首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Leaves of Spinacia oleracea inoculated with tobacco mosaic virus (TMV) strain PV230 develop mild chlorotic and mosaic symptoms of infection. Thylakoid membranes isolated from these infected leaves showed a reduced Fv/Fm ratio for chlorophyll fluorescence kinetics, at 25 degrees C. The photosystem II (PS II)-mediated electron-transport rate was inhibited 50%, whereas PS I activity was unaffected by virus infection. Protein analysis indicated that TMV coat protein was associated with thylakoids, in particular with the PS II fraction. The results demonstrate that TMV-infected S. oleracea shows inhibition of photosynthetic electron transport through PS II. We propose that the inhibition of photosynthetic activity results from the association of viral coat protein with the PS II complex.  相似文献   

2.
Papaya mosaic virus (PMV) causes severe mosaic symptoms in the papaya (Carica papaya L.) leaves. The PMV-induced alterations in photosystem II (PS II) structure and photochemical functions were probed. An increase in chlorophyll a (Chl a) fluorescence polarization suggests pathogen-induced transformation of thylakoid membrane to a gel phase. This transformation in physical state of thylakoid membrane may result in alteration in topology of pigments on pigment-binding proteins as reflected in pathogen-induced loss in the efficiency of energy transfer from carotenoids to chlorophylls. The fast Chl a fluorescence induction kinetics of healthy and PMV-infected plants by F(O)-F(J)-F(I)-F(P) transients revealed pathogen-induced perturbation on PS II acceptor side electron transfer equilibrium between Q(A) and Q(B) and in the pool size of electron transport acceptors. Pathogen-induced loss in photosynthetic pigments, changes in thylakoid structure and decrease in the ratio of F(V)/F(M) (photochemical potential of PS II) further correlate with the loss in photoelectron transport of PS II as probed by 2,6-dichlorophenol indophenol (DCPIP)-Hill reaction. Restoration of the loss by 1,5-diphenyl carbazide (DPC), an exogenous electron donor, that donates electron directly to reaction centre II bypassing the oxygen evolving system (OES), leads towards the conclusion that OES is one of the major targets of biotic stress. Further, the data suggest that chlorophyll fluorescence could be used as a non-invasive handy tool to assess the loss in photosynthetic efficiency and symptom severity in infected green tissues vis-a-vis the healthy ones.  相似文献   

3.
外源钙对干旱胁迫下烤烟幼苗光系统Ⅱ功能的影响   总被引:8,自引:0,他引:8  
Zhang HH  Zhang XL  Xu N  He GQ  Jin WW  Yue BB  Li X  Sun GY 《应用生态学报》2011,22(5):1195-1200
以叶绿素快相荧光动力学曲线(OJIP)为探针,研究了外源钙对干旱胁迫下烤烟幼苗光系统Ⅱ(PSⅡ)功能的影响.结果表明:干旱胁迫降低了烤烟幼苗PSⅡ原初光能转换效率(Fv/Fm)和电子传递速率(ETR),抑制了光合作用的原初过程,烤烟幼苗叶片发生了明显的光抑制.叶面喷施10.0 mmol·L-1CaCl2溶液后烤烟叶片的光合电子传递能量比例(ФEo)在干旱胁迫下的降低幅度明显小于对照(喷施清水),电子转运效率(ET0/RC)在干旱胁迫下明显高于对照.叶面喷施CaC12溶液增加了PSⅡ捕获光能用于光合电子传递的比例、剩余有活性反应中心的效率和电子传递链中的能量传递,使烤烟叶片的光系统Ⅱ在干旱胁迫下保持相对较高的活性,从而提高了烤烟幼苗的抗旱能力.  相似文献   

4.
Fluorescence imaging was used to diagnose early stages of the strain-specific interactions between tobacco mosaic virus (strain PV230) and chloroplasts following infection of tobacco leaves (Nicotiana tabacum cv Xanthi). The earliest indication of interaction in tissues that ultimately become chlorotic was a reduction in chlorophyll fluorescence, and there was little fluorescence quenching compared with adjacent healthy tissues. Subsequently, fluorescence increased but remained unquenched. In the late stages fluorescence declined again in chlorotic regions as the chloroticmosaic symptoms developed. These in vivo data showing altered fluorescence yields confirm strain-specific interaction of virus coat protein with photosystem II (PSII) components in vitro, leading to photoinhibition and photooxidation of chlorophyll in infected cells and the development of visible chlorotic-mosaic symptoms. Although mechanisms leading to the low, unquenched fluorescence condition are not known, the intermediate high, unquenched fluorescence condition is consistent with impaired PSII electron transport as measured in vitro. Fluorescence lesions appear more rapidly and develop more extensively in high light, consistent with the faster and larger extent of symptom formation in high-light-grown leaves than in low-light-grown leaves.  相似文献   

5.
Zhang XC  Yu XF  Ma YF 《应用生态学报》2011,22(3):673-680
采用开顶式气室盆栽培养小麦,设计2个大气CO2浓度(正常:400 μmol.mol-1;高:760 μmol·mol-1)、2个氮素水平(0和200 mg·kg-1土)的组合处理,通过测定小麦抽穗期旗叶氮素和叶绿素浓度、光合速率(Pn)-胞间CO2浓度(C1)响应曲线及荧光动力学参数,来测算小麦叶片光合电子传递速率等,研究了高大气CO2浓度下施氮对小麦旗叶光合能量分配的影响.结果表明:与正常大气CO2浓度相比,高大气CO2浓度下小麦叶片氮浓度和叶绿素浓度降低,高氮处理的小麦叶片叶绿素a/b升高.施氮后小麦叶片PSⅡ最大光化学效率(Fv/Fm)、PSⅡ反应中心最大量子产额(Fv'/Fm')、PSⅡ反应中心的开放比例(qr)和PSⅡ反应中心实际光化学效率(φPSⅡ)在大气CO2浓度升高后无明显变化,虽然叶片非光化学猝灭系数(NPQ)显著降低,但PSⅡ总电子传递速率(JF)无明显增加;不施氮处理的Fv'/Fm'、φPSⅡ和NPQ在高大气CO2浓度下显著降低,尽管Fv/Fm和qp无明显变化,JF仍显著下降.施氮后小麦叶片JF增加,参与光化学反应的非环式电子流传递速率(Jc)明显升高.大气CO2浓度升高使参与光呼吸的非环式电子流传递速率(J0)、Rubisco氧化速率(V0)、光合电子的光呼吸/光化学传递速率比(J0/Jc)和Rubisco氧化/羧化比(V0/Vc)降低,但使Jc和Rubisco羧化速率(Vc)增加.因此,高大气CO2浓度下小麦叶片氮浓度和叶绿素浓度降低,而增施氮素使通过PSⅡ反应中心的电子流速率显著增加,促进了光合电子流向光化学方向的传递,使更多的电子进入Rubisco羧化过程,Pn显著升高.  相似文献   

6.
The effect of viral infection on photosynthesis was investigated in Nicotiana benthamiana Gray plants infected with different strains of pepper and paprika mild mottle viruses (PMMoV and PaMMoV) and chimeric viral genomes derived from them. In both symptomatic and asymptomatic leaves of virus-infected plants, photosynthetic electron transport in photosystem II (PSII) was reduced. In all cases analyzed, viral infection affected the polypeptide pattern of the oxygen-evolving complex (OEC) in thylakoid membranes. The levels of both the 24 and 16 kDa proteins were reduced to a differing extent when compared with the levels in healthy control. This loss of the OEC extrinsic proteins affected the oxygen evolution rates of thylakoid membranes and leaves from infected plants. Additionally, viral coat protein (CP) was found associated with the chloroplasts and the thylakoid membranes of the infected plants. The CP accumulation level was dependent upon both the post-infection time and the virus analyzed, but independent of the CP itself since hybrid viruses did not behave as their parental viruses with the same CP, with respect to PSII inhibition, CP accumulation rates and OEC protein levels. Modulated chlorophyll (Chl) fluorescence and oxygen evolution measurements carried out in both types of leaves showed that the quantum yield of PSII electron transport was diminished in infected plants with respect to those of control plants. The decrease in electron transport efficiency was mainly caused by a reduction in the fraction of open reaction centers. The infected plants also showed a reduction in the efficiency of excitation capture in PSII by photoprotective thermal dissipation of excess excitation energy.  相似文献   

7.
Altered photosynthetic reactions in cucumber mosaic virus (CMV) inoculated leaves of virus resistant lines L113 and L57 and susceptible pepper (Capsicum annuum L.) plants cv. Albena grown in controlled environment and in the field were investigated. The CMV inoculated leaves of virus resistant lines developed different symptoms—necrotic local lesions on L113 and chlorotic spots on L57 while the same leaves of susceptible cv. Albena were symptomless. The changes in Photosystem II (PSII) and PSI electron transport were evaluated by chlorophyll fluorescence, and far-red (FR) light induced leaf absorbance A 810–860. CMV infection caused a decrease in maximal PSII quantum yield, F v/F m, in susceptible leaves. Increased non-photochemical fluorescence quenching in CMV-inoculated leaves of both resistant lines were observed. In CMV-inoculated leaves of all tested plants FR light induced P700 oxidation was decreased. In the present study, the viral-infected pepper plants grown in controlled environment to avoid the effects of abiotic factors were used as model system that allow us to investigate the differences in leaf senescence in CMV-inoculated leaves of susceptible and resistant pepper lines expressing different symptoms. Earlier leaf falls of inoculated leaves as a result of accelerated leaf senescence is important for building successful secondary virus resistance strategy following fast responses such as hypersensitive reaction.  相似文献   

8.
草莓叶片光合作用对强光的响应及其机理研究   总被引:41,自引:9,他引:32  
用便携式调制叶绿素荧光仪和光合仪研究了强光下草莓叶片荧光参数及表观量子效率的变化.结果表明,Fm、Fv/Fm、PSⅡ无活性反应中心数量和QA的还原速率在强光下降低,在暗恢复时升高;而PSⅡ反应中心非还原性QB的比例在强光下增加,在暗恢复时降低.上述荧光参数的变化幅度均以强光胁迫或暗恢复的前10 min最大.强光下ΦPSII、ETR和qP先升高后降低,但qN先大幅度降低,然后小幅回升.强光处理4 h后,丰香和宝交早生的表观量子效率(AQY)分别降低了20.9%和37.5%;qE(能量依赖的非光化学猝灭)为NPQ(非光化学猝灭)的最主要成分.强光胁迫下丰香的Fo、Fm、Fv/Fm、ΦPSII、ETR和AQY的变化幅度均明显比宝交早生小.DTT处理后,草莓叶片的Fm和Fv/Fm明显降低,Fo显著升高.可以认为,依赖叶黄素循环和类囊体膜质子梯度两种非辐射能量耗散在草莓叶片防御光损伤方面起着重要作用,丰香的光合机构比宝交早生更耐强光.  相似文献   

9.
Winter wheat (Triticum aestivum L. cv Norin No. 61) was grown at 25 degrees C until the third leaves reached about 10 cm in length and then at 15 degrees C, 25 degrees C, or 35 degrees C until full development of the third leaves (about 1 week at 25 degrees C, but 2-3 weeks at 15 degrees C or 35 degrees C). In the leaves developed at 15 degrees C, 25 degrees C, and 35 degrees C, the optimum temperature for CO(2)-saturated photosynthesis was 15 degrees C to 20 degrees C, 25 degrees C to 30 degrees C, and 35 degrees C, respectively. The photosystem II (PS II) electron transport, determined either polarographically with isolated thylakoids or by measuring the modulated chlorophyll a fluorescence in leaves, also showed the maximum rate near the temperature at which the leaves had developed. Maximum rates of CO(2)-saturated photosynthesis and PS II electron transport determined at respective optimum temperatures were the highest in the leaves developed at 25 degrees C and lowest in the leaves developed at 35 degrees C. So were the levels of chlorophyll, photosystem I and PS II, whereas the level of Rubisco decreased with increasing temperature at which the leaves had developed. Kinetic analyses of chlorophyll a fluorescence changes and P700 reduction showed that the temperature dependence of electron transport at the plastoquinone and water-oxidation sites was modulated by the temperature at which the leaves had developed. These results indicate that the major factor that contributes to thermal acclimation of photosynthesis in winter wheat is the plastic response of PS II electron transport to environmental temperature.  相似文献   

10.
We have examined tobacco transformed with an antisense construct against the Rieske-FeS subunit of the cytochromeb 6 f complex, containing only 15 to 20% of the wild-type level of cytochrome f. The anti-Rieske-FeS leaves had a comparable chlorophyll and Photosystem II reaction center stoichiometry and a comparable carotenoid profile to the wild-type, with differences of less than 10% on a leaf area basis. When exposed to high irradiance, the anti-Rieske-FeS leaves showed a greatly increased closure of Photosystem II and a much reduced capacity to develop non-photochemical quenching compared with wild-type. However, contrary to our expectations, the anti-Rieske-FeS leaves were not more susceptible to photoinhibition than were wild-type leaves. Further, when we regulated the irradiance so that the excitation pressure on photosystem II was equivalent in both the anti-Rieske-FeS and wild-type leaves, the anti-Rieske-FeS leaves experienced much less photoinhibition than wild-type. The evidence from the anti-Rieske-FeS tobacco suggests that rapid photoinactivation of Photosystem II in vivo only occurs when closure of Photosystem II coincides with lumen acidification. These results suggest that the model of photoinhibition in vivo occurring principally because of limitations to electron withdrawal from photosystem II does not explain photoinhibition in these transgenic tobacco leaves, and we need to re-evaluate the twinned concepts of photoinhibition and photoprotection.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlophenyl)-1,-dimethylurea - Fo and Fo minimal fluorescence when all PS II reaction centers are open in dark- and light-acclimated leaves, respectively - Fm and Fm maximal fluorescence when all PS II reaction centers are closed in dark- and light-acclimated leaves, respectively - Fv variable fluorescence (Fm-Fo) in dark acclimated leaves - Fv variable fluorescence (Fm-Fo) in lightacclimated leaves - NPQ non-photochemical quenching of fluorescence - PS I and PS II Photosystem I and II - P680 primary electron donor of the reaction center of PS II - PFD photosynthetic flux density - QA primary acceptor quinone of PS II - qp photochemical quenching of fluorescence - V+A+Z violaxanthin+antheraxanthin+zeaxanthin  相似文献   

11.
以辣椒品种“超辣九号”为试材,采用15%的PEG6000模拟干旱,研究了0.1μmol·L^-1外源24-表油菜素内酯(EBR)处理对干旱胁迫下辣椒叶片快速叶绿素荧光诱导动力学曲线(OJIP)的影响。结果表明:干旱胁迫降低了辣椒叶片的光化学效率和光合性能,导致干旱光抑制的发生。干旱胁迫既损伤了辣椒叶片PSⅡ供体侧放氧复合体(OEC),同时也对PSⅡ反应中心和受体侧造成伤害,阻碍了光合电子传递;干旱胁迫还导致单位叶面积有活性反应中心数目(RC/CS)的下降,并降低了单位叶面积吸收的光能(ABS/CS)、捕获的光能(TRo/CS)和进行电子传递的能量(ETo/CS),同时诱导了单位叶面积热耗散(DIo/CS)的增加。这说明辣椒遭受干旱胁迫后启动了相应的防御机制,一方面通过PSⅡ的可逆失活减少光能吸收与传递,另一方面通过促进热耗散减少过剩激发能的积累。EBR处理改善了干旱胁迫下辣椒叶片PSⅡ受体侧的电子传递,缓解了单位叶面积有活性反应中心数目的减少,优化了光合电子传递的进行,并维持相对较高的热耗散能力,从而减轻了干旱光抑制程度,对干旱胁迫下辣椒叶片光合机构和光合性能起到保护作用。  相似文献   

12.
Salicylic acid (SA) is a phenolic phytohormone with important roles in plant development, transpiration, endogenous signaling and defense against pathogens. One of the pathways of SA biosynthesis is located in the chloroplasts. The aim of the present work was to investigate the possible regulatory effects of SA on photosynthetic electron transport processes. Here we show that SA also affects leaf photosynthesis, via inducing stomatal closure and also by slowing down Photosystem II (PS II) electron transport. Photosynthetic CO? incorporation and stomatal conductivity (measured with an infrared gas analyzer) were much lower in SA-infiltrated tobacco leaves than in untreated or water-infiltrated controls. PS II electron transport (calculated from PAM chlorophyll fluorescence data) was more sensitive to SA than Photosystem I (PS I) (measured with far red absorption). Direct probing of PS II charge separation and stabilization (measured with thermoluminescence), however, showed that these events were less affected in isolated thylakoid membranes than in leaves, suggesting that the effect of SA on PS II is indirect and different from similar effects of phenolic herbicides.  相似文献   

13.
研究了不同浓度NO3-胁迫对黄瓜幼苗叶片光合速率、PSⅡ光化学效率及光能分配的影响.结果表明,当NO3-浓度较低时(14~98 mmol·L-1),适当增加NO3-浓度,可增强黄瓜幼苗叶片对光的捕获能力,促进光合作用.随着NO3-浓度的进一步增加(140~182 mmol·L-1),PSⅡ光化学效率降低,电子传递受到抑制,净光合速率降低;吸收的光能中,通过天线色素的热耗散增加,用于光化学反应的能量降低,光化学效率下降.140和182 mmol·L-1 NO3-处理黄瓜幼苗叶片6 d后净光合速率(Pn)极显著下降,分别比对照降低了35%和78%;PSⅡ最大光化学效率(Fv/Fm)、天线转化效率(Fv’/Fm’)、实际光化学效率(ΦPSⅡ)、光化学猝灭系数(qP)均低于对照,非光化学猝灭(NPQ)高于对照,激发能在两个光系统间的分配不平衡性(β/α-1)增大.高浓度NO3-处理的黄瓜幼苗叶片各荧光参数变化幅度比低浓度大.当光照增强时,高浓度NO3-胁迫下黄瓜幼苗叶片吸收的光能中应用于光化学反应的份额(P) 显著降低,天线热耗散的份额(D)显著增加. 天线热耗散是耗散过剩能量的主要途径.  相似文献   

14.
The stability of PSII in leaves of the resurrection plant Haberlea rhodopensis to high temperature and high light intensities was studied by means of chlorophyll fluorescence measurements. The photochemical efficiency of PSII in well-hydrated Haberlea leaves was not significantly influenced by temperatures up to 40 degrees C. Fo reached a maximum at 50 degrees C, which is connected with blocking of electron transport in reaction center II. The intrinsic efficiency of PSII photochemistry, monitored as Fv/Fm was less vulnerable to heat stress than the quantum yield of PSII electron transport under illumination (phiPSII). The reduction of phiPSII values was mainly due to a decrease in the proportion of open PSII centers (qP). Haberlea rhodopensis was very sensitive to photoinhibition. The light intensity of 120 micromol m(-2) s(-1) sharply decreased the quantum yield of PSII photochemistry and it was almost fully inhibited at 350 micromol m(-2) s(-1). As could be expected decreased photochemical efficiency of PSII was accompanied by increased proportion of thermal energy dissipation, which is considered as a protective effect regulating the light energy distribution in PSII. When differentiating between the three components of qN it was evident that the energy-dependent quenching, qE, was prevailing over photoinhibitory quenching, qI, and the quenching related to state 1-state 2 transitions, qT, at all light intensities at 25 degrees C. However, the qE values declined with increasing temperature and light intensities. The qI was higher than qE at 40 degrees C and it was the major part of qN at 45 degrees C, indicating a progressing photoinhibition of the photosynthetic apparatus.  相似文献   

15.
缺铁对大豆叶片光合作用和光系统Ⅱ功能的影响   总被引:2,自引:0,他引:2  
通过气体交换和叶绿素荧光测定研究了缺铁对大豆叶片碳同化和光系统Ⅱ的影响。缺铁条件下大豆光合速率(Pn)大幅下降;最大光化学效率(po)下降幅度较小;荧光诱导动力学曲线发生明显的变化,其中电子传递活性明显下降,K相(VK)相对荧光产量提高。缺铁大豆的天线转化效率(Fv'/Fm')、光化学猝灭系数(qP)和光系统Ⅱ实际光化学效率(ΦPSⅡ)降低,而非光化学猝灭(NPQ)则明显增加。此外,缺铁大豆的光后荧光上升增强。据此,认为铁缺乏伤害了光系统Ⅱ复合物供体侧和受体侧的电子传递;缺铁条件下光系统I环式电子传递的增强可能在维持激发能耗散和ATP供给方面起一定作用。  相似文献   

16.
Changes in photosynthetic activities were studied with tobacco (Nicotiana tabacum L.) leaves and chloroplasts infected by cucumber mosaic virus (CMV) at the top, middle and bottom located leaves. Net photosynthetic rate was reduced at all three positioned leaves, with the maximum reduction occurring at the top leaves (31.9% of control). The infected chloroplasts showed a reduction in electron transport rates of the whole chain electron transport, photosystem Ⅱ (PSⅡ) and photosystem Ⅰ (PSⅠ). Since the decline in the whole chain electron transport (15.6% of control, H2O→MV) closely paralleled the decline in PSⅡ activity (20.9% of control, H2O→PBQ), the inhibition of the latter was probably responsible for the overall decrease. Chlorophyll a fluorescence measurements showed a variable reduced fluorescence yield (Fv/Fo) which indicated that PSⅡ was impaired and the CO2 assimilation was disturbed by CMV infection. Fluorescence emission spectra at 77 K indicated that energy distribution between PSⅡ and PSⅠ was affected. F686/F734 of infected leaves and chloroplasts increased and the greatest increase (331.1% of control ) was found in the top leaves. These data may conclude that the infection inhibited mainly the PSⅡ activity.  相似文献   

17.
Under non-stress condition, effects of exogenous nitric oxide (NO) on chlorophyll fluorescence parameters in detached leaves and leaf discs of potato (Solanum tuberosum L.) were surveyed. Results showed that the maximal quantum efficiency (Fv/Fm) and the effective quantum efficiency (F PSⅡ) of photosystem Ⅱ (PSⅡ) were reduced by exogenous NO under illumination (150 mmol.m-2.s-1, 25 ℃). This influence was related not only to the concentration of sodium nitroprusside (SNP, a NO donor) solution, but also to the active duration of NO on leaf tissue. Results with leaf discs showed that the effects of SNP on F PSⅡ could be prevented by bovine hemoglobin (a powerful NO scavenger), while a mixture of NO2- and NO3- (the decomposition product of NO or its donor SNP) had much less influence on F PSⅡ than SNP, indicating that effects of exogenous SNP on PSⅡ photochemical activity was mainly due to NO generation. Under light (150 mmol.m-2.s-1, 25 ℃) for 4 h or longer period, the non-photochemical quenching (NPQ) in SNP-soaked leaves was statistically similar to that in H2O-soaked control, but F PSⅡ and the proportion of open reaction centers (measured as qP) were lower than control, respectively. After 25 min dark-adaptation, the maximal fluorescence (Fm) in SNP treatment (8 and 12 h illumination duration) was significantly lower than the control, while the initial fluorescence (Fo) in SNP and H2O-treated leaves had no significant difference. Therefore this indicated that under the present experimental condition, the NO-affected site might not be the PSⅡ reaction centers. On the donor side of PSⅡ, NO putatively influenced the light-harvesting capacity of leaves under light; on the acceptor side, NO-affected sites were some components of electron transport chain after QA, i.e. NO enhanced the reductive degree of reaction centers through blocking the electron transport after QA, thus reducing the photochemical activity of PSⅡ.  相似文献   

18.
《BBA》2021,1862(12):148494
Quenching of excess excitation energy is necessary for the photoprotection of light-harvesting complexes. In cyanobacteria, quenching of phycobilisome (PBS) excitation energy is induced by the Orange Carotenoid Protein (OCP), which becomes photoactivated under high light conditions. A decrease in energy transfer efficiency from the PBSs to the reaction centers decreases photosystem II (PS II) activity. However, quantitative analysis of OCP-induced photoprotection in vivo is complicated by similar effects of both photochemical and non-photochemical quenching on the quantum yield of the PBS fluorescence overlapping with the emission of chlorophyll. In the present study, we have analyzed chlorophyll a fluorescence induction to estimate the effective cross-section of PS II and compared the effects of reversible OCP-dependent quenching of PBS fluorescence with reduction of PBS content upon nitrogen starvation or mutations of key PBS components. This approach allowed us to estimate the dependency of the rate constant of PS II primary electron acceptor reduction on the amount of PBSs in the cell. We found that OCP-dependent quenching triggered by blue light affects approximately half of PBSs coupled to PS II, indicating that under normal conditions, the concentration of OCP is not sufficient for quenching of all PBSs coupled to PS II.  相似文献   

19.
 较系统地研究了抽穗期超高产杂交稻‘华安3号’(`X075’×`紫恢100’)冠层顶部5片叶片的光合功能。结果表明,‘华安3号’剑叶的光系统Ⅱ(PSII)光化学最大效率(Fv/Fm)、开放的PSⅡ反应中心捕获激发能效率(Fv′/Fm′)、PSⅡ电子传递量子效率(ΦPSⅡ)、光化学猝灭系数(qP)、表观电子传递效率(ETR)、光合色素尤其是叶绿素(Chl)和类胡萝卜素(Car)中的新黄素、黄体素和β-胡萝卜素(β-Car)的含量等均优于其下的各叶,而PSⅡ的激发压力(1-qP)低于其它叶片。经对叶片低温(77K)荧光发射光谱的Gaussian解析,与其它各叶片相比,剑叶PSⅡ核心天线复合物CP47和光系统Ⅰ(PSⅠ)的含量较高,而非活性的PSⅡ捕光色素蛋白复合体(LHCⅡ)聚集态含量较少。研究证明:1)水稻在决定籽粒产量的生育后期,其干物质的积累主要是由冠层最上面的3片叶的光合作用所提供;2)在叶片衰老过程中,光合反应中心的衰老早于天线系统;3)杂交稻的光保护途径之一,可能在于光抑制条件下通过增加PSⅠ含量及其对光能的吸收并刺激环式电子传递高速运转,从而对光合器起保护作用;4)水稻叶片在衰老过程中,可能通过部分Chl b还原为Chl a,以降低LHCⅡ的含量,从而减少对光能的捕获,达到降低光抑制的伤害。  相似文献   

20.
The role of electron transport to O2 in mitigating against photoinactivation of Photosystem (PS) II was investigated in leaves of pea (Pisum sativum L.) grown in moderate light (250 mol m–2 s–1). During short-term illumination, the electron flux at PS II and non-radiative dissipation of absorbed quanta, calculated from chlorophyll fluorescence quenching, increased with increasing O2 concentration at each light regime tested. The photoinactivation of PS II in pea leaves was monitored by the oxygen yield per repetitive flash as a function of photon exposure (mol photons m–2). The number of functional PS II complexes decreased nonlinearly with increasing photon exposure, with greater photoinactivation of PS II at a lower O2 concentration. The results suggest that electron transport to O2, via the twin processes of oxygenase photorespiration and the Mehler reaction, mitigates against the photoinactivation of PS II in vivo, through both utilization of photons in electron transport and increased nonradiative dissipation of excitation. Photoprotection via electron transport to O2 in vivo is a useful addition to the large extent of photoprotection mediated by carbon-assimilatory electron transport in 1.1% CO2 alone.Abbreviations Fm, Fo, Fv- maximal, initial (corresponding to open PS II traps) and variable chlorophyll fluorescence yield, respectively - NPQ- non-photochemical quenching - PS- photosystem - QA- primary quinone acceptor - qP- photochemical quenching coefficient  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号