首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The term leukopoiesis describes processes leading to the production and regulation of white blood cells. It is based on stem cells differentiation and may exhibit abnormalities resulting in severe diseases, such as cyclical neutropenia and leukemias. We consider a nonlinear system of two equations, describing the evolution of a stem cell population and the resulting white blood cell population. Two delays appear in this model to describe the cell cycle duration of the stem cell population and the time required to produce white blood cells. We establish sufficient conditions for the asymptotic stability of the unique nontrivial positive steady state of the model by analysing roots of a second degree exponential polynomial characteristic equation with delay-dependent coefficients. We also prove the existence of a Hopf bifurcation which leads to periodic solutions. Numerical simulations of the model with parameter values reported in the literature demonstrate that periodic oscillations (with short and long periods) agree with observations of cyclical neutropenia in patients.  相似文献   

2.
Several hematological diseases are characterised by oscillations of various blood cell populations. Two of these are a variant of chronic myelogenous leukemia (CML) and cyclical neutropenia (CN). These oscillations typically have long periods ranging from 20 to 60 days, despite the fact that the stem cell cycling time is thought to be of the order of 2–3 days. Clinical data from humans and laboratory data from the grey collie animal model of CN is suggestive of the idea that these long period oscillations may also contain higher frequency spiky oscillations. We show how such oscillations can be understood in the context of slow periodic stem cell oscillations, by analysing a two component differential-delay equation model of stem cell and neutrophil populations.For Karl Hadeler, on his 70th birthday, leader, teacher, colleague and friend.  相似文献   

3.
A fundamental step in synthetic biology and systems biology is to derive appropriate mathematical models for the purposes of analysis and design. For example, to synthesize a gene regulatory network, the derivation of a mathematical model is important in order to carry out in silico investigations of the network dynamics and to investigate parameter variations and robustness issues. Different mathematical frameworks have been proposed to derive such models. In particular, the use of sets of nonlinear ordinary differential equations (ODEs) has been proposed to model the dynamics of the concentrations of mRNAs and proteins. These models are usually characterized by the presence of highly nonlinear Hill function terms. A typical simplification is to reduce the number of equations by means of a quasi-steady-state assumption on the mRNA concentrations. This yields a class of simplified ODE models. A radically different approach is to replace the Hill functions by piecewise-linear approximations [Casey, R., de Jong, H., Gouz, J.-L., 2006. Piecewise-linear models of genetic regulatory networks: equilibria and their stability. J. Math. Biol. 52 (1), 27-56]. A further modelling approach is the use of discrete-time maps [Coutinho, R., Fernandez, B., Lima, R., Meyroneinc, A., 2006. Discrete time piecewise affine models of genetic regulatory networks. J. Math. Biol. 52, 524-570] where the evolution of the system is modelled in discrete, rather than continuous, time. The aim of this paper is to discuss and compare these different modelling approaches, using a representative gene regulatory network. We will show that different models often lead to conflicting conclusions concerning the existence and stability of equilibria and stable oscillatory behaviours. Moreover, we shall discuss, where possible, the viability of making certain modelling approximations (e.g. quasi-steady-state mRNA dynamics or piecewise-linear approximations of Hill functions) and their effects on the overall system dynamics.  相似文献   

4.
We study the dynamics of a model of white-blood-cell (WBC) production. The model consists of two compartmental differential equations with two discrete delays. We show that from normal to pathological parameter values, the system undergoes supercritical Hopf bifurcations and saddle-node bifurcations of limit cycles. We characterize the steady states of the system and perform a bifurcation analysis. Our results indicate that an increase in apoptosis rate of either hematopoietic stem cells or WBC precursors induces a Hopf bifurcation and an oscillatory regime takes place. These oscillations are seen in some hematological diseases.  相似文献   

5.
We present a dynamical model of the production and regulation of circulating blood neutrophil number. This model is derived from physiologically relevant features of the hematopoietic system, and is analysed using both analytic and numerical methods. Supercritical Hopf bifurcations and saddle-node bifurcations of limit cycles are shown to exist. We make the estimation of kinetic parameters for dogs and then apply the model to cyclical neutropenia (CN) in the grey collie, a rare disorder in which oscillations in all blood cell counts are found. We conclude that the major cause of the oscillations in CN is an increased rate of apoptosis of neutrophil precursors which leads to a destabilization of the hematopoietic stem cell compartment.  相似文献   

6.
 “Mayer waves” are long-period (6 to 12 seconds) oscillations in arterial blood pressure, which have been observed and studied for more than 100 years in the cardiovascular system of humans and other mammals. A mathematical model of the human cardiovascular system is presented, incorporating parameters relevant to the onset of Mayer waves. The model is analyzed using methods of Liapunov stability and Hopf bifurcation theory. The analysis shows that increase in the gain of the baroreflex feedback loop controlling venous volume may lead to the onset of oscillations, while changes in the other parameters considered do not affect stability of the equilibrium state. The results agree with clinical observations of Mayer waves in human subjects, both in the period of the oscillations and in the observed age-dependence of Mayer waves. This leads to a proposed explanation of their occurrence, namely that Mayer waves are a gain-induced oscillation. Received: 15 September 1997/Revised version: 15 March 1998  相似文献   

7.
Transient oscillations induced by delayed growth response in the chemostat   总被引:2,自引:0,他引:2  
In this paper, in order to try to account for the transient oscillations observed in chemostat experiments, we consider a model of single species growth in a chemostat that involves delayed growth response. The time delay models the lag involved in the nutrient conversion process. Both monotone response functions and nonmonotone response functions are considered. The nonmonotone response function models the inhibitory effects of growth response of certain nutrients when concentrations are too high. By applying local and global Hopf bifurcation theorems, we prove that the model has unstable periodic solutions that bifurcate from unstable nonnegative equilibria as the parameter measuring the delay passes through certain critical values and that these local periodic solutions can persist, even if the delay parameter moves far from the critical (local) bifurcation values.When there are two positive equilibria, then positive periodic solutions can exist. When there is a unique positive equilibrium, the model does not have positive periodic oscillations and the unique positive equilibrium is globally asymptotically stable. However, the model can have periodic solutions that change sign. Although these solutions are not biologically meaningful, provided the initial data starts close enough to the unstable manifold of one of these periodic solutions they may still help to account for the transient oscillations that have been frequently observed in chemostat experiments. Numerical simulations are provided to illustrate that the model has varying degrees of transient oscillatory behaviour that can be controlled by the choice of the initial data.Mathematics Subject Classification: 34D20, 34K20, 92D25Research was partially supported by NSERC of Canada.This work was partly done while this author was a postdoc at McMaster.  相似文献   

8.
We consider an HIV pathogenesis model incorporating antiretroviral therapy and HIV replication time. We investigate the existence and stability of equilibria, as well as Hopf bifurcations to sustained oscillations when drug efficacy is less than 100%. We derive sufficient conditions for the global asymptotic stability of the uninfected steady state. We show that time delay has no effect on the local asymptotic stability of the uninfected steady state, but can destabilize the infected steady state, leading to a Hopf bifurcation to periodic solutions in the realistic parameter ranges.  相似文献   

9.
Periodic chronic myelogenous leukemia (PCML) is an interesting dynamical disease of the hematopoietic system in which oscillating levels of circulating leukocytes, platelets and/or reticulocytes are observed. Typically all of these three differentiated cell types have the same oscillation period, but the relation of the oscillation mean and amplitude to the normal levels is variable. Given the appearance of the abnormal Philadelphia chromosome in all of the nucleated progeny of the hematopoietic stem cells (HSCs), the most parsimonious conclusion is that chronic myelogenous leukemia, and its periodic variant, arise from derangements partially involving the dynamics of the stem cells. Here, we have synthesized several previous mathematical models of HSC dynamics, and models for the regulation of neutrophils, platelets and erythrocytes into a comprehensive model for the regulation of the hematopoietic system. Based on estimates of parameters for a typical normal human, we have systematically explored the changes in some of these parameters necessary to account for the quantitative data on leukocyte, platelet and reticulocyte cycling in 11 patients with PCML. Our results indicate that the critical model parameter changes required to simulate the PCML patient data are an increase in the amplification in the leukocyte line, an increase in the differentiation rate from the stem cell compartment into the leukocyte line, and the rate of apoptosis in the stem cell compartment. Our model system is particularly sensitive to changes in stem cell apoptosis rates, suggesting that changes in the numbers of proliferating stem cells may be important in generating PCML.  相似文献   

10.
11.
具有变消耗率微生物连续培养模型的定性分析   总被引:1,自引:0,他引:1  
研究了一类具有变消耗率的微生物连续培养系统,当消耗率是线性函数时得到了正平衡点全局渐近稳定的充要条件,当消耗率是二次函数时得到了系统存在极限环的充分条件,同时利用分支理论研究系统存在Hopf分支的条件,判定了极限环的稳定性.  相似文献   

12.
Mathematical examples are presented of oscillators with two variables which do not oscillate in isolation, but which do oscillate stably when coupled with a twin via difiusion. Two examples are presented, the LefeverPrigogine Brusselator and a system used to model glycolytic oscillations. The mathematical method is not the usual bifurcation theory, but rather a type of singular perturbation theory combined with bifurcation theory. For both examples, it is shown that all stationary solutions are unstable for appropriate parameter settings. In the case of the Brusselator, it is further shown that there exist limit cycles; i.e. stable oscillations, in this parameter range. A numerical example is presented.Partially supported by NSF  相似文献   

13.
We consider a two-trophic ecological model comprising of two predators competing for their common prey. We cast the model into the framework of a singular perturbed system of equations in one fast variable (prey population density) and two slow variables (predator population densities), mimicking the common observation that the per-capita productivity rate decreases from bottom to top along the trophic levels in Nature. We assume that both predators exhibit Holling II functional response with one of the predators (territorial) having a density dependent mortality rate. Depending on the system parameters, the model exhibits small, intermediate and/or large fluctuations in the population densities. The large fluctuations correspond to periodic population outbreaks followed by collapses (commonly known as cycles of “boom and bust”). The small fluctuations arise due to a singular Hopf bifurcation in the system, and are ecologically more desirable. However, more interestingly, the system exhibits mixed-mode oscillations (which are concatenations of the large amplitude oscillations and the small amplitude oscillations) that indicate the adaptability of the species to prolong the time gap between successive cycles of boom and bust. Numerical simulations are carried out to demonstrate the extreme sensitivity of the system to initial conditions (chaos and bistability of limit cycles are observed) as well as to the system parameters (here we only show the sensitivity to the density dependent mortality rate of the territorial predator). This model throws light at the uncertainties in long term behaviors that are associated with a real ecological system. We show that even very small changes in the system parameters due to natural or human-induced causes can lead to a complete different ecological phenomenon, thus affecting the predictability of the density of the prey population. In this paper, we explain the mechanisms behind the irregular fluctuations in the population sizes in an attempt to understand the dynamics occurring in a natural population and also comment on the inherent uncertainties associated with the system.  相似文献   

14.
Biologists have long observed periodic-like oxygen consumption oscillations in yeast populations under certain conditions, and several unsatisfactory explanations for this phenomenon have been proposed. These ‘autonomous oscillations’ have often appeared with periods that are nearly integer divisors of the calculated doubling time of the culture. We hypothesize that these oscillations could be caused by a form of cell cycle synchronization that we call clustering. We develop some novel ordinary differential equation models of the cell cycle. For these models, and for random and stochastic perturbations, we give both rigorous proofs and simulations showing that both positive and negative growth rate feedback within the cell cycle are possible agents that can cause clustering of populations within the cell cycle. It occurs for a variety of models and for a broad selection of parameter values. These results suggest that the clustering phenomenon is robust and is likely to be observed in nature. Since there are necessarily an integer number of clusters, clustering would lead to periodic-like behaviour with periods that are nearly integer divisors of the period of the cell cycle. Related experiments have shown conclusively that cell cycle clustering occurs in some oscillating yeast cultures.  相似文献   

15.
A mathematical model for control by repression by an extracellular substance is developed, including diffusion and time delays. The model examines how active transport of a nutrient can produce either oscillatory or stable responses depending on a variety of parameters, such as diffusivity, cell size, or nutrient concentration. The system of equations for the mathematical model is reduced to a system of delay differential equations and linear Volterra equations. After linearizing these equations and forming the limiting Volterra equations, the resulting linear system no longer has any spatial dependence. Local stability analysis of the radially symmetric model shows that the system of equations can undergo Hopf bifurcations for certain parameter values, while other ranges of the parameters guarantee asymptotic stability. One numerical study shows that the model can exhibit intracellular biochemical oscillations with increasing extracellular concentrations of the nutrient, which suggests a possible trigger mechanism for morphogenesis.The work of this author was supported in part by NSF grants DMS-8603787 and DMS-8807360The work of this author was supported under the REU program of NSF by grant DMS-8807360The work of this author was supported under the REU program of NSF by grant DMS-8807360  相似文献   

16.
In many existing predator–prey or plant–herbivore models, the numerical response is assumed to be proportional to the functional response. In this paper, without such an assumption, we consider a diffusive plant–herbivore system with Neumann boundary conditions. Besides stability of spatially homogeneous steady states, we also derive conditions for the occurrence of Hopf bifurcation and steady-state bifurcation and provide geometrical methods to locate the bifurcation values. We numerically explore the complex transient spatio-temporal behaviours induced by these bifurcations. A large variety of different types of transient behaviours including oscillations in one or both of space and time are observed.  相似文献   

17.
Nonlinear oscillatory systems, playing a major role in biology, do not exhibit harmonic oscillations. Therefore, one might assume that the average value of any of their oscillating variables is unequal to the steady-state value. For a number of mathematical models of calcium oscillations (e.g. the Somogyi–Stucki model and several models developed by Goldbeter and co-workers), the average value of the cytosolic calcium concentration (not, however, of the concentration in the intracellular store) does equal its value at the corresponding unstable steady state at the same parameter values. The average value for parameter values in the unstable region is even equal to the level at the stable steady state for other parameter values, which allow stability. This holds for all parameters except those involved in the net flux across the cell membrane. We compare these properties with a similar property of the Higgins–Selkov model of glycolytic oscillations and two-dimensional Lotka–Volterra equations. Here, we show that this equality property is critically dependent on the following conditions: There must exist a net flux across the model boundaries that is linearly dependent on the concentration variable for which the equality property holds plus an additive constant, while being independent of all others. A number of models satisfy these conditions or can be transformed such that they do so. We discuss our results in view of the question which advantages oscillations may have in biology. For example, the implications of the findings for the decoding of calcium oscillations are outlined. Moreover, we elucidate interrelations with metabolic control analysis. This paper is dedicated to the memory of the late Reinhart Heinrich, who was the academic teacher of S.S. and, to a great extent, also of M.M.  相似文献   

18.
具有稀疏效应的Predator-Prey模型的分支问题   总被引:4,自引:0,他引:4  
讨论了具有稀疏效应的捕食-食饵模型的分支问题,并利用Hopf分支理论和分界线环分支理论,得到了有多个极限环的结果。  相似文献   

19.
An susceptible-infective-removed epidemic model incorporating media coverage with time delay is proposed. The stability of the disease-free equilibrium and endemic equilibrium is studied. And then, the conditions which guarantee the existence of local Hopf bifurcation are given. Furthermore, we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of delay. The obtained results show that the time delay in media coverage can not affect the stability of the disease-free equilibrium when the basic reproduction number is less than unity. However, the time delay affects the stability of the endemic equilibrium and produces limit cycle oscillations while the basic reproduction number is greater than unity. Finally, some examples for numerical simulations are included to support the theoretical prediction.  相似文献   

20.
Structured population on two patches: modeling dispersal and delay   总被引:3,自引:0,他引:3  
We derive from the age-structured model a system of delay differential equations to describe the interaction of spatial dispersal (over two patches) and time delay (arising from the maturation period). Our model analysis shows that varying the immature death rate can alter the behavior of the homogeneous equilibria, leading to transient oscillations around an intermediate equilibrium and complicated dynamics (in the form of the coexistence of possibly stable synchronized periodic oscillations and unstable phase-locked oscillations) near the largest equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号