首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reproducible and efficient transformation system has been developed for maize that is based on direct DNA uptake into embryogenic protoplasts and regeneration of fertile plants from protoplast-derived transgenic callus tissues. Plasmid DNA, containing the -glucuronidase (GUS) gene, under the control of the doubled enhancer element (the –208 to –46 bp upstream fragment) from CaMV 35S promoter, linked to the truncated (up to –389 bp from ATG) promoter of wheat, -amylase gene was introduced into protoplasts from suspension culture of HE/89 genotype. The constructed transformation vectors carried either the neomycin phosphotransferase (NPTII) or phosphinothricin acetyltransferase (PAT) gene as selective marker. The applied DNA uptake protocol has resulted at least in 10–20 resistant calli, or GUS-expressing colonies after treatment of 106 protoplasts. Vital GUS staining of microcalli has made possible the shoot regeneration from the GUS-stained tissues. 80–90% of kanamycin or PPT resistant calli showed GUS activity, and transgenic plants were regenerated from more than 140 clones. Both Southern hybridization and PCR analysis showed the presence of introduced foreign genes in the genomic DNA of the transformants. The chimeric promoter, composed of a tissue specific monocot promoter, and the viral enhancer element specified similar expression pattern in maize plants, as it was determined by the full CaMV 35S promoter in dicot and other monocot plants. The highest GUS specific activity was found in older leaves with progressively less activity in young leaves, stem and root. Histochemical localization of GUS revealed promoter function in leaf epidermis, mesophyll and vascular bundles, in the cortex and vascular cylinder of the root. In roots, the meristematic tip region and vascular tissues stained intensively. Selected transformants were grown up to maturity, and second-generation seedlings with segregation for GUS activity were obtained after outcrossing. The GUS-expressing segregants carried also the NPTII gene as shown by Southern hybridization.  相似文献   

2.
In Arabidopsis tissues, the pool of tubulin protein is provided by the expression of multiple -tubulin and -tubulin genes. Previous evidence suggested that the TUA2 -tubulin gene was expressed in all organs of mature plants. We now report a more detailed analysis of TUA2 expression during plant development. Chimeric genes containing TUA2 5-flanking DNA fused to the -glucuronidase (GUS) coding region were used to create transgenic Arabidopsis plants. Second-generation progeny of regenerated plants were analyzed by histochemical assay to localize GUS expression. GUS activity was seen throughout plant development and in nearly all tissues. The blue product of GUS activity accumulated to the highest levels in tissues with actively dividing and elongating cells. GUS activity was not detected in a few plant tissues, suggesting that, though widely expressed, the TUA2 promoter is not constitutively active.  相似文献   

3.
Summary The regulation in tobacco of the rolB and rolC promoters of Agrobacterium rhizogenes pRi 1855 TL-DNA was studied by using the -glucuronidase (GUS) reporter system in transgenic plants. A 20- to 100-fold increase of GUS activity was selectively induced by auxin in rolB-GUS transformed mesophyll protoplasts, whereas this auxin-dependent increase was only 5-fold in rolC-GUS protoplasts. Moreover, both gene fusions exhibited similar tissue-specific expression in aerial parts but different patterns in roots. The spatial pattern of rolBGUS expression could be strongly modified by the addition of exogenous auxin, further suggesting that auxin plays a central role in the regulation of the rolB promoter in tobacco. The tissue-specific and auxin-dependent regulation of the rolB promoter is discussed in relation to the effects of the rolB gene on rhizogenesis and on cellular responses to auxin.Abbreviations BA benzoic acid - 6-BAP benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - GUS -glucuronidase - 2,4,5-T 2,4,5,-trichlorophenoxyacetic acid - 2,4,6-T 2,4,6-trichlorophenoxyacetic acid - IAA indoleacetic acid - NAA naphthaleneacetic acid - MU 4-methyl umbelliferone - 35S CaMV cauliflower mosaic virus 35S (promoter) - TCA trichloroacetic acid - X-Glu 5-bromo-4chloro-3-indolyl -d-glucuronic acid  相似文献   

4.
The timing of excision of maize transposable element Ac was studied using visual histochemical assay based on Ac excision restoring activity of -glucuronidase (GUS). The Solanum tuberosum L. cv. Bintje was used for Agrobacterium-mediated transformation with pTT230 plasmid harbouring Ac-interrupted gus A gene and npt II gene as a selectable marker gene. Twenty-eight out of 72 kanamycin resistant calli did not express any GUS activity, 31 calli showed partial GUS expression and 13 out of assayed calli revealed strong expression of gus A gene. Plants were regenerated from calli without and/or with partial expression of gus A gene. The regenerated transformants which did not express GUS during the callus phase often contained many small GUS expressing spots on leaves. A phenotypic selection assay for excision of Ac has been also used. This non-detectable excision of Ac in callus tissue could be followed by a "late" timing excision during leaf development. After transformation with pTT224 plasmid harbouring Ac-interrupted hpt II gene and npt II gene transgenic calli containing Ac within the hygromycin resistance gene were derived and hygromycin sensitive plants were regenerated from them. Protoplasts isolated from leaves of transgenic regenerated plants were selected on hygromycin. Hygromycin resistant minicalli showed to harbour multiple copies of Ac and mark out low uniqueness of integration sites.  相似文献   

5.
The expression of the auxin-inducible Nt103-1 gene of tobacco was studied in Arabidopsis thaliana. For this purpose we introduced a gene fusion between the promoter of the gene and the -glucuronidase reporter gene (GUS) into Arabidopsis thaliana. The expression and location of GUS activity were studied histochemically in time and after incubation of seedlings on medium containing auxins or other compounds. The auxins 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-acetic acid (IAA), and 1-naphthylacetic acid (1-NAA) were able to induce GUS activity in the root tips of transgenic seedlings. The auxin transport inhibitor 2,3,5-triiodobenzoic acid was able to induce GUS activity not only in the root tip, but also in other parts of the root. Induction by the inactive auxin analog 3,5-dichlorophenoxyacetic acid was much weaker. Compounds like glutathione and the heavy metal CuSO4 were weak inducers. GUS activity observed after induction by glutathione was located in the transition zone. Salicylic acid and compounds increasing the concentration of hydrogen peroxide in the cell were also very well able to induce GUS activity in the roots. The possible involvement of hydrogen peroxide as a second messenger in the pathway leading to the induction of the Nt103-1 promoter is discussed.  相似文献   

6.
Globulins are the most abundant seed storage proteins in cotton and, therefore, their regulatory sequences could potentially provide a good source of seed-specific promoters. We isolated the putative promoter region of cotton -globulin B gene by gene walking using the primers designed from a cotton staged embryo cDNA clone. PCR amplified fragment of 1108 bp upstream sequences was fused to gusA gene in the binary vector pBI101.3 to create the test construct. This was used to study the expression pattern of the putative promoter region in transgenic cotton, Arabidopsis, and tobacco. Histochemical GUS analysis revealed that the promoter began to express during the torpedo stage of seed development in tobacco and Arabidopsis, and during cotyledon expansion stage in cotton. The activity quickly increased until embryo maturation in all three species. Fluorometric GUS analysis showed that the promoter expression started at 12 and 15 dpa in tobacco and cotton, respectively, and increased through seed maturation. The strength of the promoter expression, as reflected by average GUS activity in the seeds from primary transgenic plants, was vastly different amongst the three species tested. In Arabidopsis, the activity was 16.7% and in tobacco it was less than 1% of the levels detected in cotton seeds. In germinating seedlings of tobacco and Arabidopsis, GUS activity diminished until it was completely absent 10 days post imbibition. In addition, absence of detectable level of GUS expression in stem, leaf, root, pollen, and floral bud of transgenic cotton confirmed that the promoter is highly seed-specific. Analysis of GUS activity at individual seed level in cotton showed a gene dose effect reflecting their homozygous or hemizygous status. Our results show that this promoter is highly tissue-specific and it can be used to control transgene expression in dicot seeds.  相似文献   

7.
Excision of a DNA segment can occur in Arabidopsis thaliana by reciprocal recombination between two specific recombination sites (RSs) when the recombinase gene (R) from Zygosaccharomyces rouxii is expressed in the plant. To monitor recombination events, we generated several lines of transgenic Arabidopsis plants that carried a cryptic -glucuronidase (GUS) reporter gene which was designed in such a way that expression of the reporter gene could be induced by R gene-mediated recombination. We also made several transgenic lines with an R gene linked to the 35S promoter of cauliflower mosaic virus. Each transgenic line carrying the cryptic reporter gene was crossed with each line carrying the R gene. Activity of GUS in F1 and F2 progeny was examined histochemically and recombination between two RSs was analyzed by Southern blotting and the polymerase chain reaction. In seedlings and plantlets of F1 progeny and most of the F2 progeny, a variety of patterns of activity of GUS, including sectorial chimerism in leaves, was observed. A small percentage of F2 individuals exhibited GUS activity in the entire plant. This pattern of expression was ascribed to germinal recombination in the F1 generation on the basis of an analysis of DNA structure by Southern blotting. These results indicate that R gene-mediated recombination can be induced in both somatic and germ cells of A. thaliana by cross-pollination of parental transgenic lines.  相似文献   

8.
9.
Mary E. Rumpho  Fred D. Sack 《Planta》1989,179(2):137-147
The usefulness of 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS) for in-situ studies of the chloroplast phosphate translocator was evaluated by fluorescence microscopy and radiolabeling of spinach (Spinacia oleracea L.) (C3 plant) and maize (Zea mays L.) (C4 plant) chloroplasts. In maize mesophyll and bundle-sheath chloroplasts and in spinach chloroplasts that were either intact, broken or swollen, DIDS fluorescence was only associated with the chloroplast envelope. Intact chloroplasts often had fluorescent patches corresponding to concave regions of the chloroplast which we assume to be regions enriched in DIDS-binding sites.Incubation of intact or broken spinach chloroplasts or maize mesophyll chloroplasts with [3H2]DIDS resulted in the labeling of a single polypeptide (relative molecular mass, Mr, 30 kDa) in the envelope fraction, in each case. Label in the stromal fraction was not detected when intact chloroplasts were incubated with [3H2]DIDS. However, when broken chloroplasts were incubated with [3H2]DIDS, several polypeptides of various molecular masses were labeled, but not the 30×31-kDa polypeptide. In thylakoid fractions from both broken and intact chloroplasts, a single 30×31-kDa polypeptide was labeled inconsistently. When a mixture of intact maize mesophyll and bundle-sheath chloroplasts was labeled with [3H2]DIDS, extracts of whole chloroplasts displayed radioactivity only in the 30×31-kDa band.We conclude that DIDS is a valuable probe for the in-situ identification and characterization of the 30-kDa protein — the presumptive phosphate translocator — in C3 and C4 chloroplasts since DIDS (1) does not penetrate the inner membrane of the envelope of intact chloroplasts and, therefore, (2) does not bind internal sites in intact chloroplasts, and (3) only binds the 30-kDa protein in the inner membrane of the envelope.Abbreviations CBB Coomassie brilliant blue - DIC differential interference contrast optics - DIDS 4,4-diisothiocyanatostilbene-2,2-disulfonic acid - [3H2]DIDS 1,2-ditritio-1,2-(2,2-disulfo-4,4-diisothiocyano)diphenylethane - kDa kilodalton - Mr relative molecular mass - PGA 3-phosphoglycerate - Pitranslocator phosphate translocator - SDS sodium dodecyl sulfate  相似文献   

10.
For several models expressing theuidA orgus reporter gene with or without a presequence for mitochondrial targeting, we have demonstrated that the compartmentation of -glucuronidase (E.C. 3.2.1.31) activity was not in agreement within situ localization of the diX-indigo microcrystals generated by the cytoenzymological GUS assay. These crystals were generally associated with the various cytomembranes and lipid inclusions. Experiments with purified -glucuronidase or withgus-expressing bacteria incubated with 5-bromo-4-chloro-3-indolyl--d-glucuronide and maize oil-phosphate buffer emulsion indicated that the intermediate products resulting from the GUS assay actively diffused and crystallized preferentially in association with lipids, sometimes far from the site of enzyme activity. This phenomenon could not be suppressed by the addition of potassium ferricyanide in the incubation medium. These findings are discussed with regard to previously reported biochemical and histochemical data on animal tissues, and focus on the necessity for caution in studies of tissue-specific gene expression using the GUS assay, particularly for lipid-rich plant models.  相似文献   

11.
In higher plants, the root-shoot axis established during embryogenesis is extended and modified by the development of primary and lateral apical meristems. While the structure of several shoot apical meristems has been deduced by combining histological studies with clonal analysis, the application of this approach to root apical meristems has been limited by a lack of visible genetic markers. We have tested the feasibility of using a synthetic gene consisting of the maize transposable elementActivator (Ac) inserted between a 35S CaMV promoter and the coding region of a -glucuronidase (GUS) reporter gene as a means of marking cell lineages in roots. The GUS gene was activated in individual cells byAc excision, and the resulting sectors of GUS-expressing cells were detected with the histochemical stain X-Gluc. Sectors in lateral roots originated from bothAc excision in meristematic cells and from parent root sectors that bisect the founder cell population for the lateral root initial. Analysis of root tip sectors confirmed that the root cap, and root proper have separate initials. Large sectors in the body of the lateral root encompassed both cortex and vascular tissues. The number of primary initial cells predicted from the size and arrangement of the sectors observed ranged from two to four and appeared to vary between roots. We conclude that transposon-based clonal analysis using GUS expression as a genetic marker is an effective approach for deducing the functional organization of root apical meristems.  相似文献   

12.
FLP/FRT-mediated site-specific recombination was studied with a recombination-reporter gene system which allows visualization of -glucuronidase (GUS) expression after site-specific excisional activation of a silent gusA gene. This system was used for characterization of the functional activity of the Saccharomyces cerevisiae native FLP recombinase driven by the cauliflower mosaic virus (CaMV) 35s promoter [linked to the tobacco mosaic virus (TMV) omega translational leader] in mediating site-specific recombination of chromosomal FRT sites in tobacco FLP x FRT-reporter hybrids. Six hybrids were generated from crosses of lines containing either a stably integrated recombination-reporter or a FLP-expression construct. The activated gusA phenotype was specific to hybrid progenies and was not observed in either parental plants or their selfed progenies. Recombination efficiency in whole seedlings was estimated by the percent of radioactivity on a Southern blot which was incorporated into the recombined DNA product. Estimated efficiency mean values for the six crosses ranged from 5.2 to 52.0%. Histochemical analysis in hybrid plants visualized GUS activity with variable chimeric patterns and intensities. Recombination efficiency and GUS expression varied both among and within crosses, while higher recombination efficiency coincided with larger and more intense patterns of GUS activity. These data suggest that recombination is induced randomly during somatic developmental stages and that the pattern and intensity generated in a given plant are affected by factors imposing varibility not only between but also within crosses. Additionally, while recombination in a population of FLP/FRT hybrids may occur in all plants, recombination efficiency may still be low in any given plant. The activity of the native, as compared to a modified, FLP (Kilby et al. 1995) in the activation of transgenic traits in tobacco is discussed.  相似文献   

13.
C4 plants have two carboxylases which function in photosynthesis. One, phosphoenolpyruvate carboxylase (PEPC) is localized in mesophyll cells, and the other, ribulose bisphosphate carboxylase (RuBPC) is found in bundle sheath cells. In contrast, C3 plants have only one photosynthetic carboxylase, RuBPC, which is localized in mesophyll cells. The expression of PEPC in C3 mesophyll cells is quite low relative to PEPC expression in C4 mesophyll cells. Two chimeric genes have been constructed consisting of the structural gene encoding β-glucuronidase (GUS) controlled by two promoters from C4 (maize) photosynthetic genes: (i) the PEPC gene (pepc) and (ii) the small subunit of RuBPC (rbcS). These constructs were introduced into a C3 cereal, rice. Both chimeric genes were expressed almost exclusively in mesophyll cells in the leaf blades and leaf sheaths at high levels, and no or very little activity was observed in other cells. The expression of both genes was also regulated by light. These observations indicate that the regulation systems which direct cell-specific and light-inducible expression of pepc and rbcS in C4 plants are also present in C3 plants. Nevertheless, expression of endogenous pepc in C3 plants is very low in C3 mesophyll cells, and the cell specificity of rbcS expression in C3 plants differs from that in C4 plants. Rice nuclear extracts were assayed for DNA-binding protein(s) which interact with a cis-regulatory element in the pepc promoter. Gel-retardation assays indicate that a nuclear protein with similar DNA-binding specificity to a maize nuclear protein is present in rice. The possibility that differences in pepc expression in a C3 plant (rice) and C4 plant (maize) may be the result of changes in cis-acting elements between pepc in rice and maize is discussed. It also appears that differences in the cellular localization of rbcS expression are probably due to changes in a trans-acting factor(s) required for rbcS expression.  相似文献   

14.
To evaluate and characterize the stability of traits transferred viaAgrobacterium transformation, foreign gene expression must be examined in sexually derived progeny. The objective of this study was to analyze three transgenic peanut plants, 1-10, 12-1, and 17-1, for the inheritance and expression of their foreign genes. Segregation ratios for the introduced genes in T2 plants gave either 100% or 3:1 expression of the -glucuronidase (GUS) gene, demonstrating recovery of both homozygous and heterozygous T1 plants. Fluorometric GUS assay in T1 and T2 generations of all three plants showed that the GUS gene was stably expressed in the progeny. DNA analyses showed 100% concordance between the presence of the foreign gene and enzyme activity. Our results demonstrate that transgenes in peanut introduced byAgrobacterium can be inherited in a Mendelian manner.Abbreviations GUS -Glucuronidase - MS Murashige and Skoog - MU 4-Methylumbelliferone - NPTII Neomycin phosphotransferase II  相似文献   

15.
Expression of a foreign gene in electroporated pollen grains of tobacco   总被引:1,自引:0,他引:1  
Summary The incorporation of genetically engineered DNA into pollen and subsequent fertilization of eggs by the transformed pollen would be a convenient method for producing genetically engineered seed. This method of pollen transformation would circumvent the need for other types of gene transfer methods such as the use of Agrobacterium tumefaciens, which has a limited host range and thus a limited capability for genetically engineering plants. It would also avoid the problems associated with the regeneration of some plants from tissue, cell, or protoplast culture after receiving foreign DNA. To this end, the genetically engineered plasmid DNA vector pBI221 containing the gene encoding -glucuronidase (GUS) was introduced by electroporation into germinating pollen grains of tobacco (Nicotiana gossei L.). Transient expression of the GUS gene was demonstrated by the presence of GUS activity in fluorometric assays of pollen extracts 24 h after the introduction of pBI221 via electroporation. Intact pBI221 was detected by Southern blotting procedures as a distinct DNA band in pollen extracts 1 h after electroporation. In addition, pBI221 was detected as a diffuse band of higher molecular weight DNA 24 h after electroporation, suggesting that some of the pBI221 was incorporated into the genome of the pollen.  相似文献   

16.
The GUS gene of E. coli, encoding -glucuronidase, has been widely used as a reporter gene in plant transformation. However, -glucuronidase activity in transgenic wheat leaf or root tissue is rarely observed or reported. To address this question, we investigated three wheat lines transformed with the GUS reporter gene. We found all three lines expressed GUS mRNA as well as -glucuronidase protein in their leaf and root tissues as detected by RNA gel blot, ELISA, and immunoblot analyses. However, -glucuronidase enzyme activity was only detected in pollen grains from the transgenic plants. Fluorometric and histochemical assays performed in the presence of wheat tissue extracts indicated that wheat leaf and root tissues contain inhibitor(s) of -glucuronidase activity, but pollen grains contain much lower concentrations. Further characterizations indicated that the inhibitor(s) is of low molecular weight (<10 kDa) and is non-proteinaceous.  相似文献   

17.
Summary Previous results from this laboratory have demonstrated the presence of genes for phosphoenolpyruvate carboxylase and pyruvate, orthophosphate dikinase in C3 plants. The structure and light-enhanced expression of these genes is very similar to that of the genes found in the C4 plant, maize. In order to investigate whether or not the regulation of these genes is similar in C3 and C4 plants, we have constructed chimeric genes using -glucuronidase as a reporter gene under the control of the maize promoters of the genes for phosphoenolpyruvate carboxylase, pyruvate, orthophosphate dikinase, and the small subunit of ribulose bisphosphate carboxylase (RuBisCO). The chimeric genes were introduced into tobacco, a C3 plant. These genes were expressed primarily in leaf and stem tissue and the expression was enhanced by light. Thus, as in C4 plants, the genes are expressed in a tissue-specific and light-inducible manner in the C3 plant. Since the expression of these genes is restricted to specific cells in leaf tissue of C4 plants, we also investigated the spatial pattern of expression of the chimeric genes using histochemical analysis of -glucuronidase activity. High level expression of all of these genes was found in mesophyll cells. This included the small subunit of RuBisCO, which is not expressed in mesophyll cells but in bundle sheath cells in C4 plants. This report describes similarities between C3 and C4 plants in regulating the expression of these genes.  相似文献   

18.
The use of reporter genes to characterise sequence elements that act to regulate gene expression in transgenic plants has been vital to the development of foreign gene expression strategies for use in cereal transformation. ThegusA locus ofEscherichia coli, which encodes the enzyme-glucuronidase (GUS), is by far the most popular reporter gene used in plant transformation. In this paper we extend the utility of the GUS reporter gene system in cereal transformation by describing and evaluating a number of novel constructs suitable for use in direct gene transfer experiments. These plasmids are all available from the Molecular Genetic Resource Service of the Center for the Application of Molecular Biology to International Agriculture.  相似文献   

19.
By sequencing the central region of the cucumopine-type T-DNA of Agrobacterium rhizogenes strain 2659, we identified three open reading frames homologous, to different extents, to ORFs 10, 11 and 12 (rolA, B and C) of the agropine-type (1855) T-DNA. Recombinant Agrobacterium strains encompassing the ORFs of 2659 T-DNA-which we refer to as rol, and -were utilized to infect carrot discs and to obtain transgenic tobacco plants, in order to compare the morphogenetic capabilities to those of the 1855 rol genes. Moreover, a long segment of the 5 non-coding region of rol and rol was fused to the GUS reporter gene and the pattern of expression and the responsiveness to auxin of the constructs was analysed in transgenic tobacco. Differences in the auxin requirement for root induction between the 2659 rol genes and their respective 1855 counterparts were pinpointed. These differences are not due to gene regulation and presumably reflect functional differences in the proteins encoded. Differences were also observed in the pattern of expression of rol in roots of transgenic plants, as compared to rolB. In addition, the pattern of expression of rol-GUS construct in roots was found to be analogous to that observed for a construct driven by two of the five regulatory domains of the rolB promoter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号