  相似文献   

16.
Cu/Zn-superoxide dismutase (SOD1) is present in the cytosol, nucleus, peroxisomes and mitochondrial intermembrane space of human cells. More than 114 variants of human SOD1 have been linked to familial amyotrophic lateral sclerosis (ALS), which is also known as Lou Gehrig's disease. Although the ultimate mechanisms underlying SOD1-mediated cytotoxicity are largely unknown, SOD1 aggregates have been strongly implicated as a common feature in ALS. This study examined the mechanism for the formation of SOD1 aggregates in vitro as well as the nature of its cytotoxicity. The aggregation propensity of SOD1 species was investigated using techniques ranging from circular dichroism spectroscopy to fluorescence dye binding methods, as well as electron microscopic imaging. The aggregation of SOD1 appears to be related to its structural instability. The demetallated (apo)-SOD1 and aggregated SOD1 species, with structurally disordered regions, readily undergo aggregation in the presence of lipid molecules, whereas metallated (holo)-SOD1 does not. The majority of aggregated SOD1s that are induced by lipid molecules have an amorphous morphology and exhibit significant cytotoxicity. The lipid binding propensity of SOD1 was found to be closely related to the changes in surface hydrophobicity of the proteins, even at very low levels, which induced further binding and assembly with lipid molecules. These findings suggest that lipid molecules induce SOD1 aggregation under physiological conditions and exert cytotoxicity, and might provide a possible mechanism for the pathogenesis of ALS.  相似文献   

17.
Calcineurin is a serine/threonine phosphatase involved in a wide range of cellular responses to calcium mobilizing signals. Previous evidence supports the notion of the existence of a redox regulation of this enzyme, which might be relevant for neurodegenerative processes, where an imbalance between generation and removal of reactive oxygen species could occur. In a recent work, we have observed that calcineurin activity is depressed in two models for familial amyotrophic lateral sclerosis (FALS) associated with mutations of the antioxidant enzyme Cu,Zn superoxide dismutase (SOD1), namely in neuroblastoma cells expressing either SOD1 mutant G93A or mutant H46R and in brain areas from G93A transgenic mice. In this work we report that while wild-type SOD1 has a protective effect, calcineurin is oxidatively inactivated by mutant SOD1s in vitro; this inactivation is mediated by reactive oxygen species and can be reverted by addition of reducing agents. Furthermore, we show that calcineurin is sensitive to oxidation only when it is in an 'open', calcium-activated conformation, and that G93A-SOD1 must have its redox-active copper site available to substrates in order to exert its pro-oxidant properties on calcineurin. These findings demonstrate that both wild-type and mutant SOD1s can interfere directly with calcineurin activity and further support the possibility of a relevant role for calcineurin-regulated biochemical pathways in the pathogenesis of FALS.  相似文献   

18.
19.
This article utilized “protein charge ladders”—chemical derivatives of proteins with similar structure, but systematically altered net charge—to quantify how missense mutations that cause amyotrophic lateral sclerosis (ALS) affect the net negative charge (Z) of superoxide dismutase-1 (SOD1) as a function of subcellular pH and Zn2+ stoichiometry. Capillary electrophoresis revealed that the net charge of ALS-variant SOD1 can be different in sign and in magnitude—by up to 7.4 units per dimer at lysosomal pH—than values predicted from standard pKa values of amino acids and formal oxidation states of metal ions. At pH 7.4, the G85R, D90A, and G93R substitutions diminished the net negative charge of dimeric SOD1 by up to +2.29 units more than predicted; E100K lowered net charge by less than predicted. The binding of a single Zn2+ to mutant SOD1 lowered its net charge by an additional +2.33 ± 0.01 to +3.18 ± 0.02 units, however, each protein regulated net charge when binding a second, third, or fourth Zn2+Z < 0.44 ± 0.07 per additional Zn2+). Both metalated and apo-SOD1 regulated net charge across subcellular pH, without inverting from negative to positive at the theoretical pI. Differential scanning calorimetry, hydrogen-deuterium exchange, and inductively coupled plasma mass spectrometry confirmed that the structure, stability, and metal content of mutant proteins were not significantly affected by lysine acetylation. Measured values of net charge should be used when correlating the biophysical properties of a specific ALS-variant SOD1 protein with its observed aggregation propensity or clinical phenotype.  相似文献   

20.
The p62/sequestosome 1 protein has been identified as a component of pathological protein inclusions in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). P62 has also been implicated in autophagy, a process of mass degradation of intracellular proteins and organelles. Autophagy is a critical pathway for degrading misfolded and/or damaged proteins, including the copper-zinc superoxide dismutase (SOD1) mutants linked to familial ALS. We previously reported that p62 interacted with ALS mutants of SOD1 and that the ubiquitin-association domain of p62 was dispensable for the interaction. In this study, we identified two distinct regions of p62 that were essential to its binding to mutant SOD1: the N-terminal Phox and Bem1 (PB1) domain (residues 1–104) and a separate internal region (residues 178–224) termed here as SOD1 mutant interaction region (SMIR). The PB1 domain is required for appropriate oligomeric status of p62 and the SMIR is the actual region interacting with mutant SOD1. Within the SMIR, the conserved W184, H190 and positively charged R183, R186, K187, and K189 residues are critical to the p62–mutant SOD1 interaction as substitution of these residues with alanine resulted in significantly abolished binding. In addition, SMIR and the p62 sequence responsible for the interaction with LC3, a protein essential for autophagy activation, are independent of each other. In cells lacking p62, the existence of mutant SOD1 in acidic autolysosomes decreased, suggesting that p62 can function as an adaptor between mutant SOD1 and the autophagy machinery. This study provides a novel molecular mechanism by which mutant SOD1 can be recognized by p62 in an ubiquitin-independent fashion and targeted for the autophagy–lysosome degradation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号