首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In cultured granulosa cells, addition of 1 to 50 ng follicle-stimulating hormone induced a 350-fold rise in luteinizing hormone receptors, while larger amounts of gonadotropin up to 200 ng reduced these receptors to approximately 50% of peak levels. Transforming growth factor-beta (16 pM) enhanced the stimulatory actions of low levels of gonadotropin (2.5-10 ng) by 2 to 3-fold, and inhibited the induction of luteinizing hormone receptors by higher levels of follicle-stimulating hormone (greater than or equal to 50 ng) by 30-50%. The actions of the growth factor were concentration-dependent over the range from 0.8 to 16 pM and included a similar biphasic effect upon gonadotropin-induced cAMP production. Modulation of cAMP formation and luteinizing hormone receptor expression by transforming growth factor-beta could influence the ability of the granulosa cell to respond to luteinizing hormone during ovarian follicular maturation and ovulation.  相似文献   

2.
We have investigated the effects of bFGF on both the FSH-induced LH receptor expression and cAMP production in cultured rat granulosa cells. Concentrations of pure FGF, from 10(-12) M to 10(-10) M, progressively inhibit the stimulatory actions of FSH with an ED50 of approximately 4 x 10(-12) M for both parameters. Higher FGF concentrations, from 4 x 10(-10) M to 10(-8) M, lead to a gradual reduction of the growth factor inhibitory effect. The effects of FGF are more prominent on the modulation of LH receptors than on the FSH-induced cAMP production. Moreover, FGF impairs the LH receptor formation induced by cholera toxin or 8-Bromo-cAMP, indicating that the growth factor also acts at a step distal to cAMP formation. The inhibitory effect of FGF on LH receptor expression increases during the entire course of granulosa cell differentiation, from 24 to 96 h, and is not due to variations in cell number or viability, but rather to a change in the content of LH receptors with no significant modification of binding affinity (KD congruent to 0.8 x 10(-10) M). These results suggest that bFGF may acutely regulate the capacity of granulosa cells to differentiate upon FSH stimulation and to respond to LH during the ovarian follicular maturation.  相似文献   

3.
We have cloned and sequenced cDNAs corresponding to the complete coding regions of the chicken homologues to mammalian caspase-3 and caspase-6. Both caspases are included among members of the cysteine protease (caspase) family that are most closely identified with mediating apoptosis. The deduced amino acid sequences for chicken caspase-3 and -6 show 65% and 68% identity with the respective human sequences, with complete conservation found within the QACRG active peptide region. Both caspase-3 and -6 are widely expressed within various tissues from the hen. Within the ovary, levels of caspase-3 and caspase-6 mRNA and protein do not change significantly in theca tissue during follicle development. On the other hand, procaspase-3 and -6 protein levels are elevated by 2- to 5-fold in preovulatory, compared to prehierarchal (6- to 8-mm diameter), follicle granulosa cells. Nevertheless, the function of this family of cell death-inducing proteins requires activation of the proenzyme caspase, which occurs after cleavage at predictable sites within the N-terminal domain. Accordingly, it was determined that okadaic acid, a pharmacologic inducer of apoptotic cell death in cultured apoptosis-resistant, preovulatory follicle granulosa cells, induced both caspase-3- and caspase-6-like activity within 8-16 h of treatment. By comparison, spontaneous apoptotic cell death that occurs in apoptosis-sensitive, prehierarchal follicle granulosa cells after short-term suspension culture is accompanied by a more rapid increase (within 2 h) in both caspase-3- and -6-like activity. Treatment with 8-bromo-cAMP, which has previously been shown to attenuate, or at least slow, the onset of apoptosis in prehierarchal follicle granulosa cells, mitigates this suspension culture-induced increase in caspase activity. While the present results provide further support for the relationship between caspase activation and apoptotic cell death in hen granulosa cells, the molecular ordering of enzymatic events and the caspase-specific substrates remain to be elucidated.  相似文献   

4.
5.
6.
1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] is known to prompt monocytic differentiation of a variety of leukemic lines. We previously extended these observations to non-transformed bone marrow macrophage precursors by demonstrating that the steroid enhances plasma membrane expression of the macrophage-specific mannose-fucose receptor (Clohisy et al., J Biol Chem 262:15922-15929, 1987). Because this membrane protein is involved in non-opsonin mediated endocytosis, these observations raised the possibility that 1,25(OH)2D3 globally upregulates endocytic receptors. The present study, aimed at addressing this issue, turns to the transferrin receptor as a paradigm for endocytic receptors and explores the impact of 1,25(OH)2D3 on its expression. We found that in contrast to the mannose-fucose receptor, plasma membrane transferrin receptor expression by bone marrow-derived macrophage precursors declines by at least 30% in a dose-dependent fashion with exposure to 1,25(OH)2D3. The effect reflects diminished receptor capacity with no change in Kd, and is independent of cell cycle. Moreover, while Vmax of receptor-ligand internalization mirrors plasma membrane occupancy, Kuptake remains unaltered in the presence of vitamin D3, indicating that the down-regulating event does not reflect on enhanced rate of endocytosis. Further, pulse chase experiments show parallel cell surface, intra-cellular, and medium redistribution of radioligand with time steroid-treated and control cells. In a similar vein, while total cell-associated radioligand falls in the presence of vitamin D3, the percentage of intracellular and surface bound counts at equilibrium are constant in both groups. Finally, immunoprecipitation studies reveal that the down-regulating effects of 1,25(OH)2D3 cannot be explained by inhibition of transferrin receptor synthesis. Thus, the decrease in total cellular transferrin binding sites is likely to represent either enhanced degradation or synthesis of "cryptic" receptors which fail to recognize 125I-transferrin.  相似文献   

7.
8.
9.
10.
Arachidonic acid has been proposed to function as a hormone-induced second messenger in a variety of mammalian endocrine tissues. The present studies were conducted to evaluate whether arachidonic acid, either added exogenously or released endogenously following treatment with physiologic (phospholipase A2) or pharmacologic (melittin) agents, influences basal and/or luteinizing hormone (LH)-induced cyclic adenosine 3',5'-monophosphate (cAMP) and progesterone production in granulosa cells from domestic hens. Phospholipase A2 (PLA2) and melittin treatments failed to alter basal concentrations of progesterone, whereas arachidonic acid had a slight stimulatory effect (only at the 50-microM dose) on progesterone levels, and no effect on cAMP. By contrast, arachidonic acid, PLA2, and melittin each inhibited LH-promoted progesterone production in a dose-dependent fashion. The inhibitory effects of arachidonic acid on the progesterone response were determined to occur both prior and subsequent to cAMP formation since cAMP levels in arachidonic acid-treated cells were attenuated after treatment with 10 ng LH or 100 microM forskolin (at 10- to 100-microM doses of arachidonic acid), and progesterone production was decreased in the presence of 1 mM 8-bromo-cAMP (with 50 and 100 microM arachidonic acid). The post-cAMP mechanism of action is characterized by the inability of cells to convert 25-hydroxy-cholesterol, but not pregnenolone, to progesterone. The effects of arachidonic acid are probably direct, since pharmacologic inhibitors of the lipoxygenase (nordihydroguaiaretic acid) and cyclooxygenase (indomethacin) pathways of arachidonic acid metabolism failed to alter the suppression of  相似文献   

11.
During male sexual development in reptiles, birds, and mammals, anti-Müllerian hormone (AMH) induces the regression of the Müllerian ducts that normally form the primordia of the female reproductive tract. Whereas Müllerian duct regression occurs during fetal development in eutherian mammals, in marsupial mammals this process occurs after birth. To investigate AMH in a marsupial, we isolated an orthologue from the tammar wallaby (Macropus eugenii) and characterized its expression in the testes and ovaries during development. The wallaby AMH gene is highly conserved with the eutherian orthologues that have been studied, particularly within the encoded C-terminal mature domain. The N-terminus of marsupial AMH is divergent and larger than that of eutherian species. It is located on chromosome 3/4, consistent with its autosomal localization in other species. The wallaby 5' regulatory region, like eutherian AMH genes, contains binding sites for SF1, SOX9, and GATA factors but also contains a putative SRY-binding site. AMH expression in the developing testis begins at the time of seminiferous cord formation at 2 days post partum, and Müllerian duct regression begins shortly afterward. In the developing testis, AMH is localized in the cytoplasm of the Sertoli cells but is lost by adulthood. In the developing ovary, there is no detectable AMH expression, but in adults it is produced by the granulosa cells of primary and secondary follicles. It is not detectable in atretic follicles. Collectively, these studies suggest that AMH expression has been conserved during mammalian evolution and is intimately linked to upstream sex determination mechanisms.  相似文献   

12.
The hormonal regulation of ovarian gonadotropin-releasing hormone (GnRH) receptor mRNA expression has been examined by in situ hybridization in hypophysectomized immature rats. In hypophysectomized rats, GnRH receptor mRNA expression is localized in the interstitial cells. After diethylstilbestrol treatment, most follicles grow to form early antral follicles and express GnRH receptor mRNA in the peripheral part of the granulosa layer, indicating that the expression in the growing follicles is estrogen-dependent. Only weak or no expression of the receptor mRNA is detectable in the atretic follicles of hypophysectomized rats, whereas very strong expression has been observed in the granulosa cells of atretic follicles of intact immature rats. Administration of testosterone or a GnRH agonist, both of which are atretic agents for ovarian follicles, to hypophysectomized rats markedly increases the apoptotic cell death of the granulosa cells but fails to induce GnRH receptor mRNA expression. The co-administration of these agents with diethylstilbestrol causes the granulosa cells of atretic follicles to express the receptor mRNA very strongly, suggesting that this mRNA expression in the atretic follicles is also estrogen-dependent. On the other hand, expression of the receptor mRNA in the ovarian interstitial cells is not affected by hypophysectomy or hormone treatments. All of these results clearly indicate that estrogen is essential for the expression of ovarian GnRH receptor mRNA in the granulosa cells of atretic follicles and growing follicles, whereas the expression in the interstitial cells is estrogen-independent.  相似文献   

13.
14.
Plasminogen activator (PA) has been implicated in the control of ovarian cell differentiation and in the process of follicular rupture at the time of ovulation in rats. This study was conducted to evaluate whether PA activity is present in granulosa cells of the largest preovulatory (F1) follicle in the ovary of the domestic hen, and if so, to examine its hormonal regulation. An in vitro assay system, which measures the plasmin-mediated lysis of a chromogenic substrate, S-2251, was validated for use with granulosa cells of the hen to assess levels of both cell-associated and secreted PA. Chicken luteinizing hormone (cLH) suppressed PA activity in a dose-dependent fashion, with the highest dose (100 ng/ml incubation medium) resulting in levels that were 21.8% (cell-associated) and 50.9% (secreted) those of basal values (overall mean of 5 separate assays). Similarly, the ovarian steroid, testosterone, at the lowest dose administered (2 ng/ml medium), was found to inhibit both cell-associated and secreted PA activity (29.0% and 73.0% versus basal, respectively; N = 5 assays), whereas progesterone at the highest dose (50 ng/ml media) significantly depressed only cell-associated PA activity (71.9%), but not secreted PA, compared to basal levels (N = 5). By contrast, prostaglandin (PG) E1 or PGE2 at 10(-6) M, stimulated both cell-associated (a 20.9% and a 32.1% increase, respectively, compared to basal levels) and secreted (a 17.1% and a 28.3% increase, respectively, compared to basal) PA activity (N = 5); however, PGE2 at 10(-6) M, when combined with cLH at 100 ng/ml, was only partially effective in reversing the inhibitory action of cLH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
To identify the mechanisms underlying the hormone-dependent induction and maintenance of luteinizing hormone receptor (LH-R) in rat granulosa cells, the effect of follicle-stimulating hormone (FSH) and local factors on the LH-R mRNA levels were studied. LH-R mRNA levels of the cells incubated with FSH decreased rapidly after medium removal, and readdition of FSH with the fresh medium did not restore these levels. On the other hand, 8-bromoadenosine 3,5-cyclic monophosphate significantly enhanced the expression of LH-R mRNA after medium removal, while the level of LH-R mRNA was lower than that of the cells replaced by original medium including FSH. In addition, the incubation with 8-Br-cAMP produced dose-dependent responses for LH-R mRNAs and enhanced the activity of 1379 bp of the LH-R 5'-flanking region, while the level of LH-R mRNA decreased 3 days after medium removal. Further studies were undertaken to assess the role of factors in maintaining the LH receptor once induced by FSH. Since FSH and cAMP increase follistatin production in granulosa cells, we examined the effect of follistatin on LH-R induction in the presence of activin and FSH. Activin induced LH-R in the presence of FSH significantly, and follistatin antagonized this effect in a dose-dependent manner. However, insulinlike growth factor-I (IGF-I) induced LH-R mRNA in the presence of FSH even after medium change. IGF-I might be one of the important factors that act in the medium to maintain LH-R levels in granulosa cells.  相似文献   

16.
We have investigated the stimulation of phospholipase D activity by the gonadotropin-releasing hormone receptor agonist [D-Ala6, des-Gly10]GnRH N-ethylamide (GnRH-A) in preovulatory, cultured granulosa cells. GnRH-A stimulated up to 10-fold accumulation of phosphatidylethanol, produced by phospholipase D phosphatidyl transferase activity when ethanol acts as the phosphatidyl group acceptor. The effect of GnRH-A was concentration dependent (EC50 = 1 nM) and was inhibited by a specific GnRH receptor antagonist. Low GnRH-A concentrations (less than 10 nM) stimulated also accumulation of phosphatidic acid, but at higher concentrations this response was attenuated. Propranolol, which inhibits phosphatidic acid phosphohydrolase, increased both basal and GnRH-A-stimulated production of phosphatidic acid. A protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA, 100 nM), increased up to 30-fold phosphatidylethanol levels. The effects of supramaximal concentrations of GnRH-A (50 nM) and TPA (1 microM) on the accumulation of phosphatidylethanol were additive, suggesting that the two agents may not act via the same mechanism. This is supported by the fact that 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, a protein kinase C inhibitor, inhibited the effect of TPA 50%, but not that of GnRH-A. However, 24 h pretreatment with TPA abolished cellular response to subsequent treatment with either TPA or GnRH-A. The stimulatory action of GnRH on steroidogenesis could be mimicked by elevating endogenous phosphatidic acid levels in granulosa cells. Exogenous phospholipase D (from Streptomyces chromofuscus, 10 IU/ml) significantly increased (2.7-fold) progesterone production by the cells; under the same conditions, GnRH-A and FSH stimulated progesterone production 3- and 2.6-fold, respectively. Similarly, propranolol stimulated progesterone production 2.2-fold. These results suggest that, in granulosa cells, GnRH receptors are coupled to a phospholipase D whose activation may participate in transducing the GnRH signal for accelerated steroidogenesis. Phospholipase D activity can be independently regulated also by protein kinase C. The possible interrelationships between phospholipase D and other phospholipases which may be activated by GnRH in these ovarian cells are discussed.  相似文献   

17.
A radiochemical assay was utilized to study the inhibitory effects of clomiphene and tamoxifen on the cholesterol side-chain cleavage enzyme activity in a mitochondrial preparation of granulosa cells isolated from mature ovarian follicles of laying hens. At saturating substrate concentrations, both clomiphene and tamoxifen were able to suppress enzyme activity in a dose-related manner (IC50 1.8 X 10(-5) M). Double reciprocal plots of kinetic data show that the inhibition is mixed, exhibiting competitive kinetics at low concentrations, whereas at high concentrations, the inhibition is of a non-competitive nature. The competitive inhibition constants as determined from Dixon plots are 2 X 10(-5) M for clomiphene and 2.3 X 10(-5) M for tamoxifen. It is concluded that, in granulosa cells, clomiphene and tamoxifen directly inhibit the mitochondrial cholesterol side-chain cleavage activity. This inhibition may represent an important aspect of the mode of action of clomiphene and tamoxifen.  相似文献   

18.
19.
The present studies were conducted to establish interactions between transforming growth factor (TGF)-beta and the epidermal growth factor (EGF) family members, TGFalpha and betacellulin (BTC), relative to proliferation and differentiation of granulosa cells in hen ovarian follicles. Results presented demonstrate expression of TGFbeta isoforms, plus TGFalpha, BTC, and ErbB receptors in prehierarchal follicles, thus establishing the potential for autocrine/paracrine signaling and cross-talk within granulosa cells at the onset of differentiation. Treatment with TGFalpha or BTC increases levels of TGFbeta1 mRNA in undifferentiated granulosa cells, while the selective inhibitor of mitogen activated protein kinase signaling, U0126, reverses these effects. Moreover, TGFbeta1 attenuates c-myc mRNA expression and granulosa cell proliferation, while TGFalpha blocks both these inhibitory effects. Collectively, these data provide evidence that EGF family ligands regulate both the expression and biological actions of TGFbeta1 in hen granulosa cells, and indicate that the timely interaction of these opposing factors is an important modulator of both granulosa cell proliferation and differentiation.  相似文献   

20.
Ding  Yang  He  Pei  Li  Zhiling 《Molecular and cellular biochemistry》2020,465(1-2):187-197
Molecular and Cellular Biochemistry - Polycystic ovary syndrome (PCOS) is a hormonal disorder common among women of reproductive age. Although much is understood concerning the pathology of PCOS,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号