首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although single-species deterministic difference equations have long been used in modeling the dynamics of animal populations, little attention has been paid to how stochasticity should be incorporated into these models. By deriving stochastic analogues to difference equations from first principles, we show that the form of these models depends on whether noise in the population process is demographic or environmental. When noise is demographic, we argue that variance around the expectation is proportional to the expectation. When noise is environmental the variance depends in a non-trivial way on how variation enters into model parameters, but we argue that if the environment affects the population multiplicatively then variance is proportional to the square of the expectation. We compare various stochastic analogues of the Ricker map model by fitting them, using maximum likelihood estimation, to data generated from an individual-based model and the weevil data of Utida. Our demographic models are significantly better than our environmental models at fitting noise generated by population processes where noise is mainly demographic. However, the traditionally chosen stochastic analogues to deterministic models--additive normally distributed noise and multiplicative lognormally distributed noise--generally fit all data sets well. Thus, the form of the variance does play a role in the fitting of models to ecological time series, but may not be important in practice as first supposed.  相似文献   

2.
The growth of populations which undergo large random fluctuations can be modelled with stochastic differential equations involving Poisson processes. The problem of determining the persistence time is that of finding the time of first passage to some small critical population size. We consider in detail a simple model of logistic growth with additive Poisson disasters of fixed magnitude. The expectation and variability of the persistence time are obtained as solutions of singular differential-difference equations. The dependence of the persistence time of a colonizing species on the parameters of the model is discussed. The model may also be viewed as random harvesting with fixed quotas and a comparison is made between the mean extinction time and those for deterministic models.  相似文献   

3.
A stochastic model of population growth is treated using the Bellman-Harris theory of agedependent stochastic branching processes. The probability distribution for the population size at any time and the expectation are obtained when it is assumed that there is probability (1−σ), 0≤σ<1, of the organism dividing into two at the end of its lifetime, and probability σ that division will not take place.  相似文献   

4.
The application of uniform conservation schemes often fails to account for small-scale spatial variation in the drivers of population decline. Demographic comparisons of imperilled populations across locations are therefore crucial for successful conservation, but progress is hampered by lack of long-term data from more than a single population. The recent large-scale decline of eider ducks (Somateria mollissima) in the Baltic Sea is ideal for determining to what extent mechanisms underlying population decline can be extrapolated over larger areas. We utilized stochastic demographic methods incorporating both environmental and sampling variation to assess small-scale spatial and temporal variation in the population dynamics of eiders at Söderskär (eastern range-margin) and Tvärminne (core breeding area), situated 130 km apart. The stochastic growth rate models accurately predicted the observed differences in the rate of decline between sites and time periods. At Söderskär, established breeder survival had by far the greatest elasticity, whereas elasticity was more evenly distributed among vital rates at Tvärminne. Although the study sites showed the single largest difference in fecundity, stochastic life table response experiment analyses revealed that reduced adult female survival at Tvärminne mainly determined the observed difference in growth rates between sites. In contrast, reduced fecundity primarily differentiated the past population increase from the present population decline at Söderskär. Our results demonstrate that different mechanisms may be associated with population decline across adjacent geographic locations, and indicate that dispersal of first-time breeders may be important for population dynamics. Safeguarding adult female survival and/or fecundity should be prioritized in management efforts.  相似文献   

5.
‘Deterministic’ models in population dynamics often are really approximations to stochastic models, justified by an appeal to ‘the law of large numbers’. It is proposed to call such models ‘pseudodeterministic’. Four questions are discussed in this article: (1) What errors may be made by equating deterministically predicted values to expectations? (2) When, and in what sense, may numbers be assumed to be large? (3) How large are the variances, coefficients of variations, etc., as assigned to the variables in the stochastic versions of the models? (4) What role may pseudodeterministic models play in empirical research, where problems of statistical reliability arise? As an example, a modified Nicholson-Bailey model of the interaction between insect parasitoids and their hosts is discussed; the modification consists of assigning a random (density-independent) mortality to the parasitoid population. A stochastic version of this model is discussed. The expectation of the final host density is compared with the value computed from the deterministic model. The latter value is systematically lower than the former. The magnitude of the difference depends on parameter values. The variability to be expected with the stochastic model is characterized by the coefficient of variation of the final host density; its dependence on parameter values and initial conditions is discussed. It is concluded that it is worthwhile in practical applications to estimate parasitoid mortality, and that the coefficient of variation in real situations may be far from negligible.  相似文献   

6.
To increase the analytical tractability of lattice stochastic spatial population models, several approximations have been developed. The pair-edge approximation is a moment-closure method that is effective in predicting persistence criteria and invasion speeds on a homogeneous lattice. Here we evaluate the effectiveness of the pair-edge approximation on a spatially heterogeneous lattice in which some sites are unoccupiable, or "dead". This model has several possible interpretations, including a spatial SIS epidemic model, in which some sites are occupied by immobile host-species individuals while others are empty. We find that, as in the homogeneous model, the pair-edge approximation is significantly more accurate than the ordinary pair approximation in determining conditions for persistence. However, habitat heterogeneity decreases invasion speed more than is predicted by the pair-edge approximation, and the discrepancy increases with greater clustering of "dead" sites. The accuracy of the approximation validates the underlying heuristic picture of population spread and therefore provides qualitative insight into the dynamics of lattice models. Conversely, the situations where the approximation is less accurate reveals limitations of pair approximation in the presence of spatial heterogeneity.  相似文献   

7.
We consider the stochastic model of an asexual population in which the number of couples formed in some generation is random variable depending on the number of individuals in that generation only. The conditions of convergence were obtained almost everywhere and in mean square of the normalized number of individuals in the n-th generation. These results may be considered as the generalization of some known statements about the models constructed on the basis of the branching processses theory.  相似文献   

8.
The multivariate distribution over time of a particular stochastic mammillary compartmental model is obtained for any point in time. The maximum expectation of the peripheral compartments is then derived and used to determine lower bounds on the probability that the maximum of the peripheral compartments reaches any arbitrary threshold level. A bound on the probability is illustrated by an example and some of its implications are explored.  相似文献   

9.
Sustained oscillation is frequently observed in population dynamics of biospecies. The oscillation comes not only from deterministic but also from stochastic characteristics. In the present article, we deal with a finite size lattice which contains prey and predator. The interaction between a pair of lattice points is carried out by two different methods; local and global interactions. In the former, interaction occurs between adjacent sites, while in the latter interaction takes place between any pair of lattice sites. It is found that both systems exhibit undamped oscillations. The amplitude of oscillation decreases with the increase of the total lattice sites. In the case of global interaction, we can present a stochastic differential equation which is composed of two factors, i.e., the Lotka–Volterra equation with density dependence and noise term. The quantitative agreement between theory and simulation results of global interaction is almost perfect. The stochastic theory qualitatively expresses characteristics of sustainable oscillation for local interaction.  相似文献   

10.
A central problem in ecology is relating the interactions of individuals-described in terms of competition, predation, interference, etc.-to the dynamics of the populations of these individuals-in terms of change in numbers of individuals over time. Here, we address this problem for a class of site-based ecological models, where local interactions between individuals take place at a finite number of discrete resource sites over non-overlapping generations and, between generations, individuals move randomly between sites over the entire system. Such site-based models have previously been applied to a wide range of ecological systems: from those involving contest or scramble competition for resources to host-parasite interactions and meta-populations. We show how the population dynamics of site-based models can be accurately approximated by and understood through deterministic and stochastic difference equations. Conversely, we use the inverse of this approximation to show what implicit assumptions are made about individual interactions by modelling of population dynamics in terms of difference equations. To this end, we prove a useful and general theorem: that any model in our class of site-based models has a corresponding stochastic difference equation population model, by which it can be approximated. This theorem allows us to calculate long-term population dynamics, evolutionary stable strategies and, by extending our theory to account for large deviations, extinction probabilities for a wide range of site-based systems. Our methodology is then illustrated to various examples of between species competition, predator-prey interactions and co-operation.  相似文献   

11.
The Effect of Change in Population Size on DNA Polymorphism   总被引:61,自引:15,他引:46       下载免费PDF全文
F. Tajima 《Genetics》1989,123(3):597-601
The expected number of segregating sites and the expectation of the average number of nucleotide differences among DNA sequences randomly sampled from a population, which is not in equilibrium, have been developed. The results obtained indicate that, in the case where the population size has changed drastically, the number of segregating sites is influenced by the size of the current population more strongly than is the average number of nucleotide differences, while the average number of nucleotide differences is affected by the size of the original population more severely than is the number of segregating sites. The results also indicate that the average number of nucleotide differences is affected by a population bottleneck more strongly than is the number of segregating sites.  相似文献   

12.
The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we develop a Markov jump process model for this strategy, and we verify that there is a positive probability for wild-type females going extinct within a finite time. Moreover, when sex-reversed Trojan females are introduced at a constant population size, we formulate a stochastic differential equation (SDE) model as an approximation to the proposed Markov jump process model. Using the SDE model, we investigate the probability distribution and expectation of the extinction time of wild-type females by solving Kolmogorov equations associated with these statistics. The results indicate how the probability distribution and expectation of the extinction time are shaped by the initial conditions and the model parameters.  相似文献   

13.
The nucleotide composition of the genome is a balance between the origin and fixation rates of different mutations. For example, it is well-known that transitions occur more frequently than transversions, particularly at CpG sites. Differences in fixation rates of mutation types are less explored. Specifically, recombination-associated GC-biased gene conversion (gBGC) may differentially impact GC-changing mutations, due to differences in their genomic distributions and efficiency of mismatch repair mechanisms. Given that recombination evolves rapidly across species, we explore gBGC of different mutation types across human populations and great ape species. We report a stronger correlation between segregating GC frequency and recombination for transitions than for transversions. Notably, CpG transitions are most strongly affected by gBGC in humans and chimpanzees. We show that the overall strength of gBGC is generally correlated with effective population sizes in humans, with some notable exceptions, such as a stronger effect of gBGC on non-CpG transitions in populations of European descent. Furthermore, species of the Gorilla and Pongo genus have a greatly reduced gBGC effect on CpG sites. We also study the dependence of gBGC dynamics on flanking nucleotides and show that some mutation types evolve in opposition to the gBGC expectation, likely due to the hypermutability of specific nucleotide contexts. Our results highlight the importance of different gBGC dynamics experienced by GC-changing mutations and their impact on nucleotide composition evolution.  相似文献   

14.
Distance-based approaches in phylogenetics such as Neighbor-Joining are a fast and popular approach for building trees. These methods take pairs of sequences, and from them construct a value that, in expectation, is additive under a stochastic model of site substitution. Most models assume a distribution of rates across sites, often based on a gamma distribution. Provided the (shape) parameter of this distribution is known, the method can correctly reconstruct the tree. However, if the shape parameter is not known then we show that topologically different trees, with different shape parameters and associated positive branch lengths, can lead to exactly matching distributions on pairwise site patterns between all pairs of taxa. Thus, one could not distinguish between the two trees using pairs of sequences without some prior knowledge of the shape parameter. More surprisingly, this can happen for any choice of distinct shape parameters on the two trees, and thus the result is not peculiar to a particular or contrived selection of the shape parameters. On a positive note, we point out known conditions where identifiability can be restored (namely, when the branch lengths are clocklike, or if methods such as maximum likelihood are used).  相似文献   

15.
16.
本文结合随机点过程的统计理论和数字信号分析原理探讨了几种神经元放电活动的信号分析方法.用放电间隔(ISI)的均值函数描述取值的集中位置随时间变化的情况,用ISI的变异系数函数描述放电过程离散程度的变化,用标准化自协方差函数(NACVF)描述放电过程的自相关性质.给出NACVF了与期望密度的关系式.并用实例将这些方法与传统方法作之对比.  相似文献   

17.
1.  A method of validating stochastic models of population viability is proposed, based on assessing the mean and variance of the predicted population size.
2.  The method is illustrated with a model of the population dynamics of the mountain pygmy-possum ( Burramys parvus Broom 1895), based on annual census data collected from a single population in the Snowy Mountains of New South Wales, Australia between 1986 and 1997. The model incorporates density-dependence in survivorship and recruitment, and demographic and environmental stochasticity.
3.  The model appeared to make reasonable predictions for the three populations that were used for validation, provided the equilibrium population size was estimated accurately. This may require that differences in habitat quality between populations be taken into account.
4.  Following validation, the model was given new parameters using the additional data from the three populations, and the risk of population decline within the next 100 years was assessed. Although populations as small as 15 females are predicted to be relatively safe from extinction caused by stochastic processes, B. parvus appears vulnerable to loss of habitat and reductions in the population growth rate.
5.  The approach used in this paper is one of few attempts to validate a model of population viability using field data, and demonstrates that some aspects of stochastic population models can be tested.  相似文献   

18.
Internal organization and dynamics of the eukaryotic nucleus have been at the front of biophysical research in recent years. It is believed that both dynamics and location of chromatin segments are crucial for genetic regulation. Here we study the relative motion between centromeres and telomeres at various distances and at times relevant for genetic activity. Using live-imaging fluorescent microscopy coupled to stochastic analysis of relative trajectories, we find that the interlocus motion is distance-dependent with a varying fractional memory. In addition to short-range constraining, we also observe long-range anisotropic-enhanced parallel diffusion, which contradicts the expectation for classic viscoelastic systems. This motion is linked to uniform expansion and contraction of chromatin in the nucleus, and leads us to define and measure a new (to our knowledge) uniform contraction-expansion diffusion coefficient that enriches the contemporary picture of nuclear behavior. Finally, differences between loci types suggest that different sites along the genome experience distinctive coupling to the nucleoplasm environment at all scales.  相似文献   

19.
Environmental fluctuations often have different impacts on individuals that differ in size, age, or spatial location. To understand how population structure, environmental fluctuations, and density-dependent interactions influence population dynamics, we provide a general theory for persistence for density-dependent matrix models in random environments. For populations with compensating density dependence, exhibiting “bounded” dynamics, and living in a stationary environment, we show that persistence is determined by the stochastic growth rate (alternatively, dominant Lyapunov exponent) when the population is rare. If this stochastic growth rate is negative, then the total population abundance goes to zero with probability one. If this stochastic growth rate is positive, there is a unique positive stationary distribution. Provided there are initially some individuals in the population, the population converges in distribution to this stationary distribution and the empirical measures almost surely converge to the distribution of the stationary distribution. For models with overcompensating density-dependence, weaker results are proven. Methods to estimate stochastic growth rates are presented. To illustrate the utility of these results, applications to unstructured, spatially structured, and stage-structured population models are given. For instance, we show that diffusively coupled sink populations can persist provided that within patch fitness is sufficiently variable in time but not strongly correlated across space.  相似文献   

20.
Stochastic fluctuations in a simple frequency-dependent selection model with one-locus, two-alleles and two-phenotypes are investigated. The steady-state statistics of allele frequencies for an interior stable phenotypic equilibrium are shown to be similar to the stochastic fluctuations in standard evolutionary game dynamics [Tao, Y., Cressman, R., 2007. Stochastic fluctuations through intrinsic noise in evolutionary game dynamics. Bull. Math. Biol. 69, 1377-1399]. On the other hand, for an interior stable phenotypic or genotypic equilibrium, our main results show that the deterministic model cannot be used to predict the expectation of phenotypic frequency. The variance of phenotypic frequency for an interior stable genotypic equilibrium is more sensitive to the expected population size than for an interior stable phenotypic equilibrium. Furthermore, the stochastic fluctuations of allele frequency and phenotypic frequency can be considered approximately independent of each other for these genotypic equilibria, but not for phenotypic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号