首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The green fluorescent protein (GFP)-nanobody is a single-chain VHH antibody domain developed with specific binding activity against GFP and is emerging as a powerful tool for isolation and cellular engineering of fluorescent protein fusions in many different fields of biological research. Using X-ray crystallography and isothermal titration calorimetry, we determine the molecular details of GFP:GFP-nanobody complex formation and explain the basis of high affinity and at the same time high specificity of protein binding. Although the GFP-nanobody can also bind YFP, it cannot bind the closely related CFP or other fluorescent proteins from the mFruit series. CFP differs from GFP only within the central chromophore and at one surface amino acid position, which lies in the binding interface. Using this information, we have engineered a CFP variant (I146N) that is also able to bind the GFP-nanobody with high affinity, thus extending the toolbox of genetically encoded fluorescent probes that can be isolated using the GFP-nanobody.  相似文献   

2.
Bimolecular fluorescence complementation (BiFC) is an approach used to analyze protein–protein interaction in vivo, in which non-fluorescent N-terminal and C-terminal fragments of a fluorescent protein are reconstituted to emit fluorescence only when they are brought together by interaction of two proteins to fuse both fragments. A method for simultaneous visualization of two protein complexes by multicolor BiFC with fragments from green fluorescent protein (GFP) and its variants such as cyan and yellow fluorescent proteins (CFP and YFP) was recently reported in animal cells. In this paper we describe a new strategy for simultaneous visualization of two protein complexes in plant cells using the multicolor BiFC with fragments from CFP, GFP, YFP and a red fluorescent protein variant (DsRed-Monomer). We identified nine different BiFC complexes using fragments of CFP, GFP and YFP, and one BiFC complex using fragments of DsRed-Monomer. Fluorescence complementation did not occur by combinations between fragments of GFP variants and DsRed-Monomer. Based on these findings, we achieved simultaneous visualization of two protein complexes in a single plant cell using two colored fluorescent complementation pairs (cyan/red, green/red or yellow/red).  相似文献   

3.
The tendency of GFP-like fluorescent proteins to dimerize in vitro is a permanent concern as it may lead to artifacts in FRET imaging applications. However, we have found recently that CFP and YFP (the couple of GFP variants mostly used in FRET studies) show no trace of association in the cytosol of living cells up to millimolar concentrations. In this study, we investigated the oligomerization properties of purified CFP, by fluorescence anisotropy and sedimentation velocity. Surprisingly, we found that CFP has a much weaker homoaffinity than other fluorescent proteins (K(d) ≥ 3 × 10(-3) M), and that this is due to the constitutive N146I mutation, originally introduced into CFP to improve its brightness.  相似文献   

4.
The Arabidopsis thaliana somatic embryogenesis receptor kinase 1 (AtSERK1) gene is expressed in developing ovules and early embryos. AtSERK1 is also transiently expressed during somatic embryogenesis. The predicted AtSERK1 protein contains an extracellular domain with a leucine zipper motif followed by five leucine-rich repeats, a proline-rich region, a single transmembrane region and an intracellular kinase domain. The AtSERK1 cDNA was fused to two different variants of green fluorescent protein (GFP), a yellow-emitting GFP (YFP) and a cyan-emitting GFP (CFP), and transiently expressed in both plant protoplasts and insect cells. Using confocal laser scanning microscopy it was determined that the AtSERK1-YFP fusion protein is targeted to plasma membranes in both plant and animal cells. The extracellular leucine-rich repeats, and in particular the N-linked oligosaccharides that are present on them appear to be essential for correct localization of the AtSERK1-YFP protein. The potential for dimerization of the AtSERK1 protein was investigated by measuring the YFP/CFP fluorescence emission ratio using fluorescence spectral imaging microscopy. This ratio will increase due to fluorescence resonance energy transfer if the AtSERK1-CFP and AtSERK1-YFP fusion proteins interact. In 15 % of the cells the YFP/CFP emission ratio for plasma membrane localized AtSERK1 proteins was enhanced. Yeast-protein interaction experiments confirmed the possibility for AtSERK1 homodimerization. Elimination of the extracellular leucine zipper domain reduced the YFP/CFP emission ratio to control levels indicating that without the leucine zipper domain AtSERK1 is monomeric.  相似文献   

5.
6.
利用FRET技术在活细胞内观察EGF对PKA作用的时空成像   总被引:3,自引:0,他引:3  
cAMP依赖的蛋白激酶(protein kinase A,PKA)在细胞生长与分化过程中扮演重要角色,特别是在调节Ras信号通路引起的细胞增殖效应中起着重要作用。为了在活细胞内动态观察表皮生长因子(epidermal growth factor,EGF)对PKA的作用,采用一种可以检测PKA酶活性的报告蛋白(A-kinase activity reporter,AKAR)——这种报告蛋白是利用荧光共振能量转移(fluorescence resonance energy transfer,FRET)原理设计的,使其在人类肺癌细胞(ASTC-a-1)中稳定表达。加入EGF刺激因子后,随时间变化的成像分析显示出在活细胞生理条件下被EGF作用的PKA酶活性变化的时空信息。这些资料为EGF作用PKA提供了直接的实时证据。  相似文献   

7.
The explosion in genome‐wide sequencing has revealed that noncoding RNAs are ubiquitous and highly conserved in biology. New molecular tools are needed for their study in live cells. Fluorescent RNA–small molecule complexes have emerged as powerful counterparts to fluorescent proteins, which are well established, universal tools in the study of proteins in cell biology. No naturally fluorescent RNAs are known; all current fluorescent RNA tags are in vitro evolved or engineered molecules that bind a conditionally fluorescent small molecule and turn on its fluorescence by up to 5000‐fold. Structural analyses of several such fluorescence turn‐on aptamers show that these compact (30–100 nucleotides) RNAs have diverse molecular architectures that can restrain their photoexcited fluorophores in their maximally fluorescent states, typically by stacking between planar nucleotide arrangements, such as G‐quadruplexes, base triples, or base pairs. The diversity of fluorogenic RNAs as well as fluorophores that are cell permeable and bind weakly to endogenous cellular macromolecules has already produced RNA–fluorophore complexes that span the visual spectrum and are useful for tagging and visualizing RNAs in cells. Because the ligand binding sites of fluorogenic RNAs are not constrained by the need to autocatalytically generate fluorophores as are fluorescent proteins, they may offer more flexibility in molecular engineering to generate photophysical properties that are tailored to experimental needs.  相似文献   

8.
9.
《Biophysical journal》2022,121(3):421-429
Fluorescent RNA aptamers have the potential to enable routine quantitation and localization of RNA molecules and serve as models for understanding biologically active aptamers. In recent years, several fluorescent aptamers have been selected and modified to improve their properties, revealing that small changes to the RNA or the ligands can modify significantly their fluorescent properties. Although structural biology approaches have revealed the bound, ground state of several fluorescent aptamers, characterization of low-abundance, excited states in these systems is crucial to understanding their folding pathways. Here we use pressure as an alternative variable to probe the suboptimal states of the Mango III aptamer with both fluorescence and NMR spectroscopy approaches. At moderate KCl concentrations, increasing pressure disrupted the G-quadruplex structure of the Mango III RNA and led to an intermediate with lower fluorescence. These observations indicate the existence of suboptimal RNA structural states that still bind the TO1-biotin fluorophore and moderately enhance fluorescence. At higher KCl concentration as well, the intermediate fluorescence state was populated at high pressure, but the G-quadruplex remained stable at high pressure, supporting the notion of parallel folding and/or binding pathways. These results demonstrate the usefulness of pressure for characterizing RNA folding intermediates.  相似文献   

10.
Zhang S  Ma C  Chalfie M 《Cell》2004,119(1):137-144
Expression of GFP and other fluorescent proteins depends on cis-regulatory elements. Because these elements rarely direct expression to specific cell types, GFP production cannot always be sufficiently limited. Here we show that reconstitution of GFP, YFP, and CFP previously split into two polypeptides yields fluorescent products when coexpressed in C. elegans. Because this reconstitution involves two components, it can confirm cellular coexpression and identify cells expressing a previously uncharacterized promoter. By choosing promoters whose expression patterns overlap for a single cell type, we can produce animals with fluorescence only in those cells. Furthermore, when one partial GFP polypeptide is fused with a subcellularly localized protein or peptide, this restricted expression leads to the fluorescent marking of cellular components in a subset of cells.  相似文献   

11.
Highly efficient fluorescence resonance energy transfer between cyan(CFP) and yellow fluorescent proteins (YFP), the cyan- and yellow-emitting variants of the Aequorea green fluorescent protein, respectively, was achieved by tightly concatenating the two proteins. After the C-terminus of CFP and the N-terminus of YFP were truncated by 11 and 5 amino acids, respectively, the proteins were fused through a leucine-glutamate dipeptide. The resulting chimeric protein, which we called Cy11.5, exhibited a simple emission spectrum that peaked at 527 nm when the protein was excited at 436 nm. The time-resolved emission of Cy11.5 was measured using a streak camera. After excitation of Cy11.5 with a 400 nm ultrashort pulse, a fast decay of the CFP emission and a concomitant rise of the YFP emission were observed with a lifetime of 66 ps. By contrast, the emission from CFP alone showed a decay component with a lifetime of 2.9 ns. We concluded that in fully folded Cy11.5 molecules, intramolecular FRET occurred with an efficiency of 98%. Importantly, most Cy11.5 molecules were properly folded, and the protein was highly resistant to all of the tested proteases. In living cells, therefore, Cy11.5 behaved as a single fluorescent protein with a broad excitation spectrum. Moreover, Cy11.5 was used as an optical highlighter after photobleaching of YFP. When HeLa cells expressing Cy11.5 were irradiated at 514.5 nm, a 10-fold increase in the 475 nm fluorescence intensity was observed. These features make Cy11.5 useful as an optical highlighter and a new-colored fluorescent protein for multicolor imaging.  相似文献   

12.
13.
14.
Fluorescence resonance energy transfer (FRET) from cyan to yellow fluorescent proteins (CFP/YFP) is a well-established method to monitor protein-protein interactions or conformational changes of individual proteins. But protein functions can be perturbed by fusion of large tags such as CFP and YFP. Here we use G protein-coupled receptor (GPCR) activation in living cells as a model system to compare YFP with the small, membrane-permeant fluorescein derivative with two arsen-(III) substituents (fluorescein arsenical hairpin binder; FlAsH) targeted to a short tetracysteine sequence. Insertion of CFP and YFP into human adenosine A(2A) receptors allowed us to use FRET to monitor receptor activation but eliminated coupling to adenylyl cyclase. The CFP/FlAsH-tetracysteine system gave fivefold greater agonist-induced FRET signals, similar kinetics (time constant of 66-88 ms) and perfectly normal downstream signaling. Similar results were obtained for the mouse alpha(2A)-adrenergic receptor. Thus, FRET from CFP to FlAsH reports GPCR activation in living cells without disturbing receptor function and shows that the small size of the tetracysteine-biarsenical tag can be decisively advantageous.  相似文献   

15.
Malkani N  Schmid JA 《PloS one》2011,6(4):e18586

Background

The use of spectrally distinct variants of green fluorescent protein (GFP) such as cyan or yellow mutants (CFP and YFP, respectively) is very common in all different fields of life sciences, e.g. for marking specific proteins or cells or to determine protein interactions. In the latter case, the quantum physical phenomenon of fluorescence resonance energy transfer (FRET) is exploited by specific microscopy techniques to visualize proximity of proteins.

Methodology/Principal Findings

When we applied a commonly used FRET microscopy technique - the increase in donor (CFP)-fluorescence after bleaching of acceptor fluorophores (YFP), we obtained good signals in live cells, but very weak signals for the same samples after fixation and mounting in commercial microscopy mounting fluids. This observation could be traced back to much faster bleaching of CFP in these mounting media. Strikingly, the opposite effect of the mounting fluid was observed for YFP and also for other proteins such as Cerulean, TFP or Venus. The changes in photostability of CFP and YFP were not caused by the fixation but directly dependent on the mounting fluid. Furthermore we made the interesting observation that the CFP-fluorescence intensity increases by about 10 - 15% after illumination at the YFP-excitation wavelength – a phenomenon, which was also observed for Cerulean. This photoactivation of cyan fluorescent proteins at the YFP-excitation can cause false-positive signals in the FRET-microscopy technique that is based on bleaching of a yellow FRET acceptor.

Conclusions/Significance

Our results show that photostability of fluorescent proteins differs significantly for various media and that CFP bleaches significantly faster in commercial mounting fluids, while the opposite is observed for YFP and some other proteins. Moreover, we show that the FRET microscopy technique that is based on bleaching of the YFP is prone to artifacts due to photoactivation of cyan fluorescent proteins under these conditions.  相似文献   

16.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

17.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

18.
BACKGROUND: The systematic evolution of ligands by exponential enrichment (SELEX) technique is a combinatorial library approach in which DNA or RNA molecules (aptamers) are selected by their ability to bind their protein targets with high affinity and specificity, comparable to that of monoclonal antibodies. In contrast to antibodies conventionally selected in animals, aptamers are generated by an in vitro selection process, and can be directed against almost every target, including antigens like toxins or nonimmunogenic targets, against which conventional antibodies cannot be raised. METHODS: Aptamers are ideal candidates for cytomics, as they can be attached to fluorescent reporters or nanoparticles in order to study biological function by fluorescence microscopy, by flow cytometry, or to quantify the concentration of their target in biological fluids or cells using ELISA, RIA, and Western blot assays. RESULTS: We demonstrate the in vitro selection of anti-kinin B1 receptor aptamers that could be used to determine B1 receptor expression during inflammation processes. These aptamers specifically recognize their target in a Northern-Western blot assay, and bind to their target protein whenever they are exposed in the membrane. CONCLUSIONS: Currently, aptamers are linked to fluorescent reporters. We discuss here the present status and future directions concerning the use of the SELEX technique in cytomics.  相似文献   

19.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

20.
BACKGROUND: The combination of fluorescence resonance energy transfer (FRET) and flow cytometry offers a statistically firm approach to study protein associations. Fusing green fluorescent protein (GFP) to a studied protein usually does not disturb the normal function of a protein, but quantitation of FRET efficiency calculated between GFP derivatives poses a problem in flow cytometry. METHODS: We generated chimeras in which cyan fluorescent protein (CFP) was separated by amino acid linkers of different sizes from yellow fluorescent protein (YFP) and used them to calibrate the cell-by-cell flow cytometric FRET measurements carried out on two different dual-laser flow cytometers. Then, CFP-Kip1 was coexpressed in yeast cells with YFP and cyclin-dependent kinase-2 (Cdk2) and served as a positive control for FRET measurements, and CFP-Kip1 coexpressed with a random peptide fused to YFP was the negative control. RESULTS: We measured donor, direct, and sensitized acceptor fluorescence intensities and developed a novel way to calculate a factor (alpha) that characterized the fluorescence intensity of acceptor molecules relative to the same number of excited donor molecules, which is essential for quantifying FRET efficiency. This was achieved by calculating FRET efficiency in two different ways and minimizing the squared difference between the two results by changing alpha. Our method reliably detected the association of Cdk2 with its inhibitor, Kip1, whereas the nonspecific FRET efficiency between Cdk2 and a random peptide was negligible. We identified and sorted subpopulations of yeast cells showing interaction between the studied proteins. CONCLUSIONS: We have described a straightforward novel calibration method to accurately quantitate FRET efficiency between GFP derivatives in flow cytometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号