首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissociated brain cells were isolated from newborn rat pups and loaded with fura-2. These cells were sensitive to low N-methyl-D-aspartate (NMDA) concentrations with EC50 values for NMDA-induced intracellular Ca2+ concentration ([Ca2+]i) increases of approximately 7-16 microM measured in the absence of Mg2+. NMDA-stimulated [Ca2+]i increases could be observed in buffer with Mg2+ when the cells were predepolarized with 15 mM KCl prior to NMDA addition. Under these predepolarized conditions, 100 mM ethanol inhibited 25 microM NMDA responses by approximately 50%, which was similar to the ethanol inhibition observed in buffer without added Mg2+. Ethanol did not alter [Ca2+]i prior to NMDA addition. In the absence of Mg2+, 50 and 100 mM ethanol did not significantly alter the EC50 value for NMDA, but did inhibit NMDA-induced increases in [Ca2+]i in a concentration-dependent manner at 4, 16, 64, and 256 microM NMDA. Whereas NMDA-induced increases in [Ca2+]i were dependent on extracellular Ca2+ and were inhibited by Mg2+, the ability of 100 mM ethanol to inhibit 25 microM NMDA responses was independent of the external Ca2+ or Mg2+ concentrations. Glycine (1, 10, and 100 microM) enhanced 25 microM NMDA-induced increases in [Ca2+]i by approximately 50%. Glycine (1-100 microM) prevented the 100 mM ethanol inhibition of NMDA-stimulated [Ca2+]i observed in the absence of exogenous glycine. MK-801 (25-400 nM) inhibited 25 microM NMDA-stimulated rises in [Ca2+]i in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The glutamate receptor agonist N-methyl-D-aspartate (NMDA) stimulated a rapid, extracellular Ca(2+)-dependent conversion of [3H]arginine to [3H]citrulline in primary cultures of cerebellar granule cells, indicating receptor-mediated activation of nitric oxide (NO) synthase. The NMDA-induced formation of [3H]citrulline reached a plateau within 10 min. Subsequent addition of unlabeled L-arginine resulted in the disappearance of 3H from the citrulline pool, indicating a persistent activation of NO synthase after NMDA receptor stimulation. Glutamate, NMDA, and kainate, but not quisqualate, stimulated both the conversion of [3H]arginine to [3H]citrulline and cyclic GMP accumulation in a dose-dependent manner. Glutamate and NMDA showed similar potencies for the stimulation of [3H]citrulline formation and cyclic GMP synthesis, respectively, whereas kainate was more potent at inducing cyclic GMP accumulation than at stimulating [3H]citrulline formation. Both the [3H]arginine to [3H]citrulline conversion and cyclic GMP synthesis stimulated by NMDA were inhibited by the NMDA receptor antagonist MK-801 and by the inhibitors of NO synthase, NG-monomethyl-L-arginine (MeArg) and NG-nitro-L-arginine (NOArg). However, MeArg, in contrast to NOArg, also potently inhibited [3H]arginine uptake. Kainate (300 microM) stimulated 45Ca2+ influx to the same extent as 100 microM NMDA, but stimulated [3H]citrulline formation to a much lesser extent, which suggests that NO synthase is localized in subcellular compartments where the Ca2+ concentration is regulated mainly by the NMDA receptor.  相似文献   

3.
Uptake of 45Ca2+ by a microsomal fraction isolated pancreatic islets of non-inbred ob/ob mice was studied. ATP strongly stimulated 45Ca2+ uptake, the maximum effect being obtained with 2mM-ATP. GTP and CTP at this concentration did not increase the uptake. Scatchard analysis revealed at least two types of uptake mechanisms in the presence of 2mM-ATP; the apparent association constants were 1.1 x 10(5)m(-1) and less than 2.5 x 10(2)m(-1). In contradistinction to an unaffected low-affinity uptake, the high-affinity uptake was drastically decreased on ommission of ATP. The ATP-dependent and high-affinity uptake was half-saturated at about 10-20mum-Ca(2+) and was inhibited by 10 or 100mum cyclic AMP, 10mum cyclic GMP, 10 mum cyclic GMP, or 5mm-theophylline. 45ca2+ uptake in the absence of ATP was not affected by 100mum-cyclic AMP. In view of its sensitivity to ATP and cyclic nucleotides, the high-affinity Ca2+-uptake mechaniam may play a role in stimulus-secretion coupling in the beta-cells by regulating the cytosolic concentration of Ca2+.  相似文献   

4.
Nitric oxide (NO) has been implicated in both the pathogenesis of and protection from NMDA receptor-mediated neuronal injury. This apparent paradox has been attributed to alternate redox states of nitrogen monoxide, whereby, depending on the redox milieu, nitrogen monoxide can be neuroprotective via nitrosation chemistry or react with superoxide to form secondary toxic species. In our murine mixed cortical cell culture system, the NONOate-type NO donors diethylamine/NO complex sodium (Dea/NO), (Z)-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium++ +-1,2-diolate (Papa/NO), and spermine/NO complex sodium (Sper/NO), as well as the S-nitrosothiols S-nitroso-L-glutathione (GSNO) and S-nitroso-N-acetyl-D,L-penicillamine (SNAP) (NO+ equivalents), decreased NMDA-induced neuronal injury in a concentration-dependent manner. 8-Bromo-cyclic GMP did not mimic the inhibitory effects of the donors, suggesting that the neuroprotection was not the result of NO-stimulated neuronal cyclic GMP production. Furthermore, neuronal injury induced by exposure of cultures to H2O2 was not altered by the presence of Dea/NO, indicating the absence of a direct antioxidant effect. NONOates did, however, reduce NMDA-stimulated uptake of 45Ca2+, whereas high potassium-induced 45Ca2+ accumulation, a measurement of entry via voltage-gated calcium channels, was unaffected. The parallel reduction of 45Ca2+ accumulation and NMDA neurotoxicity by NONOates mimicked that seen with an NMDA receptor antagonist. Electrochemical measurements of NO via an NO-sensitive electrode demonstrated that neuroprotective concentrations of all donors produced appreciable amounts of NO over the 5-min time frame. Determination of the formation of NO+ equivalents, as assessed by N-nitrosation of 2,3-diaminonaphthylene, revealed little or no observable N-nitrosation by Sper/NO, GSNO, and SNAP with significant N-nitrosation observed by Papa/NO and Dea/NO. However, addition of ascorbate (400 microM) effectively prevented the nitrosation of 2,3-diaminonaphthylene produced by Dea/NO and Papa/NO without altering their neuroprotective properties or their effects on 45Ca2+ accumulation. Present results indicate that the intrinsic NO/NO+ characteristics of NO donor compounds may not be a good predictor of their ability to inhibit NMDA receptor-mediated neurotoxicity at the cellular level.  相似文献   

5.
Smooth muscle-mediated expansion and contraction of the vascular sinusoids of the corpora cavernosa may modulate male erectile function. To elucidate the biochemical events that control erection by promoting or inhibiting contraction of cavernosal smooth muscle, tissue from a potent man was grown in cell culture. The cells grew as noncontractile cultures, but had the following smooth muscle cell properties: These cells expressed desmin, the muscle cell-specific intermediate filament protein. They accumulated 45Ca2+ from the medium, which was released by exposure to the ionophore A23187, to cyclic nucleotides (cyclic guanosine 5'-monophosphate [GMP] much greater than cyclic adenosine 3',5'-monophosphate [AMP]), and to the phosphodiesterase inhibitor, papaverine; and; they accumulated Ca2+ in an ATP-dependent manner when the cultured cells were permeabilized by digitonin extraction. ATP-dependent Ca2+ uptake was inhibited approximately 80% by ruthenium red and simulated by cyclic GMP much greater than cyclic AMP. Inositol 1,4,5-trisphosphate (IP3), which is thought to mediate the release of Ca2+ by the smooth muscle cell sarcoplasmic reticulum in vivo, released approximately 0.85 pmol Ca2+/million cells from the digitonin-extracted cells. IP3-dependent release occurred in the presence of ruthenium red and was not affected by cyclic GMP or cyclic AMP. These results indicate that smooth muscle from this human source can be grown successfully in cell culture and that the biochemical pathways that regulate tension in vivo may be perpetuated in vitro. Moreover, some of the clinical responses to drugs administered in situ for erectile dysfunction (e.g. papaverine) may be the result of altered cavernosal smooth muscle cell Ca2+ exchange and may be mediated by cyclic GMP.  相似文献   

6.
The effects of adenosine 3' : 5'-monophosphate (cyclic AMP), guanosine 3' : 5'-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P). While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10(-5) M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP. Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10(-8) M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10(-8) M, while with cyclic AMP a concentration of 10(-5) M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P. These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

7.
Various prostaglandins (PGs) (10 nM-30 microM) were added to NG108-15 cells in culture, and changes in the levels of intracellular cyclic GMP and Ca2+ were investigated. Exposure of the cells to PGF2 alpha, PGD2, and PGE2 (10 microM) transiently increased the cyclic GMP content 7.5-, 3.9-, and 3.1-fold, respectively. Furthermore, the increased levels of cyclic GMP correlated well with the rise in cytosolic free Ca2+ concentrations induced by the PGs. Other PGs (10 microM), including metabolites and synthetic analogs, which had no effect on intracellular Ca2+, failed to increase the cyclic GMP content in the cells. When extracellular Ca2+ was depleted from the culture medium, the PG-induced increase in cyclic GMP level was almost completely abolished. In addition, treatment of the cells with quin 2 tetraacetoxymethyl ester dose-dependently inhibited the PG-induced cyclic GMP formation. The increase in cyclic GMP content caused by treatment of the cells with a high K+ level (50 mM) was completely blocked by voltage-dependent Ca2+ entry blockers, such as verapamil (10 microM), nifedipine (1 microM), and diltiazem (100 microM); however, the PG (10 microM)-induced increase in cyclic GMP content was not affected by such Ca2+ entry blockers. These findings indicate that PG-induced cyclic GMP formation may require the rise in intracellular Ca2+ level and that the voltage-dependent Ca2+ channels may not be involved in the PG-induced rise in Ca2+ content.  相似文献   

8.
Chronic treatment of neurons with either ethanol or competitive and noncompetitive antagonists of NMDA receptors leads to enhanced expression of NMDA receptor density and function in neurons. The signal transduction pathways for such receptor up-regulation are not known. The focus of the present study was on the role of Ca2+ entry into neurons, either through receptor or voltage-gated channels, in the expression of the NMDA receptor subunit NR1 and the 71-kDa glutamate-binding protein (GBP) of a glutamate/NMDA receptor-like complex. Chronic inhibition of NMDA receptors in cortical neurons in primary cultures by either 100 mM ethanol or 100 microM 2-amino-5-phosphonopentanoic acid (2-AP5) increased the expression of NR1 and GBP. The effect of 2-AP5 on the expression of the two proteins was not additive with that of ethanol when neuronal cultures were treated with both agents at the same time. However, the effects of ethanol on NR1 and GBP expression were blocked by the simultaneous treatment with NMDA (50 microM). Activation or inhibition of other glutamate ionotropic receptors had no effect on the expression of NR1 and GBP. The inhibition of L- or N-type voltage-sensitive Ca2+ channels and voltage-gated Na+ channels also had little effect on the expression of either protein; neither did exposure of neurons to elevated extracellular Ca2+ concentrations (3 or 5 mM). On the other hand, treatment of neurons for 48 h with the intracellular Ca2+ chelator BAPTA-AM as well as partial chelation of extracellular Ca2+ with EGTA caused an up-regulation in NR1 and GBP expression. The enhanced expression of NR1 in neurons treated for 48 h with either ethanol or EGTA was correlated with increases in the activity of NMDA receptors demonstrated as a doubling of the NMDA-stimulated rise in intracellular free Ca2+ concentration. The effects of chronic administration of EGTA on both NR1 expression as well as NMDA receptor function were probably related to an acute inhibition by EGTA of NMDA-induced Ca2+ influx into neurons. It appears that the expression of both the NR1 subunit of NMDA receptors and the GBP of a receptor-like complex is regulated by intracellular Ca2+, especially that entering through NMDA receptor ion channels.  相似文献   

9.
The role of calcium and guanosine 3':5'-monophosphate (cyclic GMP) in the regulation of thyroid metabolism has been investigated in dog thyroid slices. Carbamoylcholine enhanced glucose carbon-1 oxidation, protein iodination, cyclic GMP accumulation and decreased thyrotropin-induced adenosine 3':5'-monophosphate (cyclic AMP) accumulation and iodine secretion; it did not affect protein synthesis. The effects of carbamoylcholine were reproduced under various experimental conditions by supplementary calcium in the medium, ouabain, and in media in which Na+ had been replaced by choline chloride. They were inhibited by lanthanum. These results further support the hypothesis that free intracellular Ca2+ is the intracellular signal for carbamoylcholine effects and suggest that a Na+ -gradient-driven Ca2+ extrusion mechanism operates in the thyroid cell. Mn2+ reproduced the effect of Ca2+ on glucose oxidation, protein iodination and cyclic GMP accumulation in Ca2+ -depleted slices and medium, and thus mimicked some intracellular effects of Ca2+. On the other hand Mn2+ inhibited the carbamoylcholine effect on thyrotropin-induced thyroid secretion and cyclic AMP accumulation, and Ca2+ inhibited the Mn2+-induced cyclic GMP accumulation. This suggests that the two ions compete for the same channel. Similarly Mn2+ inhibited calcium effects in the presence of ionophore A23187. Procaine inhibited protein iodination under all conditions suggesting a primary effect; it also inhibited all carbamoylcholine and ouabain actions. However the drug did not inhibit the effects of choline chloride and its action was reversed by raising carbamoylcholine but not Ca2+ concentration; it is therefore doubtful that procaine acts by blocking Ca2+ channels. In media without added Ca2+, Mn2+ increased cyclic GMP accumulation but did not decrease thyrotropin-induced cyclic AMP accumulation or iodine secretion, which suggests that cyclic GMP cannot be the sole mediator of the latter two effects of carbamoylcholine.  相似文献   

10.
Cyclic GMP causes the release of endogenous Ca2+ from rod outer segments, whose plasma membrane has been made permeable, or from isolated discs. Approximately 11,000 Ca2+ ions are released per disc at saturating concentrations of cyclic GMP. The velocity and the amplitude of the release of Ca2+ are dependent on the concentration of cyclic GMP. The maximal rate of the Ca2+ efflux is approximately 7 X 10(4) Ca2+ ions s-1 rod-1. The Ca2+ release by cyclic GMP is independent of light. The activation of the efflux occurred within a narrow range of the cyclic GMP concentration (30-80 microM) and does not obey a simple Michaelis-Menten scheme. Instead, the kinetic analysis of the Ca2+ efflux suggests that a minimum number of 2 molecules of cyclic GMP activates the ion conductance in a cooperative fashion. The release of Ca2+ by cyclic GMP requires a gradient of Ca2+ ions across the disc membrane. If the endogenous Ca2+ gradient is dissipated by means of the ionophore A23187, the release of Ca2+ by cyclic GMP is abolished. Ca2+ is released by analogues of cyclic GMP which are either modified at the 8-carbon position of the imidazole ring or by the deaza-analogue of cyclic GMP. Congeners of cyclic GMP which are modified at the ribose, phosphodiester, or pyrimidine portion of the molecule are ineffective. The hydrolysis of cyclic GMP by the light-regulated phosphodiesterase of rod outer segments is not a necessary condition for the Ca2+ release because 8-bromo-cyclic GMP, a congener resistant to hydrolysis, is a more powerful activator of the release than cyclic GMP itself. Ca2+ release by cyclic GMP is inhibited by organic and inorganic blockers of Ca2+ channels. The l-stereoisomer of cis-diltiazem blocks the release of Ca2+ at micromolar concentrations, whereas the d-form is much less effective. These results suggest that disc membranes contain a cationic conductance which is permeable to Ca2+ ions and which is regulated through the cooperative binding of at least 2 molecules of cyclic GMP to regulatory sites of the transport protein. By this mechanism, subtle changes in the concentration of cyclic GMP could promote large changes in the flux of Ca2+ ions across the disc membrane.  相似文献   

11.
The effect of 4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride (NS-7), a neuroprotective compound, on Ca2+ channels involving the activation of nitric oxide synthase (NOS) was investigated in primary neuronal culture. The NOS activity was estimated from the cyclic GMP formation. The KCl (25 mM)-stimulated cyclic GMP formation was totally abolished by a combined treatment with nifedipine and omega-agatoxin IVA (omega-Aga), whereas spontaneous cyclic GMP formation was partially but significantly reduced by nifedipine. In contrast to nifedipine, NS-7 blocked KCl-stimulated cyclic GMP formation without affecting spontaneous cyclic GMP formation. Subsequently, the effects of nifedipine and NS-7 on L-type Ca2+ channels were compared. Nifedipine blocked equally the cyclic GMP formation stimulated by various concentrations of (+/-)-Bay K 8644, whereas NS-7 inhibited the maximal response without affecting the responses induced by low concentrations of (+/-)-Bay K 8644. The effects of NS-7 on L-type and P/Q-type Ca2+ channels involving KCl-stimulated cyclic GMP formation were subsequently examined. NS-7 suppressed the KCl-stimulated cyclic GMP formation measured in the presence of omega-Aga to almost the same extent as that determined in the presence of nifedipine. In contrast, NS-7 had no influence on ionomycin-induced enhancement of cyclic GMP formation. Finally, NS-7 reversed KCl-induced elevation of the intracellular free Ca2+ concentration. These findings suggest that NS-7 inhibits NOS activation in primary neuronal culture by reducing Ca2+ entry through L-type and P/Q-type Ca2+ channels, in which the inhibition is largely dependent on Ca2+ channel activity.  相似文献   

12.
Conantokins T and G are polypeptide toxins present in snails of the genus Conus. These substances were recently reported to act as N-methyl-D-aspartate (NMDA) antagonists. In the present study, we examined the possible mechanisms producing this antagonism. Conantokin-G inhibited spermine- and spermidine-stimulated [3H]MK-801 binding to extensively washed rat forebrain membranes in a noncompetitive manner with IC50 values of approximately 507 and approximately 946 nM, respectively. In contrast, glutamate-enhanced [3H]MK-801 binding was unaffected by conantokin-G concentrations of less than or equal to 20 microM. At concentrations greater than or equal to 5 microM, conantokin-G effected a modest, noncompetitive inhibition of glycine-stimulated [3H]MK-801 binding and also produced a small enhancement of basal [3H]MK-801 binding. Conantokin-G reduced (IC50 approximately 1.08 microM) the NMDA-stimulated accumulation of cyclic GMP in cerebellar granule cell cultures to basal values, but did not affect kainate-mediated increases in cyclic GMP. These findings indicate that conantokin-G acts as a noncompetitive NMDA antagonist through an allosteric inhibition of polyamine responses. The neurochemical profile of this polypeptide is distinct from previously described noncompetitive NMDA antagonists.  相似文献   

13.
Cholecystokinin and analogues increased the uptake of 2-deoxy-D-glucose and 3-O-methylglucose into isolated mouse pancreatic acini. This uptake was mediated by a facilitated glucose transport system that was saturable, stereospecific, and was inhibited by both phloretin and cytochalasin B. In agreement with previous studies of acinar function, caerulein was more potent and pentagastrin less potent than cholecystokinin in increasing sugar transport. The cholinergic analogue carbachol mimicked the effect of caerulein; atropine completely abolished the effects of carbachol but was without influence on the effects of the polypeptide hormones. In contrast, secretion, as well as dibutyryl cyclic AMP and dibutyryl cyclic GMP, had no effect on 2-deoxy-D-glucose uptake. Two lines of evidence suggested that hormonal stimulation of this sugar transport system was related to mobilization of cellular Ca2+. First, depletion of cellular Ca2+ by incubation of acini with ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA) reduced the effect of caerulein. Second, the Ca2+ ionophore A23187 mimicked the effects of caerulein on 2-deoxy-D-glucose uptake when Ca2+ was present in the medium.  相似文献   

14.
Cyclic nucleotide modulation of the sarcoplasmic reticulum calcium pump has been recognized for some time. Little is known, however, of cyclic nucleotide effects on the sarcolemmal Ca2+-pump. In sarcolemmal vesicles prepared from ventricular muscle by a recent technique (Jones, L.R., Maddock, S.W. and Besch, H.R. (1980) J. Biol. Chem. 255, 9971-9980) we have demonstrated via Millipore filtration that 10(-8) M and 10(-9) M cyclic GMP depressed the rate of ATP- and Mg2+-dependent 45Ca2+ uptake by 34% and 52%, respectively. Only at millimolar levels did cyclic AMP have any effect and the respective 5'-nucleotides had no effect at all. Parallel measurement of the associated (Ca2+ + Mg2+)-ATPase in the presence of either cyclic or 5'-nucleotides, however, revealed no concomitant depression in ATP hydrolysis. In another series of experiments, the cyclic GMP effect on 45Ca2+ uptake was associated with a significant decrease in the pump Vmax, and at the most effective concentration of cyclic GMP increased the apparent Km for Ca2+. These results suggest that cyclic GMP may depress ventricular Ca2+ efflux by decreasing the enzyme turnover and to a limited extent, decreasing pump affinity for Ca2+. This supports a hypothesis whereby cyclic GMP might modulate both local biochemical and electrophysiological events by an effect on a discrete, regional pool of intracellular Ca2+.  相似文献   

15.
Nitric oxide (NO) acts as a messenger molecule in the CNS by activating soluble guanylyl cyclase. Rat brain synaptosomal NO synthase was stimulated by Ca2+ in a concentration-dependent manner with half-maximal effects observed at 0.3 microM and 0.2 microM when its activity was assayed as formation of NO and L-citrulline, respectively. Cyclic GMP formation was apparently inhibited, however, at Ca2+ concentrations required for the activation of NO synthase, indicating a down-regulation of the signal in NO-producing cells. Purified synaptosomal guanylyl cyclase was not inhibited directly by Ca2+, and the effect was not mediated by a protein binding to guanylyl cyclase at low or high Ca2+ concentrations. In cytosolic fractions, the breakdown of cyclic GMP, but not that of cyclic AMP, was highly stimulated by Ca2+, and 3-isobutyl-1-methylxanthine did not block this reaction effectively. The effects of Ca2+ on cyclic GMP hydrolysis and on apparent guanylyl cyclase activities were abolished almost completely in the presence of the calmodulin antagonist calmidazolium, whose effect was attenuated by added calmodulin. Thus, a Ca2+/calmodulin-dependent cyclic GMP phosphodiesterase is highly active in synaptic areas of the brain and may prevent elevations of intracellular cyclic GMP levels in activated, NO-producing neurons.  相似文献   

16.
Phosphodiesterase activities of horse (and dog) thyroid soluble fraction were compared with either cyclic AMP (adenosine 3':3'-monophosphate) or cyclic GMP (guanosine 3':5'-monophosphate) as substrate. Optimal activity for cyclic AMP hydrolysis was observed at pH 8, and at pH 7.6 for cyclic GMP. Increasing concentrations of ethyleneglycol bis(2-aminoethyl)-N,N'-tetraacetic acid inhibited both phosphodiesterase activities; in the presence of exogenous Ca2+, this effect was shifted to higher concentrations of the chelator. In a dialysed supernatant preparation, Ca2+ had no significant stimulatory effect, but both Mg2+ and Mn2+ increased cyclic nucleotides breakdown. Mn2+ promoted the hydrolysis of cyclic AMP more effectively than that of cyclic GMP. For both substrates, substrate velocity curves exhibited a two-slope pattern in a Hofstee plot. Cyclic GMP stimulated cyclic AMP hydrolysis, both nucleotides being at micromolar concentrations. Conversely, at no concentration had cyclic AMP any stimulatory effect on cyclic GMP hydrolysis. 1-Methyl-3-isobutylxanthine and theophylline blocked the activation by cyclic GMP of cyclic GMP of cyclic AMP hydrolysis, whereas Ro 20-1724 (4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone), a non-methylxanthine inhibitor of phosphodiesterases, did not alter this effect. In dog thyroid slices, carbamoylcholine, which promotes an accumulation of cyclic GMP, inhibits the thyrotropin-induced increase in cyclic AMP. This inhibitory effect of carbamoylcholine was blocked by theophylline and 1-methyl-3-isobutylxanthine, but not by Ro 20-1724. It is suggested that the cholinergic inhibitory effect on cyclic AMP accumulation is mediated by cyclic GMP, through a direct activation of phosphodiesterase activity.  相似文献   

17.
Abstract: N -Methyl- d -aspartate (NMDA; 500 μ M ) stimulated the net release of preloaded tritiated norepinephrine from rat hippocampal slices. Both ethanol and the competitive glycine antagonist 7-chlorokynurenic acid (7-CK) dose-dependently inhibited NMDA-stimulated release without affecting basal, nonstimulated efflux. These inhibitory effects were readily reversed upon washout of the drugs. Over the concentration range tested (25–200 m M ), ethanol inhibited ∼65% of NMDA-stimulated release with an estimated IC50 of ∼70 m M . In contrast, 7-CK fully inhibited release (>95%) at a concentration of 30 μ M with half-maximal inhibition occurring at ∼2 μ M . The combination of 7-CK (1–30 μ M ) and ethanol (25–100 m M ) had an additive inhibitory effect on NMDA-stimulated release but did not alter the inhibitory potency of 7-CK. Calculated IC50values for 7-CK in the presence of 25, 50, or 100 m M ethanol were (mean × SEM; μ M ) 2.33 (0.11), 2.38 (0.23), and 1.99 (0.30), respectively. 7-CK (3 μ M ) inhibited NMDA-stimulated [3H]norepinephrine release by ∼50%. This inhibition was fully attenuated by the addition of the glycine agonistserine with complete reversal occurring at 30 μ M d -serine. Increasing the 7-CK concentration to 10 μ M shifted the d -serine dose-effect curve to the right in a parallel fashion as expected for a competitive antagonist. In contrast, the inhibitory effects of ethanol or the combination of 7-CK (3 μ M ) and ethanol (25 or 50 m M ) were not reversed by the addition of d -serine (0.1–1,000 μ M ). Together, these results suggest that ethanol's inhibition of NMDA-stimulated [3H]norepinephrine release from hippocampal slices is not due to a simple competitive interaction with the glycine site on the NMDA receptor.  相似文献   

18.
The effects of adenosine 3′ : 5′-monophosphate (cyclic AMP), guanosine 3′ : 5′-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P).While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10?5 M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP.Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10?8 M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10?8 M, while with cyclic AMP a concentration of 10?5 M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P.These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

19.
The present studies were performed to determine the role of cyclic GMP in regulating agonist mediated calcium entry in the pancreatic acinar cell. In guinea pig-dispersed pancreatic acini the findings demonstrated that carbachol stimulated a transient 20-40-fold rise in cellular cyclic GMP followed by a sustained 3-4-fold rise in cellular cyclic GMP. The guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), caused a dose-dependent inhibition of carbachol-stimulated increases in cellular cyclic GMP both during the initial transient large increase in cyclic GMP and the sustained increase in cyclic GMP. LY83583 also inhibited cellular Ca2+ influx during carbachol stimulation and reloading of the agonist-sensitive pool of Ca2+ at the termination of carbachol stimulation with atropine. The effect of the inhibition on reloading of the agonist-sensitive pool was secondary to its effects on the plasma membrane C2+ entry. The addition of dibutyryl cyclic GMP to LY83583-treated acini restored Ca2+ influx across the plasma membrane. Nitroprusside increased both cellular cyclic GMP and the rate of Ca2+ influx. During periods when plasma membrane Ca2+ entry was activated, cellular cyclic GMP levels were increased. These results suggest that agonist-induced increases in cellular cyclic GMP are necessary and sufficient to mediate the effects of the agonist on the plasma membrane Ca2+ entry mechanism.  相似文献   

20.
In the absence of cyclic nucleotides heart microsomes have two classes of calcium binding sites with binding constants of 0.69 and 0.071 micron-1 and capacities of 2.2 and 9.7 nmol/mg protein, respectively. Neither cyclic AMP nor monobutyryl cyclic AMP affect binding but cyclic GMP and monobutyryl cyclic GMP cause the complete loss of the high affinity calcium binding sites, Cyclic GMP (but not monobutyryl cyclic GMP) also causes a decrease in the binding constant of the low affinity binding sites. AMP, GMP and Tris-butyrate do not affect calcium binding. The effects of the cyclic nucleotides are direct and are not mediated by protein phosphorylation. Phosphorylation of microsomal proteins increases the binding constant but not the capacity of the high affinity calcium binding sites. The capacity and also, perhaps, binding constant of the low affinity sites is also increased by phosphorylation. In additon to their effects on calcium binding the cyclic nucleotides also affect the movements of calcium into and out of the microsomes. The effects are again direct and not mediated by protein phosphorylation. Cyclic GMP decreases the rate of Ca2+ efflux from preloaded cardiac microsomes and also appears to decrease the rate of uptake of Ca2+ by cardiac microsomes though this effect is less clear cut than the action on efflux. The cyclic nucleotide has a half maximal effect at a concentration of 100 microns. By contrast cyclic AMP increases the rate of influx of Ca2+ into heart microsomes and the rate of efflux of Ca2+ from preloaded preparations. The effect is, however, rather slight. It is suggested that the most obvious interpretation of these results is that cyclic GMP decreases the Ca2+ permeability of the cardiac microsomal membrane while cyclic AMP increases the permeability. In contrast to the results found with membrane preparations from certain other tissues phosphorylation of cardiac microsomal proteins does not appear to alter Ca2+ efflux or influx out of, or into, cardiac microsomal preparations. It is thus concluded that phosphorylation of cardiac microsomal proteins does not affect the Ca2+ permeability of the microsomal membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号