首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has become a valuable tool to address a broad range of questions in many areas of biomedical research. One such application allows spectra to be obtained directly from intact tissues, termed "profiling" (low resolution) and "imaging" (high resolution). In light of the fact that MALDI tissue profiling allows over a thousand peptides and proteins to be rapidly detected from a variety of tissues, its application to disease processes is of special interest. For example, protein profiles from tumors may allow accurate prediction of tumor behavior, diagnosis, and prognosis and uncover etiologies underlying idiopathic diseases. MALDI MS, in conjunction with laser capture microdissection, is able to produce protein expression profiles from a relatively small number of cells from specific regions of heterogeneous tissue architectures. Imaging mass spectrometry enables the investigator to assess the spatial distribution of proteins, drugs, and their metabolites in intact tissues. This article provides an overview of several tissue profiling and imaging applications performed by MALDI MS, including sample preparation, matrix selection and application, histological staining prior to MALDI analysis, tissue profiling, imaging, and data analysis. Several applications represent direct translation of this technology to clinically relevant problems.  相似文献   

2.
Modern pathology is an amalgam of many disciplines, such as microbiology, biochemistry and immunology, which historically have been intermingled with the practice of clinical medicine. For centuries, the pre-eminent pathological tool, at least in the context of patients, was a post-mortem examination. With the advent of optical microscopes, morphology became a predominant means of developing tissue classification. A further paradigm shift occurred in the attempt to understand the nature and origin of disease; the recognition that, ultimately, it is the derangement in the structure and function of genes and proteins that causes human disease. More recent progress in pathology has led to the use of genomics and molecular technologies, including DNA sequencing, microarray analysis, PCR, in situ hybridization and proteomics. Today, the newest frontier appears to be histopathology proteomics, which adds the mass spectrometer to the arsenal of tools for the direct analysis of tissue biopsies and molecular diagnosis. Typically called MALDI imaging, this technique takes mass spectral snapshots of intact tissue slices, revealing how proteins and peptides are spatially distributed within a given sample. In this review, MALDI imaging technology is presented as well as applications of such technology in cancer or neurodegenerative diseases.  相似文献   

3.
Modern pathology is an amalgam of many disciplines, such as microbiology, biochemistry and immunology, which historically have been intermingled with the practice of clinical medicine. For centuries, the pre-eminent pathological tool, at least in the context of patients, was a post-mortem examination. With the advent of optical microscopes, morphology became a predominant means of developing tissue classification. A further paradigm shift occurred in the attempt to understand the nature and origin of disease; the recognition that, ultimately, it is the derangement in the structure and function of genes and proteins that causes human disease. More recent progress in pathology has led to the use of genomics and molecular technologies, including DNA sequencing, microarray analysis, PCR, in situ hybridization and proteomics. Today, the newest frontier appears to be histopathology proteomics, which adds the mass spectrometer to the arsenal of tools for the direct analysis of tissue biopsies and molecular diagnosis. Typically called MALDI imaging, this technique takes mass spectral snapshots of intact tissue slices, revealing how proteins and peptides are spatially distributed within a given sample. In this review, MALDI imaging technology is presented as well as applications of such technology in cancer or neurodegenerative diseases.  相似文献   

4.
Matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS) is a highly versatile and sensitive analytical technique, which is known for its soft ionisation of biomolecules such as peptides and proteins. Generally, MALDI MS analysis requires little sample preparation, and in some cases like MS profiling it can be automated through the use of robotic liquid-handling systems. For more than a decade now, MALDI MS has been extensively utilised in the search for biomarkers that could aid clinicians in diagnosis, prognosis, and treatment decision making. This review examines the various MALDI-based MS techniques like MS imaging, MS profiling and proteomics in-depth analysis where MALDI MS follows fractionation and separation methods such as gel electrophoresis, and how these have contributed to prostate cancer biomarker research. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

5.
Molecular imaging of tissue by MALDI mass spectrometry is a powerful tool for visualizing the spatial distribution of constituent analytes with high molecular specificity. Although the technique is relatively young, it has already contributed to the understanding of many diverse areas of human health. In recent years, a great many advances in the practice of imaging mass spectrometry have taken place, making the technique more sensitive, robust, and ultimately useful. The purpose of this review is to highlight some of the more recent technological advances that have improved the efficiency of imaging mass spectrometry for clinical applications. Advances in the way MALDI mass spectrometry is integrated with histology, improved methods for automation, and better tools for data analysis are outlined in this review. Refined top-down strategies for the identification and validation of candidate biomarkers found in tissue sections are discussed. A clinical example highlighting the application of these methods to a cohort of clinical samples is described.  相似文献   

6.
MALDI imaging mass spectrometry (‘MALDI imaging’) is an increasingly recognized technique for biomarker research. After years of method development in the scientific community, the technique is now increasingly applied in clinical research. In this article, we discuss the use of MALDI imaging in clinical proteomics and put it in context with classical proteomics techniques. We also highlight a number of upcoming challenges for personalized medicine, development of targeted therapies and diagnostic molecular pathology where MALDI imaging could help.  相似文献   

7.
Recent advancements in mass spectrometry, especially the development of electrospray tandem mass spectrometry (ESI/LC/MS2) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI/TOF), have greatly facilitated analysis of complex biomolecules. It has now become possible to profile, in relatively short periods of time, large multicomponent groups of compounds biosynthesized by biological systems. The efficiency and accuracy of analysis have led to the development of new concepts of mass spectrometric profiling, mapping, and imaging. Profiling of proteins in biological material (proteomics) has become a widely accepted strategy for identification of mechanisms involved in the biochemistry of disease processes, and has become a novel tool for unraveling new drug targets. Evolution of proteomics has relied on ESI/LC/MS2 and MALDI/TOF, techniques that are also useful in the novel area of quantitative proteomics.  相似文献   

8.
MALDI imaging mass spectrometry ('MALDI imaging') is an increasingly recognized technique for biomarker research. After years of method development in the scientific community, the technique is now increasingly applied in clinical research. In this article, we discuss the use of MALDI imaging in clinical proteomics and put it in context with classical proteomics techniques. We also highlight a number of upcoming challenges for personalized medicine, development of targeted therapies and diagnostic molecular pathology where MALDI imaging could help.  相似文献   

9.
Creating protein profiles of tissues and tissue fluids, which contain secreted proteins and peptides released from various cells, is critical for biomarker discovery as well as drug and vaccine target selection. It is extremely difficult to obtain pure samples from tissues or tissue fluids, however, and identification of complex protein mixtures is still a challenge for mass spectrometry analysis. Here, we summarize recent advances in techniques for extracting proteins from tissues for mass spectrometry profiling and imaging. We also introduce a novel technique using a capillary ultrafiltration (CUF) probe to enable in vivo collection of proteins from the tissue microenvironment. The CUF probe technique is compared with existing sampling techniques, including perfusion, saline wash, fine-needle aspiration and microdialysis. In this review, we also highlight quantitative mass spectrometric proteomic approaches with, and without, stable-isotope labels. Advances in quantitative proteomics will significantly improve protein profiling of tissue and tissue fluid samples collected by CUF probes.  相似文献   

10.
PEP-19 is a neuronal calmodulin-binding protein, and as such, a putative modulator of calcium regulated processes. In the present study, we used proteomics technology approaches such as peptidomics and imaging MALDI mass spectrometry, as well as traditional techniques (immunoblotting and in situ hybridization) to identify PEP-19 and, specifically, to measure PEP-19 mRNA and protein levels in an animal model of Parkinson's disease. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in mice resulted in a significant decrease in striatal PEP-19 mRNA. Capillary nano-flow liquid chromatography electrospray mass spectrometry analysis of striatal tissue revealed a significant decrease of the PEP-19 protein level. Moreover, imaging MALDI mass spectrometry also showed that PEP-19 protein was predominantly localized to the striatum of the brain tissue cross sections. After MPTP administration, PEP-19 levels were significantly reduced by 30%. We conclude that PEP-19 mRNA and protein expression are decreased in the striatum of a common animal model of Parkinson's disease. Further studies are needed to show the specific involvement of PEP-19 in the neurodegeneration seen in MPTP lesioned animals. Finally, this study has shown that the combination of traditional molecular biology techniques with novel, highly specific and sensitive mass spectrometry methods is advantageous in characterizing molecular events of many diseases, including Parkinson's disease.  相似文献   

11.
MALDI mass spectrometry can generate profiles that contain hundreds of biomolecular ions directly from tissue. Spatially-correlated analysis, MALDI imaging MS, can simultaneously reveal how each of these biomolecular ions varies in clinical tissue samples. The use of statistical data analysis tools to identify regions containing correlated mass spectrometry profiles is referred to as imaging MS-based molecular histology because of its ability to annotate tissues solely on the basis of the imaging MS data. Several reports have indicated that imaging MS-based molecular histology may be able to complement established histological and histochemical techniques by distinguishing between pathologies with overlapping/identical morphologies and revealing biomolecular intratumor heterogeneity. A data analysis pipeline that identifies regions of imaging MS datasets with correlated mass spectrometry profiles could lead to the development of novel methods for improved diagnosis (differentiating subgroups within distinct histological groups) and annotating the spatio-chemical makeup of tumors. Here it is demonstrated that highlighting the regions within imaging MS datasets whose mass spectrometry profiles were found to be correlated by five independent multivariate methods provides a consistently accurate summary of the spatio-chemical heterogeneity. The corroboration provided by using multiple multivariate methods, efficiently applied in an automated routine, provides assurance that the identified regions are indeed characterized by distinct mass spectrometry profiles, a crucial requirement for its development as a complementary histological tool. When simultaneously applied to imaging MS datasets from multiple patient samples of intermediate-grade myxofibrosarcoma, a heterogeneous soft tissue sarcoma, nodules with mass spectrometry profiles found to be distinct by five different multivariate methods were detected within morphologically identical regions of all patient tissue samples. To aid the further development of imaging MS based molecular histology as a complementary histological tool the Matlab code of the agreement analysis, instructions and a reduced dataset are included as supporting information.  相似文献   

12.
Direct tissue profiling and imaging mass spectrometry (MS) provides a detailed assessment of the complex protein pattern within a tissue sample. MALDI MS analysis of thin tissue sections results in over of 500 individual protein signals in the mass range of 2 to 70 kDa that directly correlate with protein composition within a specific region of the tissue sample. To date, profiling and imaging MS has been applied to multiple diseased tissues, including human gliomas and nonsmall cell lung cancer. Interrogation of the resulting complex MS data sets has resulted in identification of both disease-state and patient-prognosis specific protein patterns. These results suggest the future usefulness of proteomic information in assessing disease progression, prognosis, and drug efficacy.  相似文献   

13.
The identification of proteins involved in tumour progression or which permit enhanced or novel therapeutic targeting is essential for cancer research. Direct MALDI analysis of tissue sections is rapidly demonstrating its potential for protein imaging and profiling in the investigation of a range of disease states including cancer. MALDI‐mass spectrometry imaging (MALDI‐MSI) has been used here for direct visualisation and in situ characterisation of proteins in breast tumour tissue section samples. Frozen MCF7 breast tumour xenograft and human formalin‐fixed paraffin‐embedded breast cancer tissue sections were used. An improved protocol for on‐tissue trypsin digestion is described incorporating the use of a detergent, which increases the yield of tryptic peptides for both fresh frozen and formalin‐fixed paraffin‐embedded tumour tissue sections. A novel approach combining MALDI‐MSI and ion mobility separation MALDI‐tandem mass spectrometry imaging for improving the detection of low‐abundance proteins that are difficult to detect by direct MALDI‐MSI analysis is described. In situ protein identification was carried out directly from the tissue section by MALDI‐MSI. Numerous protein signals were detected and some proteins including histone H3, H4 and Grp75 that were abundant in the tumour region were identified.  相似文献   

14.
This review summarizes the analytical advances made during the last several years in the structural and quantitative determinations of glycoproteins in complex biological mixtures. The main analytical techniques used in the fields of glycomics and glycoproteomics involve different modes of mass spectrometry and their combinations with capillary separation methods such as microcolumn liquid chromatography and capillary electrophoresis. The need for high-sensitivity measurements have been emphasized in the oligosaccharide profiling used in the field of biomarker discovery through MALDI mass spectrometry. High-sensitivity profiling of both glycans and glycopeptides from biological fluids and tissue extracts has been aided significantly through lectin preconcentration and the uses of affinity chromatography.  相似文献   

15.
生物质谱技术是蛋白质组学的支撑技术.详细论述了质谱技术的分类与基本分析原理,重点论述了质谱技术的发展变化,包括基质辅助激光解吸飞行时间质谱技术,电喷雾质谱技术,MALDI-Q-TOF和MAL-DI-TOF-TOF等质谱技术,以及质谱技术在蛋白质组学研究中的应用与未来的发展和挑战.  相似文献   

16.
Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a powerful tool for investigating the distribution of proteins and small molecules within biological systems through the in situ analysis of tissue sections. MALDI-IMS can determine the distribution of hundreds of unknown compounds in a single measurement and enables the acquisition of cellular expression profiles while maintaining the cellular and molecular integrity. In recent years, a great many advances in the practice of imaging mass spectrometry have taken place, making the technique more sensitive, robust, and ultimately useful. In this review, we focus on the current state of the art of MALDI-IMS, describe basic technological developments for MALDI-IMS of animal and human tissues, and discuss some recent applications in basic research and in clinical settings.  相似文献   

17.
In recent years, MALDI imaging mass spectrometry (MALDI-IMS) has developed as a promising tool to investigate the spatial distribution of biomolecules in intact tissue specimens. Ion densities of various molecules can be displayed as heat maps while preserving anatomical structures. In this short review, an overview of different biomolecules that can be analyzed by MALDI-IMS is given. Many reviews have covered imaging of lipids, small metabolites, whole proteins and enzymatically digested proteins in the past. However, little is known about imaging of endogenous peptides, for example, in the rat brain, and this will therefore be highlighted in this review. Furthermore, sample preparation of frozen or formalin-fixed, paraffin-embedded (FFPE) tissue is crucial for imaging experiments. Therefore, some aspects of sample preparation will be addressed, including washing and desalting, the choice of MALDI matrix and its deposition. Apart from mapping endogenous peptides, their reliable identification in situ still remains challenging and will be discussed as well.  相似文献   

18.
MALDI imaging mass spectrometry represents a new analytical tool to directly provide the spatial distribution and relative abundance of proteins in tissue. Twenty-five ovary carcinomas (stages III and IV) and 23 benign ovaries were directly analyzed using MALDI-TOF MS. The biomarker with the major prevalence (80%) has been fully identified using MALDI MS and nanoESI MS and MS/MS after separation by RP-HPLC and trypsin enzymatic digestion. This marker with an m/z of 9744 corresponds to 84 amino acid residues from the 11S proteasome activator complex, named PA28 or Reg-alpha. Validation of this marker has been performed using MALDI imaging, classical immunocytochemistry with an antibody raised against the C-terminal part of the protein, specific MALDI imaging, and Western blot analysis. The validation, using immunocytochemistry, confirmed the epithelial localization of this fragment with nucleus localization in benign epithelial cells and a cytoplasmic localization in carcinoma cells. This indicates that this antibody could be used to discriminate the borderline tumor cases. At this point, a multicentric study needs to be conducted in order to clearly establish the potential of this biomarker. Taken together these studies reflect that direct tissue analysis and specific MALDI imaging strategies facilitate biomarker hunting and validation which can be named pathological proteomics.  相似文献   

19.
20.
Mass spectrometry imaging and profiling of individual cells and subcellular structures provide unique analytical capabilities for biological and biomedical research, including determination of the biochemical heterogeneity of cellular populations and intracellular localization of pharmaceuticals. Two mass spectrometry technologies-secondary ion mass spectrometry (SIMS) and matrix assisted laser desorption/ionization mass spectrometry (MALDI MS)-are most often used in micro-bioanalytical investigations. Recent advances in ion probe technologies have increased the dynamic range and sensitivity of analyte detection by SIMS, allowing two- and three-dimensional localization of analytes in a variety of cells. SIMS operating in the mass spectrometry imaging (MSI) mode can routinely reach spatial resolutions at the submicron level; therefore, it is frequently used in studies of the chemical composition of subcellular structures. MALDI MS offers a large mass range and high sensitivity of analyte detection. It has been successfully applied in a variety of single-cell and organelle profiling studies. Innovative instrumentation such as scanning microprobe MALDI and mass microscope spectrometers enables new subcellular MSI measurements. Other approaches for MS-based chemical imaging and profiling include those based on near-field laser ablation and inductively-coupled plasma MS analysis, which offer complementary capabilities for subcellular chemical imaging and profiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号