共查询到20条相似文献,搜索用时 15 毫秒
1.
Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA 总被引:1,自引:0,他引:1
Parone PA Da Cruz S Tondera D Mattenberger Y James DI Maechler P Barja F Martinou JC 《PloS one》2008,3(9):e3257
Mitochondria form a highly dynamic tubular network, the morphology of which is regulated by frequent fission and fusion events. However, the role of mitochondrial fission in homeostasis of the organelle is still unknown. Here we report that preventing mitochondrial fission, by down-regulating expression of Drp1 in mammalian cells leads to a loss of mitochondrial DNA and a decrease of mitochondrial respiration coupled to an increase in the levels of cellular reactive oxygen species (ROS). At the cellular level, mitochondrial dysfunction resulting from the lack of fission leads to a drop in the levels of cellular ATP, an inhibition of cell proliferation and an increase in autophagy. In conclusion, we propose that mitochondrial fission is required for preservation of mitochondrial function and thereby for maintenance of cellular homeostasis. 相似文献
2.
Paola Martinelli 《BBA》2010,1797(1):1-10
Fine tuning of integrated mitochondrial functions is essential in neurons and rationalizes why mitochondrial dysfunction plays an important pathogenic role in neurodegeneration. Mitochondria can contribute to neuronal cell death and axonal dysfunction through a plethora of mechanisms, including low ATP levels, increased reactive oxygen species, defective calcium regulation, and impairment of dynamics and transport. Recently, mitochondrial proteases in the inner mitochondrial membrane have emerged as culprits in several human neurodegenerative diseases. Mitochondrial proteases degrade misfolded and non-assembled polypeptides, thus performing quality control surveillance in the organelle. Moreover, they regulate the activity of specific substrates by mediating essential processing steps. Mitochondrial proteases may be directly involved in neurodegenerative diseases, as recently shown for the m-AAA protease, or may regulate crucial mitochondrial molecules, such as OPA1, which in turn is implicated in human disease. The mitochondrial proteases HTRA2 and PARL increase the susceptibility of neurons to apoptotic cell death. Here we review our current knowledge on how disturbances of the mitochondrial proteolytic system affect neuronal maintenance and axonal function. 相似文献
3.
4.
DNA base excision repair activities and pathway function in mitochondrial and cellular lysates from cells lacking mitochondrial DNA 总被引:5,自引:0,他引:5
Stuart JA Hashiguchi K Wilson DM Copeland WC Souza-Pinto NC Bohr VA 《Nucleic acids research》2004,32(7):2181-2192
Mitochondrial DNA (mtDNA) contains higher steady-state levels of oxidative damage and mutates at rates significantly greater than nuclear DNA. Oxidative lesions in mtDNA are removed by a base excision repair (BER) pathway. All mtDNA repair proteins are nuclear encoded and imported. Most mtDNA repair proteins so far discovered are either identical to nuclear DNA repair proteins or isoforms of nuclear proteins arising from differential splicing. Regulation of mitochondrial BER is therefore not expected to be independent of nuclear BER, though the extent to which mitochondrial BER is regulated with respect to mtDNA amount or damage is largely unknown. Here we have measured DNA BER activities in lysates of mitochondria isolated from human 143B TK– osteosarcoma cells that had been depleted of mtDNA (ρ0) or not (wt). Despite the total absence of mtDNA in the ρ0 cells, a complete mitochondrial BER pathway was present, as demonstrated using an in vitro assay with synthetic oligonucleotides. Measurement of individual BER protein activities in mitochondrial lysates indicated that some BER activities are insensitive to the lack of mtDNA. Uracil and 8-oxoguanine DNA glycosylase activities were relatively insensitive to the absence of mtDNA, only about 25% reduced in ρ0 relative to wt cells. Apurinic/apyrimidinic (AP) endonuclease and polymerase γ activities were more affected, 65 and 45% lower, respectively, in ρ0 mitochondria. Overall BER activity in lysates was also about 65% reduced in ρ0 mitochondria. To identify the limiting deficiencies in BER of ρ0 mitochondria we supplemented the BER assay of mitochondrial lysates with pure uracil DNA glycosylase, AP endonuclease and/or the catalytic subunit of polymerase γ. BER activity was stimulated by addition of uracil DNA glycosylase and polymerase γ. However, no addition or combination of additions stimulated BER activity to wt levels. This suggests that an unknown activity, factor or interaction important in BER is deficient in ρ0 mitochondria. While nuclear BER protein levels and activities were generally not altered in ρ0 cells, AP endonuclease activity was substantially reduced in nuclear and in whole cell extracts. This appeared to be due to reduced endogenous reactive oxygen species (ROS) production in ρ0 cells, and not a general dysfunction of ρ0 cells, as exposure of cells to ROS rapidly stimulated increases in AP endonuclease activities and APE1 protein levels. 相似文献
5.
Restoring mitochondrial DNA copy number preserves mitochondrial function and delays vascular aging in mice 下载免费PDF全文
Kirsty Foote Johannes Reinhold Emma P. K. Yu Nichola L. Figg Alison Finigan Michael P. Murphy Martin R. Bennett 《Aging cell》2018,17(4)
Aging is the largest risk factor for cardiovascular disease, yet the molecular mechanisms underlying vascular aging remain unclear. Mitochondrial DNA (mtDNA) damage is linked to aging, but whether mtDNA damage or mitochondrial dysfunction is present and directly promotes vascular aging is unknown. Furthermore, mechanistic studies in mice are severely hampered by long study times and lack of sensitive, repeatable and reproducible parameters of arterial aging at standardized early time points. We examined the time course of multiple invasive and noninvasive arterial physiological parameters and structural changes of arterial aging in mice, how aging affects vessel mitochondrial function, and the effects of gain or loss of mitochondrial function on vascular aging. Vascular aging was first detected by 44 weeks (wk) of age, with reduced carotid compliance and distensibility, increased β‐stiffness index and increased aortic pulse wave velocity (PWV). Aortic collagen content and elastin breaks also increased at 44 wk. Arterial mtDNA copy number (mtCN) and the mtCN‐regulatory proteins TFAM, PGC1α and Twinkle were reduced by 44 wk, associated with reduced mitochondrial respiration. Overexpression of the mitochondrial helicase Twinkle (Tw+) increased mtCN and improved mitochondrial respiration in arteries, and delayed physiological and structural aging in all parameters studied. Conversely, mice with defective mitochondrial polymerase‐gamma (PolG) and reduced mtDNA integrity demonstrated accelerated vascular aging. Our study identifies multiple early and reproducible parameters for assessing vascular aging in mice. Arterial mitochondrial respiration reduces markedly with age, and reduced mtDNA integrity and mitochondrial function directly promote vascular aging. 相似文献
6.
Rhomboids are an ancient and conserved family of intramembrane-cleaving proteases, a small group of proteolytic enzymes capable of hydrolyzing a peptide bond within a transmembrane helix that anchors a substrate protein to the membrane. Mitochondrial rhomboids evolved in eukaryotes to coordinate a critical aspect of cell biology, the regulation of mitochondrial membranes dynamics. This function appears to have required the emergence of a structural feature that is unique among all other rhomboids: an additional transmembrane helix (TMH) positioned at the N-terminus of six TMHs that form the core proteolytic domain of all prokaryotic and eukaryotic rhomboids. This “1 + 6” structure, which is shared only among mitochondrial rhomboids, defines a subfamily of rhomboids with the prototypical family member being mammalian Parl. Here, we present the findings that in 11 years have elevated mitochondrial rhomboids as the gatekeepers of mitochondrial dynamics and apoptosis; further, we discuss the aspects of their biology that are bound to introduce new paradigm shifts in our understanding of how the organelle uses this unique type of protease to govern stress, signaling to the nucleus, and other key mitochondrial activities in health and disease. 相似文献
7.
Progressive accumulation of mitochondrial DNA mutations and decline in mitochondrial function lead to beta-cell failure 总被引:9,自引:0,他引:9
Simmons RA Suponitsky-Kroyter I Selak MA 《The Journal of biological chemistry》2005,280(31):28785-28791
A key adaptation enabling the fetus to survive in a limited energy environment may be the reprogramming of mitochondrial function, which can have deleterious effects. Critical questions are whether mitochondrial dysfunction progressively declines after birth, and if so, what mechanism might underlie this process. To address this, we developed a model of intrauterine growth retardation (IUGR) in the rat that leads to diabetes in adulthood. Reactive oxygen species (ROS) production and oxidative stress gradually increased in IUGR islets. ATP production was impaired and continued to deteriorate with age. The activities of complex I and III of the electron transport chain progressively declined in IUGR islets. Mitochondrial DNA point mutations accumulated with age and were associated with decreased mitochondrial DNA content and reduced expression of mitochondria-encoded genes in IUGR islets. Mitochondrial dysfunction resulted in impaired insulin secretion. These results demonstrate that IUGR induces mitochondrial dysfunction in the fetal beta-cell, leading to increased production of ROS, which in turn damage mitochondrial DNA. A self-reinforcing cycle of progressive deterioration in mitochondrial function leads to a corresponding decline in beta-cell function. Finally, a threshold in mitochondrial dysfunction and ROS production is reached, and diabetes ensues. 相似文献
8.
9.
Petite-negative yeasts do not form viable respiratory-deficient mutants on treatment with DNA-targeting drugs that readily eliminate the mitochondial DNA (mtDNA) from petite-positive yeasts. However, in the petite-negative yeastKluyveromyces lactis, specific mutations in the nuclear genesMGI2 andMGI5 encoding theα- andγ-subunits of the mitochondrial F1-ATPase, allow mtDNA to be lost. In this study we show that wild-typeK. lactis does not survive in the absence of its mitochondrial genome and that the function ofmgi mutations is to suppress lethality caused by loss of mtDNA. Firstly, we find that loss of a multicopy plasmid bearing amgi allele readily occurs from a wild-type strain with functional mtDNA but is not tolerated in the absence of mtDNA. Secondly, we cloned theK. lactis homologue of theSaccharomyces cerevisiae mitochondrial genome maintenance geneMGM101, and disrupted one of the two copies in a diploid. Following sporulation, we find that segregants containing the disrupted gene form minicolonies containing 6-8000 inviable cells. By contrast, disruption ofMGM101 is not lethal in a haploidmgi strain with a specific mutation in a subunit of the mitochondrial F1-ATPase. These observations suggest that mtDNA inK. lactis encodes a vital function which may reside in one of the three mitochondrially encoded subunits of F0. 相似文献
10.
Medikayala S Piteo B Zhao X Edwards JG 《American journal of physiology. Cell physiology》2011,300(2):C338-C348
Mitochondrial dysfunction has a significant role in the development and complications of diabetic cardiomyopathy. Mitochondrial dysfunction and mitochondrial DNA (mtDNA) mutations are also associated with different types of cancer and neurodegenerative diseases. The goal of this study was to determine if chronically elevated glucose increase in mtDNA damage contributed to mitochondrial dysfunction and identify the underlying basis for mtDNA damage. H9c2 myotubes (a cardiac-derived cell line) were studied in the presence of 5.5, 16.5, or 33.0 mM glucose for up to 13 days. Tests of mitochondria function (Complex I and IV activity and ATP generation) were all significantly depressed by elevated media glucose. Intramitochondrial superoxide and intracellular superoxide levels were transiently increased during the experimental period. AnnexinV binding (a marker of apoptosis) was significantly increased after 7 and 13 days of high glucose. Thirteen days of elevated glucose significantly increased mtDNA damage globally and across the region encoding for the three subunits of cytochrome oxidase. Using mitochondria isolated from cells chronically exposed to elevated glucose, we observed significant increases in topoisomerase-linked DNA cleavage. Mitochondria-dependent DNA cleavage was significantly exacerbated by H(2)O(2) and that immunoprecipitation of mitochondrial extracts with a mtTOP1 antibody significantly decreased DNA cleavage, indicating that at least part of this activity could be attributed to mtTOP1. We conclude that even mild increases in glucose presentation compromised mitochondrial function as a result of a decline in mtDNA integrity. Separate from a direct impact of oxidative stress on mtDNA, ROS-induced alteration of mitochondrial topoisomerase activity exacerbated and propagated increases in mtDNA damage. These findings are significant in that the activation/inhibition state of the mitochondrial topoisomerases will have important consequences for mitochondrial DNA integrity and the well being of the myocardium. 相似文献
11.
The serine proteases of the trypsin superfamily are versatile enzymes involved in a variety of biological processes. In the cardiovascular system, the importance of these enzymes in blood coagulation, platelet activation, fibrinolysis, and thrombosis has been well established. Recent studies have shown that trypin-like serine proteases are also important in maintaining cardiac function and contribute to heart-related disease processes. In this review, we describe the biological function of corin, tissue kallikrein, chymase and urokinase and discuss their roles in cardiovascular diseases such as hypertension, cardiac hypertrophy, heart failure, and aneurysm. 相似文献
12.
Adam Z Adamska I Nakabayashi K Ostersetzer O Haussuhl K Manuell A Zheng B Vallon O Rodermel SR Shinozaki K Clarke AK 《Plant physiology》2001,125(4):1912-1918
The identity and scope of chloroplast and mitochondrial proteases in higher plants has only started to become apparent in recent years. Biochemical and molecular studies suggested the existence of Clp, FtsH, and DegP proteases in chloroplasts, and a Lon protease in mitochondria, although currently the full extent of their role in organellar biogenesis and function remains poorly understood. Rapidly accumulating DNA sequence data, especially from Arabidopsis, has revealed that these proteolytic enzymes are found in plant cells in multiple isomeric forms. As a consequence, a systematic approach was taken to catalog all these isomers, to predict their intracellular location and putative processing sites, and to propose a standard nomenclature to avoid confusion and facilitate scientific communication. For the Clp protease most of the ClpP isomers are found in chloroplasts, whereas one is mitochondrial. Of the ATPase subunits, the one ClpD and two ClpC isomers are located in chloroplasts, whereas both ClpX isomers are present in mitochondria. Isomers of the Lon protease are predicted in both compartments, as are the different forms of FtsH protease. DegP, the least characterized protease in plant cells, has the most number of isomers and they are predicted to localize in several cell compartments. These predictions, along with the proposed nomenclature, will serve as a framework for future studies of all four families of proteases and their individual isomers. 相似文献
13.
14.
Study on the localization of proteases of mitochondrial origin 总被引:1,自引:0,他引:1
A marked proteolytic activity against casein can be demonstrated in rat liver mitochondria. The proteases degrading casein appear distributed between a sedimentable fraction (Po) and a soluble extract (So). Part of the soluble fraction activity, which may be recovered in the mitochondrial intermembrane space, results from a contamination by lysosomal proteases and can be eliminated by previously washing the mitochondria with digitonin. The pre-exposure to digitonin causes an enhancement of the caseinolytic activity associated with the membrane fragments, proving that this activity is not due to lysosomal enzymes. When rats have been injected in vivo with the compound 48/80 which, by degranulating the mast cells prevents contamination of the mitochondrial preparations by mast cell proteases, the membrane fraction (Po) retains a caseinolytic activity of the order of 80 per cent of the control preparations. A similar value of activity is observed in the membranes of brain mitochondria, isolated by a method which removes the rare mast cells they may contain. This shows that the greater part of the caseinolytic activity associated with the rat liver membranes does not originate from mast cell granules. Liver mitochondria pre-exposed to digitonin to eliminate lysosomal contaminants, have been subfractionated into matrix, intermembrane space, inner and outer membrane. Each of the fractions exhibits a caseinolytic activity, but the largest part is localized in the inner compartments of mitochondria: the matrix and the inner membrane. The optimal pH and the sensitivity to inhibitors of the proteases in the different compartments indicate that we are dealing with distinct enzymes. 相似文献
15.
Petite-negative yeasts do not form viable respiratory-deficient mutants on treatment with DNA-targeting drugs that readily eliminate the mitochondial DNA (mtDNA) from petite-positive yeasts. However, in the petite-negative yeastKluyveromyces lactis, specific mutations in the nuclear genesMGI2 andMGI5 encoding the- and-subunits of the mitochondrial F1-ATPase, allow mtDNA to be lost. In this study we show that wild-typeK. lactis does not survive in the absence of its mitochondrial genome and that the function ofmgi mutations is to suppress lethality caused by loss of mtDNA. Firstly, we find that loss of a multicopy plasmid bearing amgi allele readily occurs from a wild-type strain with functional mtDNA but is not tolerated in the absence of mtDNA. Secondly, we cloned theK. lactis homologue of theSaccharomyces cerevisiae mitochondrial genome maintenance geneMGM101, and disrupted one of the two copies in a diploid. Following sporulation, we find that segregants containing the disrupted gene form minicolonies containing 6-8000 inviable cells. By contrast, disruption ofMGM101 is not lethal in a haploidmgi strain with a specific mutation in a subunit of the mitochondrial F1-ATPase. These observations suggest that mtDNA inK. lactis encodes a vital function which may reside in one of the three mitochondrially encoded subunits of F0. 相似文献
16.
17.
Stephen F. Cottrell 《Biochemical and biophysical research communications》1981,98(4):1091-1096
The relative concentration of mitochondrial DNA in the yeast, has been examined under a variety of different growth conditions by means of an isotope dilution procedure which is shown to yield accurate estimates of mitochondrial DNA content in small samples of this yeast. Under a derepression scheme in which only limited cell proliferation occurs, mitochondrial DNA exhibited nearly a doubling in relative amount. The concentration of mitochondrial DNA was also observed to fluctuate depending upon the strain, growth phase and carbon source included in the growth media. Our results indicate that the relative proportion of mitochondrial DNA does indeed vary according to a variety of different conditions that the cells are subjected to. 相似文献
18.
We show that repeated sequences, like palindromes (local repetitions) and homologies between two different nucleotide sequences
(motifs along the genome), compose a self-similar (fractal) pattern in mitochondrial DNA. This self-similarity comes from
the looplike structures distributed along the genome. The looplike structures generate scaling laws in a pseudorandom DNA
walk constructed from the sequence, called a Lévy flight. We measure the scaling laws from the generalized fractal dimension
and singularity spectrum for mitochondrial DNA walks for 35 different species. In particular, we report characteristic loop
distributions for mammal mitochondrial genomes. 相似文献
19.
Circular mitochondrial DNA 总被引:13,自引:0,他引:13
E F van Bruggen P Borst G J Ruttenberg M Gruber A M Kroon 《Biochimica et biophysica acta》1966,119(2):437-439