首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Unconventional epitopes presented by HLA class I complexes are emerging targets for T cell targeted immunotherapies. Their identification by mass spectrometry (MS) required development of novel methods to cope with the large number of theoretical candidates. Methods to identify post-translationally spliced peptides led to a broad range of outcomes. We here investigated the impact of three common database search engines – that is, Mascot, Mascot+Percolator, and PEAKS DB – as final identification step, as well as the features of target database on the ability to correctly identify non-spliced and cis-spliced peptides. We used ground truth datasets measured by MS to benchmark methods’ performance and extended the analysis to HLA class I immunopeptidomes. PEAKS DB showed better precision and recall of cis-spliced peptides and larger number of identified peptides in HLA class I immunopeptidomes than the other search engine strategies. The better performance of PEAKS DB appears to result from better discrimination between target and decoy hits and hence a more robust FDR estimation, and seems independent to peptide and spectrum features here investigated.  相似文献   

2.
Information about peptides and proteins in urine can be used to search for biomarkers of early stages of various diseases. The main technology currently used for identification of peptides and proteins is tandem mass spectrometry, in which peptides are identified by mass spectra of their fragmentation products. However, the presence of the fragmentation stage decreases sensitivity of analysis and increases its duration. We have developed a method for identification of human urinary proteins and peptides. This method based on the accurate mass and time tag (AMT) method does not use tandem mass spectrometry. The database of AMT tags containing more than 1381 AMT tags of peptides has been constructed. The software for database filling with AMT tags, normalizing the chromatograms, database application for identification of proteins and peptides, and their quantitative estimation has been developed. The new procedures for peptide identification by tandem mass spectra and the AMT tag database are proposed. The paper also lists novel proteins that have been identified in human urine for the first time.  相似文献   

3.
Performance evaluation of existing de novo sequencing algorithms   总被引:1,自引:0,他引:1  
Two methods have been developed for protein identification from tandem mass spectra: database searching and de novo sequencing. De novo sequencing identifies peptide directly from tandem mass spectra. Among many proposed algorithms, we evaluated the performance of the five de novo sequencing algorithms, AUDENS, Lutefisk, NovoHMM, PepNovo, and PEAKS. Our evaluation methods are based on calculation of relative sequence distance (RSD), algorithm sensitivity, and spectrum quality. We found that de novo sequencing algorithms have different performance in analyzing QSTAR and LCQ mass spectrometer data, but in general, perform better in analyzing QSTAR data than LCQ data. For the QSTAR data, the performance order of the five algorithms is PEAKS > Lutefisk, PepNovo > AUDENS, NovoHMM. The performance of PEAKS, Lutefisk, and PepNovo strongly depends on the spectrum quality and increases with an increase of spectrum quality. However, AUDENS and NovoHMM are not sensitive to the spectrum quality. Compared with other four algorithms, PEAKS has the best sensitivity and also has the best performance in the entire range of spectrum quality. For the LCQ data, the performance order is NovoHMM > PepNovo, PEAKS > Lutefisk > AUDENS. NovoHMM has the best sensitivity, and its performance is the best in the entire range of spectrum quality. But the overall performance of NovoHMM is not significantly different from the performance of PEAKS and PepNovo. AUDENS does not give a good performance in analyzing either QSTAR and LCQ data.  相似文献   

4.
A frequent goal of MS‐based proteomics experiments nowadays is to quantify changes in the abundance of proteins across several biological samples. The iTRAQ labeling method is a powerful technique; when combined with LC coupled to MS/MS it allows relative quantitation of up to eight different samples simultaneously. Despite the usefulness of iTRAQ current software solutions have limited functionality and require the combined use of several software programs for analysis of the data from different MS vendors. We developed an integrated tool, now available in the virtual expert mass spectrometrist (VEMS) program, for database‐dependent search of MS/MS spectra, quantitation and database storage for iTRAQ‐labeled samples. VEMS also provides useful alternative report types for large‐scale quantitative experiments. The implemented statistical algorithms build on quantitative algorithms previously used in proposed iTRAQ tools as described in detail herein. We propose a new algorithm, which provides more accurate peptide ratios for data that show an intensity‐dependent saturation. The accuracy of the proposed iTRAQ algorithm and the performance of VEMS are demonstrated by comparing results from VEMS, MASCOT and PEAKS Q obtained by analyzing data from a reference mixture of six proteins. Users can download VEMS and test data from “ http://www.portugene.com/software.html ”.  相似文献   

5.
A novel database search algorithm is presented for the qualitative identification of proteins over a wide dynamic range, both in simple and complex biological samples. The algorithm has been designed for the analysis of data originating from data independent acquisitions, whereby multiple precursor ions are fragmented simultaneously. Measurements used by the algorithm include retention time, ion intensities, charge state, and accurate masses on both precursor and product ions from LC‐MS data. The search algorithm uses an iterative process whereby each iteration incrementally increases the selectivity, specificity, and sensitivity of the overall strategy. Increased specificity is obtained by utilizing a subset database search approach, whereby for each subsequent stage of the search, only those peptides from securely identified proteins are queried. Tentative peptide and protein identifications are ranked and scored by their relative correlation to a number of models of known and empirically derived physicochemical attributes of proteins and peptides. In addition, the algorithm utilizes decoy database techniques for automatically determining the false positive identification rates. The search algorithm has been tested by comparing the search results from a four‐protein mixture, the same four‐protein mixture spiked into a complex biological background, and a variety of other “system” type protein digest mixtures. The method was validated independently by data dependent methods, while concurrently relying on replication and selectivity. Comparisons were also performed with other commercially and publicly available peptide fragmentation search algorithms. The presented results demonstrate the ability to correctly identify peptides and proteins from data independent acquisition strategies with high sensitivity and specificity. They also illustrate a more comprehensive analysis of the samples studied; providing approximately 20% more protein identifications, compared to a more conventional data directed approach using the same identification criteria, with a concurrent increase in both sequence coverage and the number of modified peptides.  相似文献   

6.
Kwon KH  Kim M  Kim JY  Kim KW  Kim SI  Park YM  Yoo JS 《Proteomics》2003,3(12):2305-2309
We compared peptide identification by database (DB) search methods with de novo sequencing results for proteomics study in an organism without genome sequence information. When the former was done by searching the Expressed Sequence Tag (EST) DB of the sample organism or the NCBI nonredundant (nr) protein DB of green plants using either the MASCOT or SEQUEST software program, it was confirmed that the former is as accurate as the latter. Peptides identified from EST DB were twice as many as those from the nr protein DB, in spite of the fact that the EST DB has less data (26 222 EST) than the NCBI nr protein DB (224 238). This study demonstrates that EST DB with tandem mass spectra can be used reliably for high-throughput proteomics studies in an organism without genome information.  相似文献   

7.
Proteome identification using peptide-centric proteomics techniques is a routinely used analysis technique. One of the most powerful and popular methods for the identification of peptides from MS/MS spectra is protein database matching using search engines. Significance thresholding through false discovery rate (FDR) estimation by target/decoy searches is used to ensure the retention of predominantly confident assignments of MS/MS spectra to peptides. However, shortcomings have become apparent when such decoy searches are used to estimate the FDR. To study these shortcomings, we here introduce a novel kind of decoy database that contains isobaric mutated versions of the peptides that were identified in the original search. Because of the supervised way in which the entrapment sequences are generated, we call this a directed decoy database. Since the peptides found in our directed decoy database are thus specifically designed to look quite similar to the forward identifications, the limitations of the existing search algorithms in making correct calls in such strongly confusing situations can be analyzed. Interestingly, for the vast majority of confidently identified peptide identifications, a directed decoy peptide-to-spectrum match can be found that has a better or equal match score than the forward match score, highlighting an important issue in the interpretation of peptide identifications in present-day high-throughput proteomics.  相似文献   

8.
Han X  He L  Xin L  Shan B  Ma B 《Journal of proteome research》2011,10(7):2930-2936
Tandem mass spectrometry (MS/MS) has been routinely used to identify peptides from a protein sequence database. To identify post-translationally modified peptides, most existing software requires the specification of a few possible modifications. However, such knowledge of possible modifications is not always available. In this paper, we describe a new algorithm for identifying modified peptides without requiring the user to specify the possible modifications; instead, all modifications from the Unimod database are considered. Meanwhile, several new techniques are employed to avoid the exponential growth of the search space, as well as to control the false discoveries due to this unrestricted search approach. Finally, a software tool, PeaksPTM, has been developed and already achieved a stronger performance than competitive tools for unrestricted identification of post-translational modifications.  相似文献   

9.
MassMatrix is a program that matches tandem mass spectra with theoretical peptide sequences derived from a protein database. The program uses a mass accuracy sensitive probabilistic score model to rank peptide matches. The MS/MS search software was evaluated by use of a high mass accuracy dataset and its results compared with those from MASCOT, SEQUEST, X!Tandem, and OMSSA. For the high mass accuracy data, MassMatrix provided better sensitivity than MASCOT, SEQUEST, X!Tandem, and OMSSA for a given specificity and the percentage of false positives was 2%. More importantly all manually validated true positives corresponded to a unique peptide/spectrum match. The presence of decoy sequence and additional variable PTMs did not significantly affect the results from the high mass accuracy search. MassMatrix performs well when compared with MASCOT, SEQUEST, X!Tandem, and OMSSA with regard to search time. MassMatrix was also run on a distributed memory clusters and achieved search speeds of ~100 000 spectra per hour when searching against a complete human database with eight variable modifications. The algorithm is available for public searches at http://www.massmatrix.net.  相似文献   

10.
The statistical validation of database search results is a complex issue in bottom-up proteomics. The correct and incorrect peptide spectrum match (PSM) scores overlap significantly, making an accurate assessment of true peptide matches challenging. Since the complete separation between the true and false hits is practically never achieved, there is need for better methods and rescoring algorithms to improve upon the primary database search results. Here we describe the calibration and False Discovery Rate (FDR) estimation of database search scores through a dynamic FDR calculation method, FlexiFDR, which increases both the sensitivity and specificity of search results. Modelling a simple linear regression on the decoy hits for different charge states, the method maximized the number of true positives and reduced the number of false negatives in several standard datasets of varying complexity (18-mix, 49-mix, 200-mix) and few complex datasets (E. coli and Yeast) obtained from a wide variety of MS platforms. The net positive gain for correct spectral and peptide identifications was up to 14.81% and 6.2% respectively. The approach is applicable to different search methodologies- separate as well as concatenated database search, high mass accuracy, and semi-tryptic and modification searches. FlexiFDR was also applied to Mascot results and showed better performance than before. We have shown that appropriate threshold learnt from decoys, can be very effective in improving the database search results. FlexiFDR adapts itself to different instruments, data types and MS platforms. It learns from the decoy hits and sets a flexible threshold that automatically aligns itself to the underlying variables of data quality and size.  相似文献   

11.
Mass spectrometers that provide high mass accuracy such as FT-ICR instruments are increasingly used in proteomic studies. Although the importance of accurately determined molecular masses for the identification of biomolecules is generally accepted, its role in the analysis of shotgun proteomic data has not been thoroughly studied. To gain insight into this role, we used a hybrid linear quadrupole ion trap/FT-ICR (LTQ FT) mass spectrometer for LC-MS/MS analysis of a highly complex peptide mixture derived from a fraction of the yeast proteome. We applied three data-dependent MS/MS acquisition methods. The FT-ICR part of the hybrid mass spectrometer was either not exploited, used only for survey MS scans, or also used for acquiring selected ion monitoring scans to optimize mass accuracy. MS/MS data were assigned with the SEQUEST algorithm, and peptide identifications were validated by estimating the number of incorrect assignments using the composite target/decoy database search strategy. We developed a simple mass calibration strategy exploiting polydimethylcyclosiloxane background ions as calibrant ions. This strategy allowed us to substantially improve mass accuracy without reducing the number of MS/MS spectra acquired in an LC-MS/MS run. The benefits of high mass accuracy were greatest for assigning MS/MS spectra with low signal-to-noise ratios and for assigning phosphopeptides. Confident peptide identification rates from these data sets could be doubled by the use of mass accuracy information. It was also shown that improving mass accuracy at a cost to the MS/MS acquisition rate substantially lowered the sensitivity of LC-MS/MS analyses. The use of FT-ICR selected ion monitoring scans to maximize mass accuracy reduced the number of protein identifications by 40%.  相似文献   

12.
False positive control/estimate in peptide identifications by MS is of critical importance for reliable inference at the protein level and downstream bioinformatics analysis. Approaches based on search against decoy databases have become popular for its conceptual simplicity and easy implementation. Although various decoy search strategies have been proposed, few studies have investigated their difference in performance. With datasets collected on a mixture of model proteins, we demonstrate that a single search against the target database coupled with its reversed version offers a good balance between performance and simplicity. In particular, both the accuracy of the estimate of the number of false positives and sensitivity is at least comparable to other procedures examined in this study. It is also shown that scrambling while preserving frequency of amino acid words can potentially improve the accuracy of false positive estimate, though more studies are needed to investigate the optimal scrambling procedure for specific condition and the variation of the estimate across repeated scrambling.  相似文献   

13.
The target-decoy database search strategy is widely accepted as a standard method for estimating the false discovery rate (FDR) of peptide identification, based on which peptide-spectrum matches (PSMs) from the target database are filtered. To improve the sensitivity of protein identification given a fixed accuracy (frequently defined by a protein FDR threshold), a postprocessing procedure is often used that integrates results from different peptide search engines that had assayed the same data set. In this work, we show that PSMs that are grouped by the precursor charge, the number of missed internal cleavage sites, the modification state, and the numbers of protease termini and that the proteins grouped by their unique peptide count should be filtered separately according to the given FDR. We also develop an iterative procedure to filter the PSMs and proteins simultaneously, according to the given FDR. Finally, we present a general framework to integrate the results from different peptide search engines using the same FDR threshold. Our method was tested with several shotgun proteomics data sets that were acquired by multiple LC/MS instruments from two different biological samples. The results showed a satisfactory performance. We implemented the method in a user-friendly software package called BuildSummary, which can be downloaded for free from http://www.proteomics.ac.cn/software/proteomicstools/index.htm as part of the software suite ProteomicsTools.  相似文献   

14.
The primary goal of proteomics is to gain a better understanding of biological function at the protein expression level. As the field matures, numerous technologies are being developed to aid in the identification, quantification and characterization of protein expression and post-translational modifications on a near-global scale. Stable isotope labeling by amino acids in cell culture is one such technique that has shown broad biological applications. While we have recently shown the application of this technology to a model of metastatic prostate cancer, we now report a substantial improvement in quantitative analysis using a linear ion-trap Fourier transform ion cyclotron resonance mass spectrometer (LTQ FT) and novel quantification software. This resulted in the quantification of nearly 1400 proteins, a greater than 3-fold increase in comparison to our earlier study. This dramatic increase in proteome coverage can be attributed to (1) use of a double-labeling strategy, (2) greater sensitivity, speed and mass accuracy provided by the LTQ FT mass spectrometer, and (3) more robust quantification software. Finally, by using a concatenated target/decoy protein database for our peptide searches, we now report these data in the context of an estimated false-positive rate of one percent.  相似文献   

15.
Development of robust statistical methods for validation of peptide assignments to tandem mass (MS/MS) spectra obtained using database searching remains an important problem. PeptideProphet is one of the commonly used computational tools available for that purpose. An alternative simple approach for validation of peptide assignments is based on addition of decoy (reversed, randomized, or shuffled) sequences to the searched protein sequence database. The probabilistic modeling approach of PeptideProphet and the decoy strategy can be combined within a single semisupervised framework, leading to improved robustness and higher accuracy of computed probabilities even in the case of most challenging data sets. We present a semisupervised expectation-maximization (EM) algorithm for constructing a Bayes classifier for peptide identification using the probability mixture model, extending PeptideProphet to incorporate decoy peptide matches. Using several data sets of varying complexity, from control protein mixtures to a human plasma sample, and using three commonly used database search programs, SEQUEST, MASCOT, and TANDEM/k-score, we illustrate that more accurate mixture estimation leads to an improved control of the false discovery rate in the classification of peptide assignments.  相似文献   

16.
17.
MOTIVATION: In proteomics, reverse database searching is used to control the false match frequency for tandem mass spectrum/peptide sequence matches, but reversal creates sequences devoid of patterns that usually challenge database-search software. RESULTS: We designed an unsupervised pattern recognition algorithm for detecting patterns with various lengths from large sequence datasets. The patterns found in a protein sequence database were used to create decoy databases using a Monte Carlo sampling algorithm. Searching these decoy databases led to the prediction of false positive rates for spectrum/peptide sequence matches. We show examples where this method, independent of instrumentation, database-search software and samples, provides better estimation of false positive identification rates than a prevailing reverse database searching method. The pattern detection algorithm can also be used to analyze sequences for other purposes in biology or cryptology. AVAILABILITY: On request from the authors. SUPPLEMENTARY INFORMATION: http://bioinformatics.psb.ugent.be/.  相似文献   

18.
Elias JE  Gygi SP 《Nature methods》2007,4(3):207-214
Liquid chromatography and tandem mass spectrometry (LC-MS/MS) has become the preferred method for conducting large-scale surveys of proteomes. Automated interpretation of tandem mass spectrometry (MS/MS) spectra can be problematic, however, for a variety of reasons. As most sequence search engines return results even for 'unmatchable' spectra, proteome researchers must devise ways to distinguish correct from incorrect peptide identifications. The target-decoy search strategy represents a straightforward and effective way to manage this effort. Despite the apparent simplicity of this method, some controversy surrounds its successful application. Here we clarify our preferred methodology by addressing four issues based on observed decoy hit frequencies: (i) the major assumptions made with this database search strategy are reasonable; (ii) concatenated target-decoy database searches are preferable to separate target and decoy database searches; (iii) the theoretical error associated with target-decoy false positive (FP) rate measurements can be estimated; and (iv) alternate methods for constructing decoy databases are similarly effective once certain considerations are taken into account.  相似文献   

19.
An important but difficult problem in proteomics is the identification of post-translational modifications (PTMs) in a protein. In general, the process of PTM identification by aligning experimental spectra with theoretical spectra from peptides in a peptide database is very time consuming and may lead to high false positive rate. In this paper, we introduce a new approach that is both efficient and effective for blind PTM identification. Our work consists of the following phases. First, we develop a novel tree decomposition based algorithm that can efficiently generate peptide sequence tags (PSTs) from an extended spectrum graph. Sequence tags are selected from all maximum weighted antisymmetric paths in the graph and their reliabilities are evaluated with a score function. An efficient deterministic finite automaton (DFA) based model is then developed to search a peptide database for candidate peptides by using the generated sequence tags. Finally, a point process model-an efficient blind search approach for PTM identification, is applied to report the correct peptide and PTMs if there are any. Our tests on 2657 experimental tandem mass spectra and 2620 experimental spectra with one artificially added PTM show that, in addition to high efficiency, our ab-initio sequence tag selection algorithm achieves better or comparable accuracy to other approaches. Database search results show that the sequence tags of lengths 3 and 4 filter out more than 98.3% and 99.8% peptides respectively when applied to a yeast peptide database. With the dramatically reduced search space, the point process model achieves significant improvement in accuracy as well. AVAILABILITY: The software is available upon request.  相似文献   

20.
Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for every possible PSM and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for most proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号