首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
BID is a BH3 domain-only member of the Bcl-2 family that acts as an apoptotic agonist in programmed cell death. After cleavage by caspase-8, the N-terminal of BID (N-BID) stays in the cytosol while the C-terminal of BID (C-BID) translocates to mitochondria, leading to cytochrome c release in vivo and in vitro. We have previously reported that BID or truncated BID (tBID) can induce the release of entrapped trypsin and cytochrome c from large unilamellar vesicles (LUVs). Further studies have been performed and are presented here; the results demonstrate that C-BID, like BID and tBID, induces vesicle leakage, whereas N-BID or the BID mutants BID (D59A) and BID (G94E) fail to have any significant effects. The affinity of the above-mentioned proteins for soybean phospholipid LUVs (SLUVs) decreased in an order similar to their leakage-inducing capability: tBID > BID > BID (D59A), while N-BID and BID (G94E) were unable to bind to the vesicles at all. BID-induced leakage was dependent on the lipid composition of vesicles. Acidic phospholipid (e.g. phosphatidic acid or phosphatidylglycerol) was necessary for BID-induced leakage while the presence of phosphatidylethanolamine or cholesterol reduced the leakage. It was also found C-BID is better able to penetrate the soybean phospholipid monolayer than BID or tBID. A further finding was that tBID, but not full-length BID, could stimulate the aggregation of SLUVs. Finally, Bcl-x(L), an apoptotic antagonist in programmed cell death, can prevent the aggregation of LUVs induced by tBID, but not the release of entrapped trypsin. It is postulated that two separate domains of tBID are responsible for inducing leakage and aggregation of phospholipid vesicles.  相似文献   

2.
Zhao H  Bose S  Tuominen EK  Kinnunen PK 《Biochemistry》2004,43(31):10192-10202
Due to its net positive charge histone H1 readily associates with liposomes containing acidic phospholipids, such as phosphatidylserine (PS). Interestingly, circular dichroism reveals that while histone H1 in aqueous solutions appears as a random coil, its binding to liposomes containing PS is associated with a pronounced increase in alpha-helicity and beta-sheet content, estimated at 7% and 24%, respectively. This interaction further results in vesicle aggregation and lipid mixing. Fluorescence microscopy revealed rapid binding of Texas Red-labeled H1 (TR-H1) to giant liposomes composed of phosphatidylcholine and PS (SOPC/brain PS, 9/1 molar ratio), followed by lateral segregation and subsequent translocation of the membrane-bound H1 into the giant liposome. The above processes in giant liposomes did depend on the presence of the negatively charged PS. Comparison of the behavior of H1 in giant liposomes to that in cultured leukemic T cells demonstrated very similar patterns. More specifically, fluorescence microscopy revealed binding of TR-H1 to the plasma membrane as lateral segregated microdomains, followed by translocation into the cell. H1 also triggered membrane blebbing and fragmentation of the nuclei of these cells, thus suggesting induction of apoptosis. Our findings indicate that histone H1 and acidic phospholipids form supramolecular aggregates in the plasma membrane of T cells, subsequently resulting in major rearrangements of cellular membranes. Our results allow us to conclude that the minimal requirement for the interaction of histone H1 with the leukemia cell plasma membrane is reproduced by giant liposomes composed of unsaturated phosphatidylcholine and phosphatidylserine, the latter being mandatory for the observed changes in the secondary structure of H1 as well as the macroscopic consequences of the H1-PS interactions.  相似文献   

3.
Supramolecular aggregates containing cationic lipids have been widely used as transfection mediators due to their ability to interact with negatively charged DNA molecules and biological membranes. First steps of the process leading to transfection are partly electrostatic, partly hydrophobic interactions of liposomes/lipoplexes with cell and/or endosomal membrane. Negatively charged compounds of biological membranes, namely glycolipids, glycoproteins and phosphatidylserine (PS), are responsible for such events as adsorption, hemifusion, fusion, poration and destabilization of natural membranes upon contact with cationic liposomes/lipoplexes. The present communication describes the dependence of interaction of cationic liposomes with natural and artificial membranes on the negative charge of the target membrane, charges which in most cases were generated by charging the PS content or its exposure. The model for the target membranes were liposomes of variable content of PS or PG (phosphatidylglycerol) and erythrocyte membranes in which the PS and other anionic compound content/exposure was modified in several ways. Membranes of increased anionic phospholipid content displayed increased fusion with DOTAP (1,2-dioleoyl-3-trimethylammoniumpropane) liposomes, while erythrocyte membranes partly depleted of glycocalix, its sialic acid, in particular, showed a decreased fusion ability. The role of the anionic component is also supported by the fact that erythrocyte membrane inside-out vesicles fused easily with cationic liposomes. The data obtained on erythrocyte ghosts of normal and disrupted asymmetry, in particular, those obtained in the presence of Ca2+, indicate the role of lipid flip-flop movement catalyzed by scramblase. The ATP-depletion of erythrocytes also induced an increased sensitivity to hemoglobin leakage upon interactions with DOTAP liposomes. Calcein leakage from anionic liposomes incubated with DOTAP liposomes was also dependent on surface charge of the target membranes. In all experiments with the asymmetric membranes the fusion level markedly increased with an increase of temperature, which supports the role of membrane lipid mobility. The decrease in positive charge by binding of plasmid DNA and the increase in ionic strength decreased the ability of DOTAP liposomes/lipoplexes to fuse with erythrocyte ghosts. Lower pH promotes fusion between erythrocyte ghosts and DOTAP liposomes and lipoplexes. The obtained results indicate that electrostatic interactions together with increased mobility of membrane lipids and susceptibility to form structures of negative curvature play a major role in the fusion of DOTAP liposomes with natural and artificial membranes.  相似文献   

4.
The processes of membrane aggregation, permeability and fusion induced by cytotoxins from Central Asian cobra venom were investigated by studying optical density of liposome samples, permeability of liposome membranes for ferricyanide anions and exchange of lipid material between the membranes of adjacent liposomes. Cytotoxins Vc5 and Vc1 were found to induce aggregation of PC + CL and PC + PS liposomes. Cytotoxin Vc5 increased also the permeability of the liposomes for K3[Fe(CN)6] and enhanced their fusion. Cytotoxin Vc1 increased membrane permeability and enhanced fusion of PC + CL samples only. The changes in membrane permeability and fusion were found to occur within a single value of cytotoxin concentrations. The fusogenic properties of the cytotoxins studied are supposed to be due to the ability to dehydrate membrane surface and to destabilize the lipid bilayer structure. Fusion probability is largely defined by the phospholipid composition of the membranes. A model of interaction of cytotoxins with cardiolipin-containing membranes is offered.  相似文献   

5.
The multidomain pro-apoptotic proteins BAX and BAK constitute an essential gateway to mitochondrial dysfunction and programmed cell death. Among the "BCL-2 homology (BH) 3-only" members of pro-apoptotic proteins, truncated BID (tBID) has been implicated in direct BAX activation, although an explicit molecular mechanism remains elusive. We find that BID BH3 peptide alone at submicromolar concentrations cannot activate BAX or complement BID BH3 mutant-tBID in mitochondrial and liposomal release assays. Because tBID contains structurally defined membrane association domains, we investigated whether membrane targeting of BID BH3 peptide would be sufficient to restore its pro-apoptotic activity. We developed a Ni(2+)-nitrilotriacetic acid liposomal assay system that efficiently conjugates histidine-tagged peptides to a simulated outer mitochondrial membrane surface. Strikingly, nanomolar concentrations of a synthetic BID BH3 peptide that is chemically tethered to the liposomal membrane activated BAX almost as efficiently as tBID itself. These results highlight the importance of membrane targeting of the BID BH3 domain in tBID-mediated BAX activation and support a model in which tBID engages BAX to trigger its pro-apoptotic activity.  相似文献   

6.
T Stegmann  S Nir  J Wilschut 《Biochemistry》1989,28(4):1698-1704
Fusion of influenza virus with liposomes composed of negatively charged phospholipids differs from fusion with biological membranes or zwitterionic liposomes with ganglioside receptors [Stegmann, T., Hoekstra, D., Scherphof, G., & Wilschut, J. (1986) J. Biol. Chem. 261, 10966-10969]. In this study, we investigated how the kinetics and extent of fusion of influenza virus, monitored with a fluorescence resonance energy-transfer assay, are influenced by the surface charge and the presence of receptors on liposomal membranes. The results were analyzed in terms of mass action kinetic model, providing separate rate constants for the initial virus-liposome adhesion, or aggregation, and for the actual fusion reaction. Incorporation of increasing amounts of cardiolipin (CL) or phosphatidylserine (PS) into otherwise zwitterionic phosphatidylcholine (PC)/phosphatidylethanolamine (PE) vesicles results in a gradual shift of the pH threshold of fusion to neutral, relative to the pH threshold obtained with PC/PE vesicles containing the ganglioside GD1a, while also the rate of fusion increases. This indicates the emergence of a fusion mechanism not involving the well-documented conformational change in the viral hemagglutinin (HA). However, only with pure CL liposomes this nonphysiological fusion reaction dominates the overall fusion process; with pure PS or with zwitterionic vesicles containing CL or PS, the contribution of the nonphysiological fusion reaction is small. Accordingly, preincubation of the virus alone at low pH results in a rapid inactivation of the viral fusion capacity toward all liposome compositions studied, except pure CL liposomes. The results of the kinetic analyses show that with pure CL liposomes the rates of both virus-liposome adhesion and fusion are considerably higher than with all other liposome compositions studied.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Caspase-8 cleaves BID to tBID, which targets mitochondria and induces oligomerization of BAX and BAK within the outer membrane, resulting in release of cytochrome c from the organelle. Here, we have initiated these steps in isolated mitochondria derived from control and BCL-2-overexpressing cells using synthetic BH3 peptides and subsequently analyzed the BCL members by chemical cross-linking. The results show that the BH3 domain of BID interacts with and induces an "open" conformation of BAK, exposing the BAK N terminus. This open (activated) conformer of BAK potently induces oligomerization of non-activated ("closed") conformers, causing a cascade of BAK auto-oligomerization. Induction of the open conformation of BAK occurs even in the presence of excess BCL-2, but BCL-2 selectively interacts with this open conformer and blocks BAK oligomerization and cytochrome c release, dependent on the ratio of BID BH3 and BCL-2. This mechanism of inhibition by BCL-2 also occurs in intact cells stimulated with Fas or expressing tBID. Although BID BH3 interacts with both BCL-2 and BAK, the results indicate that when BCL-2 is in excess it can sequester the BID BH3-induced activated conformer of BAK, effectively blocking downstream events. This model suggests that the primary mechanism for BCL-2 blockade targets activated BAK rather than sequestering tBID.  相似文献   

8.
Cobra venom cytotoxins are basic three-fingered, amphipathic, non-enzymatic proteins that constitute a major fraction of cobra venom. While cytotoxins cause mitochondrial dysfunction in different cell types, the mechanisms by which cytotoxins bind to mitochondria remain unknown. We analyzed the abilities of CTI and CTII, S-type and P-type cytotoxins from Naja naja oxiana respectively, to associate with isolated mitochondrial fractions or with model membranes that simulate the mitochondrial lipid environment by using a myriad of biophysical techniques. Phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy data suggest that both cytotoxins bind to isolated mitochondrial fractions and promote the formation of aberrant non-bilayer structures. We then hypothesized that CTI and CTII bind to cardiolipin (CL) to disrupt mitochondrial membranes. Collectively, 31P-NMR, electron paramagnetic resonance (EPR), proton NMR (1H-NMR), deuterium NMR (2H-NMR) spectroscopy, differential scanning calorimetry, and erythrosine phosphorescence assays suggest that CTI and CTII bind to CL to generate non-bilayer structures and promote the permeabilization, dehydration and fusion of large unilamellar phosphatidylcholine (PC) liposomes enriched with CL. On the other hand, CTII but not CTI caused biophysical alterations of large unilamellar PC liposomes enriched with phosphatidylserine (PS). Mechanistically, single molecule docking simulations identified putative CL, PS and PC binding sites in CTI and CTII. While the predicted binding sites for PS and PC share a high number of interactive amino acid residues in CTI and CTII, the CL biding sites in CTII and CTI are more divergent as it contains additional interactive amino acid residues. Overall, our data suggest that cytotoxins physically associate with mitochondrial membranes by binding to CL to disrupt mitochondrial structural integrity.  相似文献   

9.
Form A of the beta-D-galactoside alpha 2----3 sialyltransferase from porcine submaxillary glands was incorporated into liposomes. Incorporation was achieved by gel filtration of the enzyme in the presence of octylglucoside-phospholipid micelles. As detergent was removed during gel filtration, liposomes (average diameter, 370 A) with bound enzyme were formed and emerged unretarded from the column. The recovery of enzyme activity in the liposomes was about 40% of the initial activity starting with as little as 9 micrograms of transferase. Chromatography on Sepharose CL6B and sucrose density gradient centrifugation confirmed the association of enzyme with liposomes. In contrast to Form A, Form B of the sialyltransferase, which lacks the proposed lipid-binding domain of Form A, cannot be incorporated into liposomes. Form A of the transferase was also incorporated into liposomes composed of phosphatidylcholine, cholesterol, and a mixture of phospholipids from the membranes of the Golgi apparatus from porcine submaxillary glands. Although the transferase was distributed about equally on the internal and external surface of the phosphatidylcholine liposomes, most of the transferase was on the external surface in liposomes containing cholesterol (72%) or in liposomes containing Golgi apparatus phospholipids (88%). The enzyme bound to phosphatidylcholine liposomes was shown by kinetic analysis to have the same activity as that found in the presence of activity-stimulating detergents such as Triton X-100. Enzyme incorporated into cholesterol-containing liposomes had the same activity. In contrast, enzyme bound to liposomes formed from the Golgi apparatus mixed phospholipids had a lower activity, but one similar to that of the transferase in Golgi apparatus membranes. These studies suggest that the composition of a biological membrane may well influence the orientation of the transferase in the membrane as well as modulate its enzymic activity.  相似文献   

10.
Vesicular stomatitis virus (VSV) infection depends on the fusion of viral and cellular membranes, which is mediated by virus spike glycoprotein G at the acidic environment of the endosomal compartment. VSV G protein does not contain a hydrophobic amino acid sequence similar to the fusion peptides found among other viral glycoproteins, suggesting that membrane recognition occurs through an alternative mechanism. Here we studied the interaction between VSV G protein and liposomes of different phospholipid composition by force spectroscopy, isothermal titration calorimetry (ITC), and fluorescence spectroscopy. Force spectroscopy experiments revealed the requirement for negatively charged phospholipids for VSV binding to membranes, suggesting that this interaction is electrostatic in nature. In addition, ITC experiments showed that VSV binding to liposomes is an enthalpically driven process. Fluorescence data also showed the lack of VSV interaction with the vesicles as well as inhibition of VSV-induced membrane fusion at high ionic strength. Intrinsic fluorescence measurements showed that the extent of G protein conformational changes depends on the presence of phosphatidylserine (PS) on the target membrane. Although the increase in PS content did not change the binding profile, the rate of the fusion reaction was remarkably increased when the PS content was increased from 25 to 75%. On the basis of these data, we suggest that G protein binding to the target membrane essentially depends on electrostatic interactions, probably between positive charges on the protein surface and negatively charged phospholipids in the cellular membrane. In addition, the fusion is exothermic, indicating no entropic constraints to this process.  相似文献   

11.
《Biophysical journal》2021,120(17):3776-3786
Identification, visualization, and quantitation of cardiolipin (CL) in biological membranes is of great interest because of the important structural and physiological roles of this lipid. Selective fluorescent detection of CL using noncovalently bound fluorophore 1,1,2,2-tetrakis[4-(2-trimethylammonioethoxy)-phenylethene (TTAPE-Me) has been recently proposed. However, this dye was only tested on wild-type mitochondria or liposomes containing negligible amounts of other anionic lipids, such as phosphatidylglycerol (PG) and phosphatidylserine (PS). No clear preference of TTAPE-Me for binding to CL compared to PG and PS was found in our experiments on artificial liposomes, Escherichia coli inside-out vesicles, or Saccharomyces cerevisiae mitochondria in vitro or in situ, respectively. The shapes of the emission spectra for these anionic phospholipids were also found to be indistinguishable. Thus, TTAPE-Me is not suitable for detection, visualization, and localization of CL in the presence of other anionic lipids present in substantial physiological amounts. Our experiments and complementary molecular dynamics simulations suggest that fluorescence intensity of TTAPE-Me is regulated by dynamic equilibrium between emitting dye aggregates, stabilized by unspecific but thermodynamically favorable electrostatic interactions with anionic lipids, and nonemitting dye monomers. These results should be taken into consideration when interpreting past and future results of CL detection and localization studies with this probe in vitro and in vivo. Provided methodology emphasizes minimal experimental requirements, which should be considered as a guideline during the development of novel lipid-specific probes.  相似文献   

12.
Caspase-8 stably inserts into the mitochondrial outer membrane during extrinsic apoptosis. Inhibition of caspase-8 enrichment on the mitochondria impairs caspase-8 activation and prevents apoptosis. However, the function of active caspase-8 on the mitochondrial membrane remains unknown. In this study, we have identified a native complex containing caspase-8 and BID on the mitochondrial membrane, and showed that death receptor activation by Fas or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induced the cleavage of BID (tBID formation) within this complex. tBID then shifted to separate mitochondria-associated complexes that contained other BCL-2 family members, such as BAK and BCL-X(L). We report that cells stabilize active caspase-8 on the mitochondria in order to specifically target mitochondria-associated BID, and that BID cleavage on the mitochondria is essential for caspase-8-induced cytochrome c release. Our findings indicate that during extrinsic apoptosis, caspase-8 can specifically target BID where it is mostly needed, on the surface of mitochondria.  相似文献   

13.
Lon is an ATP-dependent serine protease that plays a significant role in the quality control of proteins in cells, degrading misfolded proteins and certain short-lived regulatory proteins under stresses as such heat-shock and UV irradiation. It is known that some polymers containing phosphate groups regulate enzymatic activity by binding with Lon. We focused on the phospholipids of biological membrane components such as phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol and cardiolipin (CL), and examined whether or not liposomes containing these phospholipids regulate the enzymatic activity of Lon. CL-containing liposomes specifically inhibited both the proteolytic and ATPase activities of Lon in a dose-dependent manner. In addition, on pull-down assay, we found that CL-containing liposomes selectively bound to Lon. The interaction between CL-containing liposomes and Lon changed with the order of addition of Mg(2+)/ATP. When CL-containing liposomes were added after the addition of Mg(2+)/ATP to Lon, the binding of CL-containing liposomes to Lon was significantly decreased as compared with the reversed order. In fact, we found that CL-containing liposomes bound to Lon, resulting in inhibition of the enzymatic activity of Lon. These results suggest that Lon interacts with CL in biological membranes, which may regulate the functions of Lon as a protein-degrading centre in accordance with environmental changes inside cells.  相似文献   

14.
大鼠心肌线粒体内、外膜磷脂动态结构的研究   总被引:4,自引:2,他引:2  
我们以DPH为荧光探针.用毫微秒荧光分光光度计测定了大鼠心肌线粒体及线粒体内、外膜的动态微细结构;用HPLC分析了磷脂组成.实验结果提示.完整线粒体膜流动性主要反映了线粒体外膜的运动状态.线粒体内膜微粘度及磷脂分子摇动角大于外膜,扩散速率小于外膜.除去了蛋白质的线粒体内、外膜磷脂脂质体膜流动性无明显差异.提示线粒体内膜的高微粘度与膜中所含有的多量蛋白有关.  相似文献   

15.
Glucose oxidase-containing liposomes (GOL) as well as detergent-modulated glucose oxidase-containing liposomes were prepared and characterized, focusing not only on the reactivity of the liposomes upon external addition of glucose but also on the leakage of the entrapped glucose oxidase (GO) from the liposomes with the aim of developing a reactive and stable liposomal GO system. The membranes of the GOL prepared were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and modulated with either Triton X-100 or cholate. In the absence of added detergent, no GO leakage from the GOL was observed while its enzymatic activity was very low (low glucose permeability). As detergent-modulated liposomes, mixed POPC/Triton X-100 and mixed POPC/cholate liposomes (abbreviated as TL and CL, respectively) were prepared at different effective detergent/POPC molar ratios (R(e)) ranging from R(e) = 0 to R(e) = R(e) (sat) (R(e) (sat) is the critical value of R(e) at which the liposome membrane is saturated with detergent). The reactivity of GO-loaded TL (abbreviated as GOTL) or GO-loaded CL (GOCL) increased drastically with increase in the respective detergent content in the liposomes. In the case of GOTL, at R(e) (sat) = 0.40, a high reactivity was measured with a simultaneous high extent of GO leakage, suggesting that the observed enzymatic reaction was catalyzed mainly by leaked GO, caused by the interaction of Triton X-100 with the POPC membrane. On the other hand, GOCL prepared at R(e) (sat) = 0.43 showed relatively high reactivity with only a small extent of GO leakage, suggesting that most of the enzyme reaction was limited by the glucose permeation across the bilayers of GOCL. The GO leakage from GOCL was found to occur mostly during the rearrangement of the liposomal membrane during the preparation of the GOCL (mixing the GOL and cholate). Fluorescence polarization measurements of membrane-associated DPH (1,6-diphenyl-1,3,5-hexatriene) indicated that CL prepared by modifying POPC with cholate did not lead to a drastic change in membrane fluidity, indicating that the interacting cholate molecules did not penetrate deeply into the POPC bilayers. In summary, it was clearly shown that the membrane permeability of GOL can be quite simply modulated by mixing it with a certain amount of cholate to form highly reactive and stable GOCL with minimal enzyme leakage.  相似文献   

16.
Escherichia coli phage-shock protein A (PspA), a 25.3 kDa peripheral membrane protein, is induced under the membrane stress conditions and is assumed to help maintain membrane potential. Here, we report that purified PspA, existing as a large oligomer, is really able to suppress proton leakage of the membranes. This was demonstrated for membrane vesicles prepared from the PspA-lacking E. coli mutants, and for membrane vesicles damaged by ethanol and Triton X-100 prepared from the mutant and the wild-type cells. PspA also suppressed proton leakage of damaged liposomes made from E. coli total lipids. Furthermore, we found that PspA bound preferentially to liposomes containing phosphatidylserine and phosphatidylglycerol. All these effects were not observed for monomer PspA that was prepared by refolding of urea-denatured PspA. These results indicate that oligomers of PspA bind to membrane phospholipids and suppress proton leakage.  相似文献   

17.
We review data supporting a model in which activated tBID results in an allosteric activation of BAK, inducing its intramembranous oligomerization into a proposed pore for cytochrome c efflux. The BH3 domain of tBID is not required for targeting but remains on the mitochondrial surface where it is required to trigger BAK to release cytochrome c. tBID functions not as a pore-forming protein but as a membrane targeted and concentrated death ligand. tBID induces oligomerization of BAK, and both Bid and Bak knockout mice indicate the importance of this event in the release of cytochrome c. In parallel, the full pro-apoptotic member BAX, which is highly homologous to BAK, rapidly forms pores in liposomes that release intravesicular FITC-cytochrome c approximately 20A. A definable pore progressed from approximately 11A consisting of two BAX molecules to a approximately 22A pore comprised of four BAX molecules, which transported cytochrome c. Thus, an activation cascade of pro-apoptotic proteins from BID to BAK or BAX integrates the pathway from surface death receptors to the irreversible efflux of cytochrome c. Cell Death and Differentiation (2000) 7, 1166 - 1173  相似文献   

18.
Three phospholipid transfer proteins, namely proteins I, II and III, were purified from the rabbit lung cytosolic fraction. The molecular masses of phospholipid transfer proteins I, II and III are 32 kilodaltons (kDa), 22 kDa and 32 kDa, respectively; their isoelectric point values are 6.5, 7.0 and 6.8, respectively. Phospholipid transfer proteins I and III transferred phosphatidylcholine (PC) and phosphatidylinositol (PI) from donor unilamellar liposomes to acceptor multilamellar liposomes; protein II transferred PC but not PI. All the three phospholipid transfer proteins transferred phosphatidylethanolamine poorly and showed no tendency to transfer triolein. The transfer of [14C]PC from unilamellar liposomes to multilamellar liposomes facilitated by each protein was affected differently by the presence of acidic phospholipids in the PC unilamellar liposomes. In an equal molar ratio of acidic phospholipid and PC, phosphatidylglycerol (PG) reduced the activities of proteins I and III by 70% (P = 0.0004 and 0.0032, respectively) whereas PI and phosphatidylserine (PS) had an insignificant effect. In contrast, the protein II activity was stimulated 2-3-times more by either PG (P = 0.0024), PI (P = 0.0006) or PS (P = 0.0038). In addition, protein II transferred dioleoylPC (DOPC) about 2-times more effectively than dipalmitoylPC (DPPC) (P = 0.0002), whereas proteins I and III transferred DPPC 20-40% more effectively than DOPC but this was statistically insignificant. The markedly different substrate specificities of the three lung phospholipid transfer proteins suggest that these proteins may play an important role in sorting intracellular membrane phospholipids, possibly including lung surfactant phospholipids.  相似文献   

19.
BIM and tBID are two BCL-2 homology 3 (BH3)-only proteins with a particularly strong capacity to trigger BAX-driven mitochondrial outer membrane permeabilization, a crucial event in mammalian apoptosis. However, the means whereby BIM and tBID fulfill this task is controversial. Here, we used a reconstituted liposomal system bearing physiological relevance to explore systematically how the BAX-permeabilizing function is influenced by interactions of BIM/BID-derived proteins and BH3 motifs with multidomain BCL-2 family members and with membrane lipids. We found that nanomolar dosing of BIM proteins sufficed to reverse completely the inhibition of BAX permeabilizing activity exerted by all antiapoptotic proteins tested (BCL-2, BCL-X(L), BCL-W, MCL-1, and A1). This effect was reproducible by a peptide representing the BH3 motif of BIM, whereas an equivalent BID BH3 peptide was less potent and more selective, reversing antiapoptotic inhibition. On the other hand, in the absence of BCL-2-type proteins, BIM proteins and the BIM BH3 peptide were inefficient, directly triggering the BAX-permeabilizing function. In contrast, tBID alone potently assisted BAX to permeabilize membranes at least in part by producing a structural distortion in the lipid bilayer via BH3-independent interaction of tBID with cardiolipin. Together, these results support the notion that BIM and tBID follow different strategies to trigger BAX-driven mitochondrial outer membrane permeabilization with strong potency.  相似文献   

20.
During normal tissue remodeling, macrophages remove unwanted cells, including those that have undergone programmed cell death, or apoptosis. This widespread process extends to the deletion of thymocytes (negative selection), in which cells expressing inappropriate Ag receptors undergo apoptosis, and are phagocytosed by thymic macrophages. Although phagocytosis of effete leukocytes by macrophages has been known since the time of Metchnikoff, only recently has it been recognized that apoptosis leads to surface changes that allow recognition and removal of these cells before they are lysed. Our data suggest that macrophages specifically recognize phosphatidylserine that is exposed on the surface of lymphocytes during the development of apoptosis. Macrophage phagocytosis of apoptotic lymphocytes was inhibited, in a dose-dependent manner, by liposomes containing phosphatidyl-L-serine, but not by liposomes containing other anionic phospholipids, including phosphatidyl-D-serine. Phagocytosis of apoptotic lymphocytes was also inhibited by the L isoforms of compounds structurally related to phosphatidylserine, including glycerophosphorylserine and phosphoserine. The membranes of apoptotic lymphocytes bound increased amounts of merocyanine 540 dye relative to those of normal cells, indicating that their membrane lipids were more loosely packed, consistent with a loss of membrane phospholipid asymmetry. Apoptotic lymphocytes were shown to express phosphatidylserine (PS) externally, because PS on their surfaces was accessible to derivatization by fluorescamine, and because apoptotic cells expressed procoagulant activity. These observations suggest that apoptotic lymphocytes lose membrane phospholipid asymmetry and expose phosphatidylserine on the outer leaflet of the plasma membrane. Macrophages then phagocytose apoptotic lymphocytes after specific recognition of the exposed PS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号