首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indirect effects of atmospheric CO2 concentration [CO2], onlongleaf pine (Pinus palustris Mill.) foliage respiration werestudied by growing trees in a factorial arrangement of low andhigh [CO2] (369 and 729µmol CO2 mol–1) and low andhigh N (40 and 400 kg ha–1 yr–1). Direct effectsof [CO2] on leaf respiration were tested by measuring respirationrates of foliage from all treatments at two CO2 levels (360and 720µmol CO2mol–1) at the time of measurement.Elevated CO2 did not directly or indirectly affect leaf respirationwhen expressed on a leaf area or mass basis, but a significantincrease in respiration per unit leaf N was observed in treesgrown in elevated [CO2] (indirect response to elevated [CO2]).The lack of a [CO2] effect on respiration, when analysed onan area or mass basis, may have resulted from combined effectsof [CO2] on factors that increase respiration (e.g. greateravailability of non-structural carbohydrates stimulating growthand carbon export from leaves) and on factors that decreaserespiration (e.g. lower N concentration leading to lower constructioncosts and maintenance requirements). Thus, [CO2] affected factorsthat influence respiration, but in opposing ways. Key words: Pinus palustris, elevated CO2, nitrogen, foliar, respiration  相似文献   

2.
Two methods were used to estimate construction costs for leaves,stems, branches and woody roots of yellow-poplar (LiriodendrontulipiferaL.) trees grown at ambient (35 Pa) and elevated (65Pa) CO2for 2.7 years and trees of white oak (Quercus albaL.)grown at these same CO2partial pressures for 4 years. Samplecombustion in a bomb calorimeter combined with measurementsof ash and nitrogen content provided the primary method of estimatingtissue construction costs (WG; g glucose g-1dry mass). Thesevalues were compared with a second, simpler method in whichcost estimates were derived from tissue ash, carbon and nitrogencontent (VG). Estimates of WGwere lower for leaves, branchesand roots of yellow-poplar and for leaves of white oak grownat elevated compared with ambient CO2partial pressures. TheseCO2-induced differences in WGranged from 3.7% in yellow-poplarroots to 2.1% in white oak leaves. Only in the case of yellow-poplarleaves, however, were differences in VGobserved between CO2treatments.Leaf VGwas 1.46 g glucose g-1dry mass in ambient-grown treescompared with 1.41 g glucose g-1dry mass for CO2-enriched trees.Although paired-estimates of WGand VGclustered about a 1:1 linefor leaves and branches, estimates of VGwere consistently lowerthan WGfor stems and roots. Construction costs per unit leafarea were 95 g glucose m-2for yellow-poplar trees grown at ambientCO2and 106 g glucose m-2for trees grown at elevated CO2partialpressures. No differences in area-based construction costs wereobserved for white oak. Whole-plant energy content was 1220g glucose per tree in ambient-grown white oak compared with2840 g glucose per tree for those grown at elevated CO2partialpressures. These differences were driven largely by CO2-inducedchanges in total biomass. We conclude that while constructioncosts were lower at elevated CO2partial pressures, the magnitudeof this response argues against an increased efficiency of carbonuse in the growth processes of trees exposed to CO2enrichment. Bomb calorimeter; construction costs; elevated CO2; energy allocation; global change; growth respiration; heat of combustion; respiration; Liriodendron tulipifera; Quercus alba  相似文献   

3.
Growth and dark respiration were measured in dense, miniatureswards of kikuyu grass grown at constant temperatures of 15,20, 25 and 30 °C. Total respiration over the first 12 hof darkness was very high and CO2 efflux per unit surface areavaried from 2.4 to 3.9 g CO2 m–2 h–1 at 15 and 30°C respectively. Such rates were consistent with the correspondinglyhigh net growth rates of 24 and 63 g d. wt m–2 d–1and the heavy yields of herbage. When plants were kept in thedark, CO2 efflux subsequently declined rapidly to a lower, constantrate which was taken to be the maintenance respiration rate.The half-life of the declining phase of respiration averaged10.9 and 6.0 h at 15 and 30 °C respectively, and was curvilinearlyrelated to the specific maintenance respiration rate (m). Therapid decline in respiration was consistent with the low concentrationsof total soluble carbohydrate and starch in the herbage. Valuesof m for lamina and top growth increased with temperature witha Q10 of 2.6 and 1.42 respectively, but m of stems alone wasnot affected by temperature. Using results from this study forkikuyu and from McCree (1974) for sorghum and white clover,it was noted that all three species have similar m when grownat temperatures which are near their respective optimums forgrowth. Kikuyu, Pennisetum clandestinum, growth, respiration, temperature  相似文献   

4.
Respiration rate of the entire above-ground parts of field-grown8-year-old hinoki cypress [Chamaecyparis obtusa(Sieb. et Zucc.)Endl.] was measured at monthly intervals over a 5-year period,to evaluate the trend in proportion of maintenance and growthcomponents of respiration with stand development. Representativesample trees were selected for respiration measurements. Theannual respiration rates of individual sample trees were combinedand partitioned into maintenance and growth components by regressingspecific respiration rate on mean relative growth rate. Maintenanceand growth respiration coefficients generated in this way were5.2 mol CO2kg-1year-1and 39 mol  CO2kg-1, which are equivalentto 14.3 mg C kg-1C h-1(at mean annual air temperature of 15.1°C) and 0.94 kg C kg-1C. Considering the maintenance andgrowth respiration coefficients, and phytomass and phytomassincrement of individual trees in the stand, the maintenanceand growth respiration rates of the stand were estimated. Theproportion of the maintenance respiration increased, whereasthat of the growth respiration decreased with stand development,due to decreasing relative growth rate.Copyright 1997 Annalsof Botany Company Chamaecyparis obtusa; growth respiration coefficient; hinoki; maintenance respiration coefficient; stand respiration  相似文献   

5.
HOCKING  P. J. 《Annals of botany》1980,45(6):633-643
The composition of xylem sap and exudate from stem incisionsof Nicotiana glauca Grah. was compared in detail. Exudationfrom stem incisions occurred over a 5 min period in certainplants, enabling collection of 5–30 µl of sap. Therate of exudation showed an exponential decline. Exudate hada high dry matter content (170–196 mg ml–1) andhigh sugar (sucrose) levels. Xylem sap had a low pH (5.8) andexudate a pH of 7.9. Glutamine dominated the amino compoundsin xylem sap and exudate, and K+ was the major cation. Totalamino compounds in stem exudate reached 10.8 mg ml–1 whereasxylem sap contained much lower levels (0.28 mg ml–1).All mineral elements and amino compounds with the exceptionof calcium were more concentrated in stem exudate than in xylemsap. Sucrose was labelled heavily in stem exudate following pulsingof an adjacent leaf with 14CO2. A concentration gradient ofsugar (2.1 bar m–1) was recorded for stems. Levels ofsucrose, amino compounds and K+ ions in stem exudate showeda diurnal periodicity. Each commodity reached maximum concentrationat or near noon and minimum concentration about dawn. The evidencesuggests that exudate from stem incisions of N. glauca is arepresentative sample of solutes translocated in the phloem. Nicotiana glauca Grah., phloem sap, xylem sap, sucrose, amino compounds, mineral ions  相似文献   

6.
Barley (Hordeum vulgare L. cv. Digger) was grown for 22 d inenclosed chambers with a CO2 enrichment of 35, 155, 400 or 675µmol CO2 mol1. CO2 enrichment increased photosyntheticcapacity in the plants grown at either of the two highest levelsof pCO2. A CO2 enrichment of 675µmol CO2 caused a significantincrement of shoot dry weight, whereas no changes were observedin fresh weight, chlorophyll or protein levels. At a light intensityof 860µmol m–2s–1 CO2 enrichment caused photosyntheticcapacity to increase by 250%, whereas no effect was observedat 80 µmol m–2 s–1. Over time, photosynthesisdecreased by 70% independent of CO2. A time-dependent increasein the level of extractable fructose was observed whereas totalextractable carbohydrate only changed slightly. Key words: Carbohydrates, CO2 enrichment, Hordeum vulgare, photosynthesis, respiration  相似文献   

7.
Mächler, F., Lehnherr, B., Schnyder, H. and Nösberger,J. 1985. A CO2 concentrating system in leaves of higher C3-plantspredicted by a model based on RuBP carboxylase/oxygenase kineticsand 14CO2/12CO2 exchange.–J. exp. Bot. 36: 1542–1550. A model is presented which compares the ratio of the two activitiesof the enzyme nbulose bisphosphate carboxylase/oxygenase asdetermined in vitro with the ratio of photosynthesis to photorespirationin leaves as determined from differential 14CO2/12CO2 uptakeor from CO2 compensation concentration. Discrepancies betweenmeasurements made in vitro and in vivo are attributed to theeffect of a CO2 concentrating system in the leaf cells. Interferencefrom dark respiration is discussed. A CO2 concentrating systemis postulated which is efficient mainly at low temperature andlow CO2 concentration. Key words: —Photosynthesis, photorespiration, ribulose bisphosphate carboxylase/oxygenase  相似文献   

8.
Mass spectrometry has been used to investigate the transportof CO2 in the freshwater diatom Navicula pelliculosa. The timecourseof CO2 formation in the dark after addition of 100 mmol m–3dissolved inorganic carbon (DIC) to cell suspensions showedthat no external carbonic anhydrase (CA) was present in thesecells. Upon illumination, cells pre-incubated at pH 75 with100 mmol m–3 DIC, removed almost all free CO2 from themedium at an initial rate of 285 µmol CO2 mg–1Chl h–1. Equilibrium between HCO3 and CO2 in themedium occurred rapidly upon addition of bovine CA, showingthat CO2 depletion resulted from a selective uptake of CO2 ratherthan an uptake of all inorganic carbon species. However, photosyntheticO2 evolution rate remained constant after CO2 had been depletedfrom the medium indicating that photosynthesis is sustainedprimarily by active HCO3 uptake. Treatment of cells with2-iodoacetamide (83 mol m–3) completely inhibited CO2fixation but had little effect on CO2 transport since initialrates of CO2 depletion were about 81% that of untreated cells.Transfer of iodoacetamide-treated cells to the dark caused arapid increase in the CO2 concentration in the medium largelydue to the efflux of the unfixed intracellular DIC pool whichwas found to be about 194 times the concentration of that inthe external medium. These results indicate that Navicula pelliculosaactively takes up molecular CO2 against a concentration gradientby a process distinct from HCO3 transport. Key words: Dissolved inorganic carbon, carbonic anhydrase, bicarbonate transport, CO2 transport, mass spectrometry  相似文献   

9.
Agrostis capillaris L.5, Festuca vivipara L. and Poaalpina L.were grown in outdoor open-top chambers at either ambient (340 3µmol mol–1) or elevated (6804µmol mol–1)concentrations of atmospheric carbon dioxide (CO2) for periodsfrom 79–189 d. Photosynthetic capacity of source leaves of plants grown atboth ambient and elevated CO2 concentrations was measured atsaturating light and 5% CO2. Dark respiration of leaves wasmeasured using a liquid phase oxygen electrode with the buffersolution in equilibrium with air (21% O2, 0.034% CO2). Photo-syntheticcapacity of P. alpina was reduced by growth at 680 µmolmol–1 CO2 by 105 d, and that of F. vivipara was reducedat 65 d and 189 d after CO2 enrichment began, suggesting down-regulationor acclimation. Dark respiration of successive leaf blades ofall three species was unaltered by growth at 680 relative to340 µmol mol–1 CO2. In F. vivipara, leaf respirationrate was markedly lower at 189 d than at either 0 d or 65 d,irrespective of growth CO2 concentration. There was a significantlylower total non-structural carbohydrate (TNC) concentrationin the leaf blades and leaf sheaths of A. capillaris grown at680µmol mol–1 CO2. TNC of roots of A. capillariswas unaltered by CO2 treatment. TNC concentration was increasedin both leaves and sheaths of P. alpina and F. vivipara after105 d and 65 d growth, respectively. A 4-fold increase in thewater-soluble fraction (fructan) in P. alpina and in all carbohydratefractions in F. vivipara accounted for the increased TNC content. In F. vivipara the relationship between leaf photosyn-theticcapacity and leaf carbohydrate concentration was such that therewas a strong positive correlation between photosynthetic capacityand total leaf N concentration (expressed on a per unit structuraldry weight basis), and total nitrogen concentration of successivemature leaves reduced with time. Multiple regression of leafphotosynthetic capacity upon leaf nitrogen and carbohydrateconcentrations further confirmed that leaf photosynthetic capacitywas mainly determined by leaf N concentration. In P. alpina,leaf photosynthetic capacity was mainly determined by leaf CHOconcentration. Thus there is evidence for down-regulation ofphotosynthetic capacity in P. alpina resulting from increasedcarbohydrate accumulation in source leaves. Leaf dark respiration and total N concentration were positivelycorrelated in P. alpina and F. vivipara. Leaf dark respirationand soluble carbohydrate concentration of source leaves werepositively correlated in A. capillaris. Changes in source leafphotosynthetic capacity and carbohydrate concentration of plantsgrown at ambient or elevated CO2 are discussed in relation toplant growth, nutrient relations and availability of sinks forcarbon. Key words: Elevated CO2, Climate change, grasses, carbohydrate partitioning, photosynthesis, respiration  相似文献   

10.
REUVENI  J.; GALE  J.; ZERONI  M. 《Annals of botany》1997,79(2):191-196
Sodium chloride, at a concentration of 88 mol m-3in half strengthHoagland nutrient solution, increased dry weight per unit areaofXanthium strumarium L. leaves by 19%, and chlorophyll by 45%compared to plants grown without added NaCl at ambient (350µmol mol-1) CO2concentration. Photosynthesis, per unitleaf area, was almost unaffected. Even so, over a 4-week period,growth (dry weight increment) was reduced in the salt treatmentby 50%. This could be ascribed to a large reduction in leafarea (>60%) and to an approx. 20% increase in the rate ofdark respiration (Rd). Raising ambient [CO2] from zero to 2000 µmol mol-1decreasedRd in both control and salinized plants (by 20% at 1000, andby 50% at 2000 µmol mol-1CO2concentration) compared toRd in the absence of ambient CO2. High night-time [CO2] hadno significant effect on growth of non-salinized plants, irrespectiveof day-time ambient [CO2]. Growth reduction caused by salt wasreduced from 51% in plants grown in 350 µmol mol-1throughoutthe day, to 31% in those grown continuously in 900 µmolmol-1[CO2]. The effect of [CO2] at night on salinized plants depended onthe daytime CO2concentration. Under 350 µmol mol-1day-time[CO2], 900 µmol mol-1at night reduced growth over a 4-weekperiod by 9% (P <0.05) and 1700 µmol mol-1reduced itby 14% (P <0.01). However, under 900 µmol mol-1day-time[CO2], 900vs . 350 µmol mol-1[CO2] at night increasedgrowth by 17% (P <0.01). It is concluded that there is both a functional and an otiose(functionless) component to Rd, which is increased by salt.Under conditions of low photosynthesis (such as here, in thelow day-time [CO2] regime) the otiose component is small andhigh night-time [CO2] partly suppresses functional Rd, therebyreducing salt tolerance. In plants growing under conditionswhich stimulate photosynthesis (e.g. with increased daytime[CO2]), elevated [CO2] at night suppresses mainly the otiosecomponent of respiration, thus increasing growth. Consequently,in regions of adequate water and sunlight, the predicted furtherelevation of the world atmospheric [CO2] may increase plantsalinity tolerance. Xanthium strumarium ; respiration; photosynthesis; salt stress; sodium chloride; carbon dioxide; atmosphere  相似文献   

11.
冬季土壤呼吸:不可忽视的地气CO2交换过程   总被引:5,自引:0,他引:5       下载免费PDF全文
 冬季土壤呼吸是生态系统释放CO2的极为重要的组成部分,并显著地影响着碳收支。然而,过去绝大多数工作集中在生长季节土壤呼吸的测定,对年土壤呼吸量的估算大多基于冬季土壤呼吸为零的假设。目前为数不多的研究集中在极地苔原和亚高山,其它植被类型的研究只有零星报道。极地苔原和森林冬季土壤呼吸速率分别为0.002~1.359和0.22~0.67 μmol C.m-2·s-1;土壤呼吸的CO2释放量分别为0.55~26.37和22.4~152.0 g C·m-2,是地气CO2交换过程中不可忽视的环节。雪是土壤呼吸过程的重要调节者,积雪厚度和覆盖时间的长短均会影响土壤呼吸的强弱;水分的可获取性是重要的限制因素;对于维持活跃的土壤呼吸有一个关键的土壤温度临界值(-7~-5 ℃),低于这个值会因自由水的缺乏而抑制异养微生物的呼吸。如果存在绝缘的积雪层,可溶性碳底物在自由水存在的情况下可控制异养微生物的活力。该文对冬季土壤呼吸的重要性、研究方法、土壤呼吸强度及其影响机制等进行了综述,并讨论了冬季土壤呼吸研究中存在的问题及未来研究方向。  相似文献   

12.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol–1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol–1 CO2 (C340)After 3–4 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 17–29%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O–1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves ‘instantaneously’exposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m–1 s–1 to >27 % at 1170 µmol m–2 s–1 In parallel, wateruse efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 In parallel,water use efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation  相似文献   

13.
Permeability coefficients (PS values) for CO2 of the plasmamembrane (PM) of the unicellular green algae Eremosphaera viridis,Dunaliella parva, and Dunaliella acidophila, and of mesophyllprotoplasts isolated from Valerianella locusta were determinedfrom 14CO2 uptake experiments using the rapid separation ofcells by the silicone oil layer centrifugation technique. Theexperimental PS values were compared with calculated numbersobtained by interpolation of Collander plots, which are basedon lipid solubility and molecular size, for D. parva cells,mesophyll protoplasts isolated from Spinacia oleracea, mesophyllcells and guard cells of Valerianella, and guard cell protoplastsisolated from Vicia faba. The conductivity of algal plasma membranes for CO2 varies between0.1 and 9 ? 10–6 m s–1, whereas for the plasmalemmaof cells and protoplasts isolated from leaves of higher plantsvalues between 0.3 and 11 ? 10–6 m s–1 were measured.By assuming that these measurements are representative for plantsand algae in general, it is concluded that the CO2 conductivityof algal PM is of the same order of magnitude as that of thehigher plant cell PM. Ps values of plasma membranes for CO2are lower than those for SO2, but are in the same order of magnitudeas those measured for H2O. On the basis of these results itis concluded that theoretical values of about 3000 ? 10–6m s–1 believed to be representative for higher plant cells(Nobel, 1983) and which are frequently used for computer-basedmodels of photosynthesis, lack experimental confirmation andrepresent considerable overestimations. However, with severalsystems, including higher plant cells, the conductance of thePM for CO2 was significantly higher in light than in darkness.This suggests that in light, additional mechanisms for CO2 uptakesuch as facilitated diffusion or active uptake may operate inparallel with diffusional uptake. Key words: Conductivity, CO2, permeability coefficient, photosynthesis, plasmalemma  相似文献   

14.
Well-nodulated soya bean (Glycine max L.) plants were allowedto assimilate 13CO2 for 10 h in the light, under steady-stateconditions in which CO2 concentration and 13C abundance wereboth strictly controlled at constant levels. The respiratoryevolution of 13CO2 from roots and nodules and 13C incorporationinto various metabolic fractions were measured during the 13CO2feeding and subsequent 48 h chase period. CO2 respired from nodules was much more rapidly labelled with13C than that from roots. The level of labelling (percentageof carbon currently assimilated during the 13COM2 feeding period)of CO2 respired from nodules reached a maximum of about 87 percent after 4 h of steady-state l3CO2 assimilation and thereafterremained fairly constant. The absolute amount of labelled carbonevolved by the respiration of the nodules during the 10 h 13CO2feeding period was 1·5-fold that of root respiration.These results demonstrated that the currently assimilated (labelled)carbon was preferentially used to support nodule respiration,while root respiration relied considerably on earlier (non-labelled)carbon reserved in the roots. Sucrose pools were mostly composed of currently assimilatedcarbon in all tissues of the plants, since the levels of labellingaccounted for 86–91 per cent at the end of the 13CO2 feeding.In the nodules, the kinetics and levels of sucrose labellingwere in fairly good agreement with those of respired CO2, whilein the roots, the level of labelling of respired CO2 was significantlylower than that of sucrose. Succinate and malate were highly labelled in both roots andnodules but they were labelled much more slowly than sucroseand respired CO2. The kinetics and levels of labelling of theseKrebs cycle intermediates resembled those of major amino acidswhich are derived directly from Krebs cycle intermediates. Itis suggested that large fractions of organic acids in noduleswere physically separate from the respiration site. Glycine max L., Soya bean, 13CO2 assimilation, respiratory evolution of 13CO2, carbon metabolism in root nodules  相似文献   

15.
Seedlings of Maranthes corymbosa (Blume) and Eucalyptus tetrodonta(F. Muell) were grown with or without CO2 enrichment (700µmolCO2 mol–1 The response of stomatal conductance (g2) toleaf drying, exogenous absclslc acid and calcium ions was investigatedin M. corymbosa. Reciprocal transfer experiments were also conductedwhereby plants were grown in one treatment and then transferredto the other before g, was measured. Stomatal conductance in M. corymbosa was more sensitive (a greaterpercentage decline in g2 per unit percentage decline in leaffresh weight) to leaf water status under conditions of CO2 enrichmentcompared to ambient conditions. However, the rate of reductionof g2 in response to exogenous abscisic acid was not influencedby CO2 treatment. In contrast, the rate of reduction of g2,in response to exogenous CaCl2 was decreased under conditionsof CO2 enrichment. Reciprocal transfer experiments showed that expo sure to CO2enrichment results in a short-term, reversible decline in g2,as a result of decreased stomatal aperture and a long-term,irreversible decline in g2 as a result of a decreased stomataldensity. Seedlings of E. tetrodonta were used to investigate the responseof g2 to light flux density, leaf-to-air vapour pressure difference(LAVPD), leaf internal CO2 concentration (C1 and temperature.Reciprocal transfer experiments were also conducted. CO2 enrichmentdid not influence the pattern or sensitivity of response ofg to LAVPD and C in E. tetrodonta. In contrast, the slope ofthe response of g2, to temperature decreased for trees grownunder elevated [CO2]a conditions and the equilibrium g2 attainedat saturating light was also decreased for plants grown underelevated [CO2a. conditions. Key words: Stomata, elevated CO2, tropical trees  相似文献   

16.
Single, seed-grown plants of ryegrass (Lolium perenne L. cv.Melle) were grown for 49 d from the early seedling stage ingrowth cabinets at a day/night temperature of 20/15 C, witha 12 h photoperiod, and a CO2 concentration of either 340 or680µI 1–1 CO2. Following complete acclimation tothe environmental regimes, leaf and whole plant CO2 effluxesand influxes were measured using infra-red gas analysis techniques.Elevated CO2 increased rates of photosynthesis of young, fullyexpanded leaves by 35–46% and of whole plants by morethan 50%. For both leaves and whole plants acclimation to 680µI–1 CO2 reduced rates of photosynthesis in bothCO2 regimes, compared with plants acclimated to 340µll–1. There was no significant effect of CO2 regime onrespiration rates of either leaves or whole plants, althoughleaves developed in elevated CO2 exhibited generally lower ratesthan those developed in 340µI I–1 CO2. Initially the seedling plants in elevated CO2 grew faster thantheir counterparts in 340µI I–1 CO2, but this effectquickly petered out and final plant weights differed by onlyc. 10%. Since the total area of expanded and unexpanded laminaewas unaffected by CO2 regime, specific leaf area was persistently13–40% lower in elevated CO2 while, similarly, root/shootratio was also reduced throughout the experiment. Elevated CO2reduced tissue nitrogen contents of expanded leaves, but hadno effect on the nitrogen contents of unexpanded leaves, sheathsor roots. The lack of a pronounced effect of elevated CO2 on plant growthwas primarily due to the fact that CO2 concentration did notinfluence tiller (branch) numbers. In the absence of an effecton tiller numbers, any possible weight increment was restrictedto the c. 2.5 leaves of each tiller. The reason for the lackof an effect on tillering is not known. Key words: Lolium perenne, ryegrass, elevated CO2, photosynthesis, respiration, growth, development  相似文献   

17.
To study the effect of chronically elevated CO2 on the excitability and function of neurons, we exposed mice to 7.5–8% CO2 for 2 wk (starting at 2 days of age) and examined the properties of freshly dissociated hippocampal neurons. Neurons from control mice (CON) and from mice exposed to chronically elevated CO2 had similar resting membrane potentials and input resistances. CO2-exposed neurons, however, had a lower rheobase and a higher Na+ current density (580 ± 73 pA/pF; n = 27 neurons studied) than did CON neurons (280 ± 51 pA/pF, n = 34; P < 0.01). In addition, the conductance-voltage curve was shifted in a more negative direction in CO2-exposed than in CON neurons (midpoint of the curve was –46 ± 3 mV for CO2 exposed and –34 ± 3 mV for CON, P < 0.01), while the steady-state inactivation curve was shifted in a more positive direction in CO2-exposed than in CON neurons (midpoint of the curve was –59 ± 2 mV for CO2 exposed and –68 ± 3 mV for CON, P < 0.01). The time constant for deactivation at –100 mV was much smaller in CO2-exposed than in CON neurons (0.8 ± 0.1 ms for CO2 exposed and 1.9 ± 0.3 ms for CON, P < 0.01). Immunoblotting for Na+ channel proteins (subtypes I, II, and III) was performed on the hippocampus. Our data indicate that Na+ channel subtype I, rather than subtype II or III, was significantly increased (43%, n = 4; P < 0.05) in the hippocampi of CO2-exposed mice. We conclude that in mice exposed to elevated CO2, 1) increased neuronal excitability is due to alterations in Na+ current and Na+ channel characteristics, and 2) the upregulation of Na+ channel subtype I contributes, at least in part, to the increase in Na+ current density. sodium ion channels; oxygen deprivation  相似文献   

18.
The respiratory effluxes of nodules and of roots of FiskebyV soyabean (Glycine max (L.) Merr.), grown in a controlled environment,were measured at intervals in air and 3% O2 from shortly afterthe onset of N2 fixation until plant senescence. The respiratoryburdens linked with nitrogenase plus ammonia metabolism, andnodule growth and maintenance, were calculated from gas exchangedata and related to the concurrent rates of N2 fixation. The specific respiration rates of nodules increased to a maximumof 21 mg CO2 g–1 h–1 at the time pods began development:the equivalent maximum for roots was c. 4.5 mg CO2 g–1h–1. Maximum nodule and root respiration rates per plantwere attained about 25 d later at the time N2 fixation peakedat 15 mg N d–1 plant–1. The relationship between nodule respiration and N2 fixationindicated an average respiratory cost of 13.2 mg CO2 mg–1N until the last few days of plant development Separation ofnodule respiration into the two components: nitrogenase (+ NH3metabolism) respiration and nodule growth and maintenance respiration,indicated that the latter efflux accounted for c. 20% of nodulerespiration while N2 fixation was increasing and new noduletissue was being formed. When nodule growth ceased and N2 fixationdeclined, this component of respiration also declined. The respiratorycost of nitrogenase activity plus the associated metabolismof NH3 varied between 11 mg CO2 mg–1 N during vegetativeand early reproductive growth, to 12.5 mg CO2 mg–1 N duringthe later stages of pod development. Key words: N2 fixation, Respiration, Nodules, Nitrogenase  相似文献   

19.
Willow cuttings were allowed to assimilate 14CO2, and the changein the specific activity of phloem sap, collected as aphid honeydew,was compared with the change in the specific activity of the14CO2 given off from the respiration of the labelled translocates.With young shoots (3–5 weeks old), the acceleration inthe specific activities of honeydew and respiratory CO2 werevery similar. With 2–4-year-old mature stems, however,there was a considerable difference between the accelerationof the two specific activities, that of the honeydew alwaysbeing greater than respiratory CO2. Studies have also been made on the rate of breakdown of 14C-labelledtranslocates in isolated and intact young shoots and maturestems. No differences between the isolated and intact stemswere apparent. The results are discussed in relation to possible translocationmechanisms, and the results of other workers in this field ofexperimentation.  相似文献   

20.
The effects of elevated atmospheric CO2 concentrations on theecophysiological responses (gas exchange, chlorophyll a fluorescence,Rubisco activity, leaf area development) as well as on the growthand biomass production of two poplar clones (i.e. Populus trichocarpax P. deltoides clone Beaupré and P. x euramericana cloneRobusta) were examined under open top chamber conditions. Theelevated CO2 treatment (ambient + 350 µmol mol-1) stimulatedabove-ground biomass of clones Robusta and Beaupré afterthe first growing season by 55 and 38%, respectively. This increasedbiomass production under elevated CO2 was associated with asignificant increase in plant height, the latter being the resultof enhanced internode elongation rather than an increased productionof leaves or internodes. Both an increased leaf area index (LAI)and a stimulated net photosynthesis per unit leaf contributedto a significantly higher stem biomass per unit leaf area, andthus to the increased above-ground biomass production underthe elevated CO2 concentrations in both clones. The larger LAIwas caused by a larger individual leaf size and leaf growthrate; the number of leaves was not altered by the elevated CO2treatment. The higher net leaf photosynthesis was the resultof an increase in the photochemical (maximal chlorophyll fluorescenceFm and photochemical efficiency Fv/Fm) as well as in the biochemical(increased Rubisco activity) process capacities. No significantdifferences were found in dark respiration rate, neither betweenclones nor between treatments, but specific leaf area significantlydecreased under elevated CO2 conditions.Copyright 1995, 1999Academic Press Biomass, chlorophyll a fluorescence, elevated CO2, growth, Populus, poplar, photosynthesis, respiration, Rubisco  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号