首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The (Na+ + K+)-ATPase from dog kidney and partially purified membranes from HK dog erythrocytes were labeled with [3H]ouabain, solubilized with C12E8 and analyzed by HPLC through a TSK-GEL G3000SW column in the presence of C12E8, Mg2+, HPO4(2-) and glycerol at 20-23 degrees C. The peaks of [3H]ouabain bound to the enzyme from dog kidney and HK dog erythrocyte membranes corresponded to each other with apparent molecular weights of 470 000-490 000. In addition, these bindings of [3H]ouabain to the (Na+ + K+)-ATPase were observed to be stable at 20-23 degrees C for at least 18 h after the solubilization.  相似文献   

2.
Soluble (Na+ + K+)-ATPase consisting predominantly of alpha beta-units with Mr below 170 000 was prepared by incubating pure membrane-bound (Na+ + K+)-ATPase (35-48 mumol Pi/min per mg protein) from the outer renal medulla with the non-ionic detergent dodecyloctaethyleneglycol monoether (C12E8). (Na+ + K+)-ATPase and potassium phosphatase remained fully active in the detergent solution at C12E8/protein ratios of 2.5-3, at which 50-70% of the membrane protein was solubilized. The soluble protomeric (Na+ + K+)-ATPase was reconstituted to Na+, K+ pumps in phospholipid vesicles by the freeze-thaw sonication procedure. Protein solubilization was complete at C12E8/protein ratios of 5-6, at the expense of partial inactivation, but (Na+ + K+)-ATPase and potassium phosphatase could be reactivated after binding of C12E8 to Bio-Beads SM2. At C12E8/protein ratios higher than 6 the activities were irreversibly lost. Inactivation could be explained by delipidation. It was not due to subunit dissociation since only small changes in sedimentation velocities were seen when the C12E8/protein ratio was increased from 2.9 to 46. As determined immediately after solubilization, S20,w was 7.4 S for the fully active (Na+ + K+)-ATPase, 7.3 S for the partially active particle, and 6.5 S for the inactive particle at high C12E8/protein ratios. The maximum molecular masses determined by analytical ultracentrifugation were 141 000-170 000 dalton for these protein particles. Secondary aggregation occurred during column chromatography, with formation of enzymatically active (alpha beta)2-dimers or (alpha beta)3-trimers with S20,w = 10-12 S and apparent molecular masses in the range 273 000-386 000 daltons. This may reflect non-specific time-dependent aggregation of the detergent micelles.  相似文献   

3.
Kinetic properties of C12E8-solubilized (Na+ + K+)-ATPase   总被引:1,自引:0,他引:1  
The properties of the rectal gland (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.8) solubilized in octaethyleneglycol dodecylmonoether ( C12E8 ) have been investigated. The kinetic properties of the solubilized enzyme resemble those of the membrane-bound enzyme to a large extent. The main difference is that Km for ATP for the (Na+ + K+)-ATPase is about 30 microM for the solubilized enzyme and about 100 microM for the membrane-bound enzyme. The Na+-form (E1) and the K+-form (E2) can also be distinguished in the solubilized enzyme, as seen from tryptic digestion, the intrinsic fluorescence and eosin fluorescence responses to Na+ and K+. The number of vanadate-binding sites is unchanged upon solubilization, and it is shown that vanadate binding is much more resistant to detergent inactivation than the enzymatic activities. The number of phosphorylation sites on the 95-100% pure supernatant enzyme is about 3.8 nmol/mg, and is equal to the number of vanadate sites. Inactivation of the enzyme by high concentrations of detergent can be shown to be related to the C12E8 /protein ratio, with a weight ratio of about 4 being a threshold for the onset of inactivation at low ionic strength. At high ionic strength, more C12E8 is required both for solubilization and inactivation. It is observed that the commercially available detergent polyoxyethylene 10-lauryl ether is much less deleterious than C12E8 , and its advantages in the assay of detergent-solubilized (Na+ + K+)-ATPase are discussed. The results show that (Na+ + K+)-ATPase can be solubilized in C12E8 in an active form, and that most of the kinetic and conformational properties of the membrane-bound enzyme are conserved upon solubilization. C12E8 -solubilized (Na+ + K+)-ATPase is therefore a good model system for a solubilized membrane protein.  相似文献   

4.
The tryptophan fluorescence emission of sarcoplasmic reticulum Ca2+-ATPase was studied both in purified ATPase vesicles and in ATPase solubilized with the nonionic detergent dodecyloctaethyleneglycolmonoether (C12E8). Fluorescence intensity changes in purified ATPase were titrated as a function of free Ca2+ in the medium. It exhibited a cooperative pattern, with a Hill number of 2.21 +/- 0.02 and K0.5 = 0.51 microM Ca2+. Upon solubilization of the ATPase, the cooperative pattern of fluorescence change was lost; the Hill number was 0.96 and K0.5 = 1.4 microM Ca2+. When solubilization was carried out in the presence of 0.5 or 1.0 mM CaCl2, followed by the titrations of fluorescence change in the micromolar Ca2+ range, the cooperative pattern was preserved under the same concentrations of C12E8 which would otherwise promote the loss in cooperativity. For the ATPase solubilized in millimolar Ca2+, the Hill number was 1.98 with a K0.5 = 1.5 microM Ca2+. The maximal amount of Ca2+ bound to the high affinity sites corresponded to approximately 1 mol of calcium/mol of polypeptide chains, both in purified ATPase vesicles and in the soluble ATPase. A model is suggested, which involves a minimum of 4 interacting Ca2+ sites (tetramers). Cooperativity is accounted for in the model by the predominance in the absence of Ca2+ of low affinity state (E') of the Ca2+ site (K'D = 5.7 x 10(-4) M), which would be congruent to 90 times more concentrated than (E), the high affinity state (KD = 1.9 x 10(-7) M). Simulations derived from this model fit the experimental data.  相似文献   

5.
The temperature dependence of ouabain-sensitive ATPase and phosphatase activities of membrane fragments containing the Na+/K+-ATPase were investigated in tissue from ox kidney, ox brain and from shark rectal glands. The shark enzyme was also tested in solubilized form. Arrhenius plots of the Na+/K+-ATPase activity seem to be linear up to about 20 degrees C, and non-linear above this temperature. The Arrhenius plots of mammalian enzyme (ox brain and kidney) were steeper, especially at temperatures below 20-30 degrees C, than that of shark enzyme. The Na+-ATPase activity showed a weaker temperature-dependence than the Na+/K+-ATPase activity. The phosphatase reactions measured, K+-stimulated, Na+/K+-stimulated and Na+/K+/ATP-stimulated, also showed a weaker temperature-dependence than the overall Na+/K+-ATPase activity. Among the phosphatase reactions, the largest change in slope of the Arrhenius plot was observed with the Na+/K+/ATP)-stimulated phosphatase reaction. The Arrhenius plots of the partial reactions were all non-linear. Solubilization of shark enzyme in C12E8 did not change the curvature of Arrhenius plots of the Na+/K+-ATPase activity or the K+-phosphatase activity. Since solubilization involves a disruption of the membrane and an 80% delipidation, the observed curvature of the Arrhenius plot can not be attributed to a property of the membrane as such.  相似文献   

6.
To better understand the adaptive strategies that led to freshwater invasion by hyper-regulating Crustacea, we prepared a microsomal (Na+, K+)-ATPase by differential centrifugation of a gill homogenate from the freshwater shrimp Macrobrachium olfersii. Sucrose gradient centrifugation revealed a light fraction containing most of the (Na+, K+)-ATPase activity, contaminated with other ATPases, and a heavy fraction containing negligible (Na+, K+)-ATPase activity. Western blotting showed that M. olfersii gill contains a single alpha-subunit isoform of about 110 kDa. The (Na+, K+)-ATPase hydrolyzed ATP with Michaelis Menten kinetics with K5, = 165+/-5 microM and Vmax = 686.1+/-24.7 U mg(-1). Stimulation by potassium (K0.5 = 2.4+/-0.1 mM) and magnesium ions (K0.5 = 0.76+/-0.03 mM) also obeyed Michaelis-Menten kinetics, while that by sodium ions (K0.5 = 6.0+/-0.2 mM) exhibited site site interactions (n = 1.6). Ouabain (K0.5 = 61.6+/-2.8 microM) and vanadate (K0.5 = 3.2+/-0.1 microM) inhibited up to 70% of the total ATPase activity, while thapsigargin and ethacrynic acid did not affect activity. The remaining 30% activity was inhibited by oligomycin, sodium azide and bafilomycin A. These data suggest that the (Na+, K+)-ATPase corresponds to about 70% of the total ATPase activity; the remaining 30%, i.e. the ouabain-insensitive ATPase activity, apparently correspond to F0F1- and V-ATPases, but not Ca-stimulated and Na- or K-stimulated ATPases. The data confirm the recent invasion of the freshwater biotope by M. olfersii and suggest that (Na+, K+)-ATPase activity may be regulated by the Na+ concentration of the external medium.  相似文献   

7.
The membrane ATPase (EC 3.6.1.3) of Bacillus subtilis can be solubilized by a shock-wash process. Two procedures for purifying the solubilized enzyme are reported. A protease inhibitor, phenylmethane sulfonylfluoride, was introduced in the solubilization and purification step. The resultant ATPase purified by density gradient centrifugation has a molecular weight of 315 000, an s20,w of 13,4 and an amino acid composition very similar to bacterial ATPases already studied. After exposure to polyacrylamide gel electrophoresis in presence of sodium dodecyl sulphate (SDS), or 8 M urea or SDS-urea, the purified ATPase can be dissociated in two non-identical subunits of molecular weights 59 000 (alpha) and 57 000 (beta) with different charges. Kinetic studies showed that Ca2+ or Zn2+ are required for ATPase activity, although Mg2+ was uneffective. At optimal Ca2+ concentration, the Mg2+ has an inhibitory effect. The Km for ATP is 1.3 mM. Inhibitors of the oxydative phosphorylation, of the mitochondrial ATPase and of the (Na+ + K+)-ATPase are studied.  相似文献   

8.
The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase.  相似文献   

9.
A procedure has been developed for the separation of intrinsic proteins of plasma membranes from the electric organ of Torpedo marmorata. (Na+ + K+)-ATPase, nicotinic acetylcholine receptor and acetylcholinesterase remained active after solubilization with the nonionic detergent dodecyl octaethylene glycol monoether (C12E8). These components could be separated by ion exchange chromatography on DEAE-Sephadex A-25. Fractions enriched in ouabain-sensitive K+-phosphatase or (Na+ + K+)-ATPase activity showed two bands in sodium dodecyl sulphate polyacrylamide gel electrophoresis corresponding to the alpha- and beta-subunits. The (Na+ + K+)-ATPase was shown to have immunological determinants in common with a 93 kDa polypeptide which copurified with the nicotinic acetylcholine receptor, also after solubilization in Triton X-100 and chromatography on Naja naja siamensis alpha-toxin-Sepharose columns. The data suggest that the alpha-subunit of (Na+ + K+)-ATPase associates with the acetylcholine receptor in the membranes of the electric organ.  相似文献   

10.
Membranous (Na+ + K+)-ATPase from the electric eel was solubilized with 3-[3-cholamidopropyl)-dimethylammonio)-1-propanesulfonate (Chaps). 50 to 70% of the solubilized enzyme was reconstituted in egg phospholipid liposomes containing cholesterol by using Chaps. The obtained proteoliposomes consisted of large vesicles with a diameter of 134 +/- 24 nm as the major component, and their protein/lipid ratio was 1.25 +/- 0.07 g protein/mol phospholipid. The intravesicular volume of these proteoliposomes is too small to consistently sustain the intravesicular concentrations of ligands, especially K+, during the assay. The decrease in K+ concentration was cancelled by the addition of 20 microM valinomycin in the assay medium. The low value of the protein/lipid ratio suggests that these proteoliposomes contain one Na+/K+-pump particle with a molecular mass of 280 kDa per one vesicle as the major component. In these proteoliposomes, the specific activity of the (Na+ + K+)-ATPase reaction was 10 mumol Pi/mg protein per min, and the turnover rate of the ATP-hydrolysis was 3500 min-1, the same as the original enzyme under the same assay condition. The ratio of transported Na+ to hydrolyzed ATP was 3, the same as that in the red cell. The proteoliposomes could be disintegrated by 40-50 mM Chaps without any significant inactivation. This disintegration of proteoliposomes nearly tripled the ATPase activity compared to the original ones and doubled the specific ATPase activity compared to the membranous enzyme, but the turnover rate was the same as the original proteoliposomes and the membranous enzyme. This disintegration of proteoliposomes by Chaps suggests the selective incorporation of the (Na+ + K+)-ATPase particle into the liposomes and the asymmetric orientation of the (Na+ + K+)-ATPase particle in the vesicle.  相似文献   

11.
Bass gill microsomal preparations contain both a Na+, K+ and Mg2+-dependent ATPase, which is completely inhibited by 10(-3)M ouabain and 10(-2)M Ca2+, and also a ouabain insensitive ATP-ase activity in the presence of both Mg2+ and Na+. Under the optimal conditions of pH 6.5, 100 mM Na+, 20 mM K+, 5 mM ATP and 5 mM Mg2+, (Na+ + K+)-ATPase activity at 30 degrees C is 15.6 mumole Pi hr/mg protein. Bass gill (Na+ + K+)-ATPase is similar to other (Na+ + K+)-ATPases with respect to the sensitivity to ionic strength, Ca2+ and ouabain and to both Na+/K+ and Mg2+/ATP optimal ratios, while pH optimum is lower than poikilotherm data. The enzyme requires Na+, whereas K+ can be replaced efficiently by NH+4 and poorly by Li+. Both Km and Vm values decrease in the series NH+4 greater than K+ greater than Li+. The break of Arrhenius plot at 17.7 degrees C is close to the adaptation temperature. Activation energies are scarcely different from each other and both lower than those generally reported. The Km for Na+ poorly decreases as the assay temperature lowers. The comparison with literature data aims at distinguishing between distinctive and common features of bass gill (Na+ + K+)-ATPase.  相似文献   

12.
To better comprehend the mechanisms of ionic regulation, we investigate the modulation by Na+, K+, NH4(+) and ATP of the (Na+, K+)-ATPase in a microsomal fraction from Callinectes ornatus gills. ATP hydrolysis obeyed Michaelis-Menten kinetics with KM=0.61+/-0.03 mmol L(-1) and maximal rate of V=116.3+/-5.4 U mg(-1). Stimulation by Na+ (V=110.6+/-6.1 U mg(-1); K0.5=6.3+/-0.2 mmol L(-1)), Mg2+ (V=111.0+/-4.7 U mg(-1); K0.5=0.53+/-0.03 mmol L(-1)), NH4(+) (V=173.3+/-6.9 U mg(-1); K0.5=5.4+/-0.2 mmol L(-1)) and K+ (V=116.0+/-4.9 U mg(-1); K0.5=1.5+/-0.1 mmol L(-1)) followed a single saturation curve, although revealing site-site interactions. In the absence of NH4(+), ouabain (K(I)=74.5+/-1.2 micromol L(-1)) and orthovanadate inhibited ATPase activity by up to 87%; the inhibition patterns suggest the presence of F0F1 and K+-ATPases but not Na+-, V- or Ca2+-ATPase as contaminants. (Na+, K+)-ATPase activity was synergistically modulated by K+ and NH4(+). At 10 mmol L(-1) K+, increasing NH4(+) concentrations stimulated maximum activity to V=185.9+/-7.4 U mg(-1). However, at saturating NH4(+) (50 mmol L(-1)), increasing K+ concentrations did not stimulate activity further. Our findings provide evidence that the C. ornatus gill (Na+, K+)-ATPase may be particularly well suited for extremely efficient active NH4(+) excretion. At elevated NH4(+) concentrations, the enzyme is fully active, regardless of hemolymph K+ concentration, and K+ cannot displace NH4(+) from its exclusive binding sites. Further, the binding of NH4(+) to its specific sites induces an increase in enzyme apparent affinity for K+, which may contribute to maintaining K+ transport, assuring that exposure to elevated ammonia concentrations does not lead to a decrease in intracellular potassium levels. This is the first report of modulation by ammonium ions of C. ornatus gill (Na+, K+)-ATPase, and should further our understanding of NH4(+) excretion in benthic crabs.  相似文献   

13.
The oligomeric state of canine renal NA+/K+ -ATPase solubilized by octaethylene glycol n-dodecyl ether (C12E8) was studied by means of low-angle laser light scattering photometry coupled with high-performance gel chromatography (HPGC). At around 0 degree C the solubilized enzyme was separated into the (alpha beta)2-diprotomeric and alpha beta-protomeric protein components with Mr values of 302,000 +/- 10,000 and 156,000 +/- 4,000, respectively, in approximately equal quantities. As the temperature of chromatography was increased toward 20 degrees C, the two protein components converged into a single major component. The Mr of this component depended on the monovalent cation included in the elution buffer, and was 255,000 or 300,000 in the presence of 0.1 M NaCl or 0.1 M KCl, respectively. A computer simulation technique showed that the solubilized enzyme was in a dissociation-association equilibrium of 2 protomers = diprotomer at 20 degrees C, and the difference in apparent Mr of the solubilized enzyme between the two species of monovalent cation was interpreted by an association constant (Ka) in the presence of 0.1 M KCl that was about 50-fold larger than in the presence of 0.1 M NaCl. In order to measure ATPase activity and Mr of the solubilized enzyme simultaneously, a TSKgel G3000SW column had been equilibrated and was eluted with an elution buffer containing 0.30 mg/ml C12E8 and 60 microgram/ml phosphatidylserine (bovine brain) as well as the ligands necessary for the enzyme to exhibit the activity at pH 7.0 and 20 degrees C. The solubilized enzyme was always eluted as a single protein component irrespective of the the amount of the protein applied to the column, ranging between 240 and 10 microgram. The Mr of the protein component, however, decreased from 214,000 and 158,000 with the decrease of the protein amount. The specific ATPase activity, however, remained constant at a level of 64 +/- 4% of that of the membrane-bound enzyme even in the range of protein concentration sufficiently low as to allow the enzyme to exist only in the protomeric form. Thus, the alpha beta-protomer is concluded to be the minimum functional unit for the ATPase activity. The value of Ka obtained from the concentration-dependent dissociation curve was 5 . 10(5) M-1 for the enzyme turning over, and 1.1 . 10(7) M-1 for the enzyme inhibited with ouabain. It was discussed, based on the values of Ka obtained, that the enzyme would exist as the diprotomer or the higher oligomer in the membrane.  相似文献   

14.
The interaction between Ca2+-ATPase molecules in the native sarcoplasmic reticulum membrane and in detergent solutions was analyzed by chemical crosslinking, high performance liquid chromatography (HPLC), and by the polarization of fluorescence of fluorescein 5'-isothiocyanate (FITC) covalently attached to the Ca2+-ATPase. Reaction of sarcoplasmic reticulum vesicles with glutaraldehyde causes the crosslinking of Ca2+-ATPase molecules with the formation of dimers, tetramers and higher oligomers. At moderate concentrations of glutaraldehyde solubilization of sarcoplasmic reticulum by C12 E8 or Brij 36T (approximately equal to 4 mg/mg protein) decreased the formation of higher oligomers without significant interference with the appearance of crosslinked ATPase dimers. These observations are consistent with the existence of Ca2+-ATPase dimers in detergent-solubilized sarcoplasmic reticulum. Ca2+ (2-20 mM) and glycerol (10-20%) increased the degree of crosslinking at pH 6.0 both in vesicular and in solubilized sarcoplasmic reticulum, presumably by promoting interactions between ATPase molecules; at pH 7.5 the effect of Ca2+ was less pronounced. In agreement with these observations, high performance liquid chromatography of sarcoplasmic reticulum proteins solubilized by Brij 36T or C12 E10 revealed the presence of components with the expected elution characteristics of Ca2+-ATPase oligomers. The polarization of fluorescence of FITC covalently attached to the Ca2+-ATPase is low in the native sarcoplasmic reticulum due to energy transfer, consistent with the existence of ATPase oligomers (Highsmith, S. and Cohen, J.A. (1987) Biochemistry 26, 154-161); upon solubilization of the sarcoplasmic reticulum by detergents, the polarization of fluorescence increased due to dissociation of ATPase oligomers. Based on its effects on the fluorescence of FITC-ATPase, Ca2+ promoted the interaction between ATPase molecules, both in the native membrane and in detergent solutions.  相似文献   

15.
Membrane-bound (Na+ + K+)-ATPase from pig kidney outer medulla shows apparent heterogeneity in its ATP-binding site population when assays are carried out in the presence of K+. This finding has been interpreted as being due to interaction between (at least) two subunits, each containing an ATP-binding site. Treating the membrane-bound enzyme with the detergent, C12E8, has been shown to solubilize enzymatically active alpha beta-protomers. We show that in the dissolved enzyme all ATP-binding sites in the population are identical both in the absence and in the presence of K+, which would be consistent with an abolition of identical both in the absence and in the presence of K+, which would be consistent with an abolition of subunit-subunit interaction. This supports previous suggestions that enzyme solubilized by C12E8 is monomeric and that the membrane-bound enzyme is not. Differential extraction of enzyme-containing membranes with C12E8 yielded preparations with an ATP-binding capacity of up to 5.8 nmol per mg protein, measured by the method of Lowry et al. (Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275), with bovine serum albumin as standard. Evidence is presented that makes it likely that preparations with an ATP-binding capacity of 7.5 nmol per mg protein (as determined by the above-mentioned assay) will be obtainable. This corresponds to an alpha beta-protomer molecular weight of 133 000 which approximates closely to the minimum value found in the literature for an alpha beta-protomer (i.e., 126 000).  相似文献   

16.
The alpha- and beta-subunits of Na+,K+-ATPase and H+,K+-ATPase were expressed in Sf9 cells in different combinations. Immunoprecipitation of the alpha-subunits resulted in coprecipitation of the accompanying beta-subunit independent of the type of beta-subunit. This indicates cross-assembly of the subunits of the different ATPases. The hybrid ATPase with the catalytic subunit of Na+,K+-ATPase and the beta-subunit of H+,K+-ATPase (NaKalphaHKbeta) showed an ATPase activity, which was only 12 +/- 4% of the activity of the Na+,K+-ATPase with its own beta-subunit. Likewise, the complementary hybrid ATPase with the catalytic subunit of H+,K+-ATPase and the beta-subunit of Na+,K+-ATPase (HKalphaNaKbeta) showed an ATPase activity which was 9 +/- 2% of that of the recombinant H+,K+-ATPase. In addition, the apparent K+ affinity of hybrid NaKalphaHKbeta was decreased, while the apparent K+ affinity of the opposite hybrid HKalphaNaKbeta was increased. The hybrid NaKalphaHKbeta could be phosphorylated by ATP to a level of 21 +/- 7% of that of Na+,K+-ATPase. These values, together with the ATPase activity gave turnover numbers for NaKalphabeta and NaKalphaHKbeta of 8800 +/- 310 min-1 and 4800 +/- 160 min-1, respectively. Measurements of phosphorylation of the HKalphaNaKbeta and HKalphabeta enzymes are consistent with a higher turnover of the former. These findings suggest a role of the beta-subunit in the catalytic turnover. In conclusion, although both Na+,K+-ATPase and H+,K+-ATPase have a high preference for their own beta-subunit, they can function with the beta-subunit of the other enzyme, in which case the K+ affinity and turnover number are modified.  相似文献   

17.
The properties of Ca(2+)-ATPase purified and reconstituted from bovine pulmonary artery smooth muscle microsomes {enriched with endoplasmic reticulum (ER)} were studied using the detergents 1,2-diheptanoyl-sn-phosphatidylcholine (DHPC), poly(oxy-ethylene)8-lauryl ether (C(12)E(8)) and Triton X-100 as the solubilizing agents. Solubilization with DHPC consistently gave higher yields of purified Ca(2+)-ATPase with a greater specific activity than solubilization with C(12)E(8) or Triton X-100. DHPC was determined to be superior to C(12)E(8); while that the C(12)E(8) was determined to be better than Triton X-100 in active enzyme yields and specific activity. DHPC solubilized and purified Ca(2+)-ATPase retained the E1Ca-E1*Ca conformational transition as that observed for native microsomes; whereas the C(12)E(8) and Triton X-100 solubilized preparations did not fully retain this transition. The coupling of Ca(2+) transported to ATP hydrolyzed in the DHPC purified enzyme reconstituted in liposomes was similar to that of the native micosomes, whereas that the coupling was much lower for the C(12)E(8) and Triton X-100 purified enzyme reconstituted in liposomes. The specific activity of Ca(2+)-ATPase reconstituted into dioleoyl-phosphatidylcholine (DOPC) vesicles with DHPC was 2.5-fold and 3-fold greater than that achieved with C(12)E(8) and Triton X-100, respectively. Addition of the protonophore, FCCP caused a marked increase in Ca(2+) uptake in the reconstituted proteoliposomes compared with the untreated liposomes. Circular dichroism analysis of the three detergents solubilized and purified enzyme preparations showed that the increased negative ellipticity at 223 nm is well correlated with decreased specific activity. It, therefore, appears that the DHPC purified Ca(2+)-ATPase retained more organized and native secondary conformation compared to C(12)E(8) and Triton X-100 solubilized and purified preparations. The size distribution of the reconstituted liposomes measured by quasi-elastic light scattering indicated that DHPC preparation has nearly similar size to that of the native microsomal vesicles whereas C(12)E(8) and Triton X-100 preparations have to some extent smaller size. These studies suggest that the Ca(2+)-ATPase solubilized, purified and reconstituted with DHPC is superior to that obtained with C(12)E(8) and Triton X-100 in many ways, which is suitable for detailed studies on the mechanism of ion transport and the role of protein-lipid interactions in the function of the membrane-bound enzyme.  相似文献   

18.
Oligomycin induces occlusion of Na+ in membrane-bound Na,K-ATPase. Here it is shown that Na,K-ATPase from pig kidney or shark rectal gland solubilized in the nonionic detergent C12E8 is capable of occluding Na+ in the presence of oligomycin. The apparent affinity for Na+ is reduced for both enzymes upon solubilization, and there is an increase in the sigmoidicity of binding curves, which indicates a change in the cooperativity between the occluded ions. A high detergent/protein ratio leads to a decreased occlusion capacity. De-occlusion of Na+ by addition of K+ is slow for solubilized Na,K-ATPase, with a rate constant of about 0.1 s-1 at 6 degrees C. Stopped-flow fluorescence experiments with 6-carboxyeosin, which can be used to monitor the E1Na-form in detergent solution, show that the K(+)-induced de-occlusion of Na+ correlates well with the fluorescence decrease which follows the transition from the E1Na-form to the E2-form. There is a marked increase in the rate of fluorescence change at high detergent/protein ratios, indicating that the properties of solubilized enzyme are subject to modification by detergent in other respects than mere solubilization of the membrane-bound enzyme. The temperature dependence of the rate of de-occlusion in the range 2 degrees C to 12 degrees C is changed slightly upon solubilization, with activation energies in the range 20-23 kcal/mol for membrane-bound enzyme, increasing to 26-30 kcal/mol for solubilized enzyme. Titrations of the rate of transition from E1Na to E2K with oligomycin can be interpreted in a model with oligomycin having an apparent dissociation constant of about 2.5 microM for C12E8-solubilized shark Na,K-ATPase and 0.2 microM for solubilized pig kidney Na,K-ATPase.  相似文献   

19.
Investigation the influence of calyx[4]arenes C-90, C-91, C-97 and C-99 (codes are indicated) on the enzymatic activity of four functionally different Mg2+ -dependent ATPases from smooth muscle of the uterus: actomyosin ATPase, transporting Ca2+, Mg2+ -ATPase, ouabain-sensible Na+, K+ -ATPase and basal Mg2+ -ATPase. It was shown that calixarenes C-90 and C-91 in concentration 100 microM act multidirectionally on the functionally different Mg2+ -dependent ATP-hydrolase enzymatic systems. These compounds activate effectively the actomyosin ATPase (Ka = 52 +/- 11 microM [Ukrainian character: see text] 8 +/- 2 microM, accordingly), at the same time calixarene C-90 inhibited effectively activity of transporting Ca2+, Mg2+ -ATPase of plasmatic membranes (I(0,5) = 34.6 +/- 6.4 microM), but influence on membrane-bound Na+, K+ -ATPase and basal Mg2+ -ATPase. Calixarene C-91 reduce effectively basal Mg2+ -ATPase activity, insignificantly activating Na+, K+ -ATPase but has no influence on transporting Ca2+, Mg2+ -ATPase activity of plasmatic membranes. Calixarenes C-97 and C-99 (100 microM), which have similar structure, have monodirectional influence on activity of three functionally different Mg2+-dependent ATPases of the myometrium: actomyosin ATPase and two ATPases, that related to the ATP-hydrolases of P-type--Ca2+, Mg2+ -ATPase and Na+, K+ -ATPase of plasmatic membranes. Basal Mg2+ -ATPase is resistant to the action of these two connections. Results of comparative experiments that were obtained by catalytic titration of calixarenes C-97 and C-99 by actomyosin ATPase (I(0,5) = 88 +/- 9 and 86 +/- 8 microM accordingly) and Na+, K+ -ATPase from plasmatic membranes (I(0,5) = 33 +/- 4 and 98 +/- 8 nM accordingly) indicate to the considerably more sensitiveness of Na+, K+ -ATP-ase to these calixarenes than ATPase of contractile proteins. Thus, it is shown that calixarenes have influence on activity of a number of important enzymes, involved in functioning of the smooth muscle of the uterus and related to energy-supplies of the process of the muscle contracting and support of intracellular ionic homeostasis. The obtained results can be useful in further researches, directed at the use of calixarenes as pharmaceutical substance, able to normalize the contractile function of the uterus at some pregnancy pathologies in women's.  相似文献   

20.
Gel filtration of (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.8) solubilized in octaethyleneglycol dodecylmonother ( C12E8 ) has been performed under conditions where active (alpha beta)2 dimers (Mr 265000) are obtained, and under conditions where dissociation into alpha beta monomers occurs without appreciable loss of activity. It is shown that the alpha beta monomers aggregate with time to form (alpha beta)2 dimers at low detergent concentrations with no change in enzymatic activity. At high detergent concentrations the aggregation is much slower, but the enzymatic activity is lost rapidly. Polyacrylamide gel electrophoresis in the presence of C12E8 also suggest that high concentrations of detergent dissociate the (alpha beta)2 dimer into smaller particles, and conditions for gel electrophoresis are described. The inactivating effect of C12E8 at high C12E8 /protein ratios can be related to a delipidation of the enzyme, with about 0.19 mg phospholipid required per mg protein for optimal activity. The experiments suggest that the solubilized (Na+ + K+)-ATPase can be disrupted into particles containing only one alpha-chain and one or two beta-chains without irreversible loss of activity, and that the stable form of the enzyme is an (alpha beta)2 dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号