首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of various ammoniagenic, gluconeogenic, and glycolytic enzymes were measured in the renal cortex and also in the liver of rats made diabetic with streptozotocin. Five groups of animals were studied: normal, normoglycemic diabetic (insulin therapy), hyperglycemic, ketoacidotic, and ammonium chloride treated rats. Glutaminase I, glutamate dehydrogenase, glutamine synthetase, phosphoenolpyruvate carboxykinase (PEPCK), hexokinase, phosphofructokinase, fructose-1,6-diphosphatase, malate dehydrogenase, malic enzyme, and lactate dehydrogenase were measured. Renal glutaminase I activity rose during ketoacidosis and ammonium chloride acidosis. Glutamate dehydrogenase in the kidney rose only in ammonium chloride treated animals. Glutamine synthetase showed no particular variation. PEPCK rose in diabetic hyperglycemic animals and more so during ketoacidosis and ammonium chloride acidosis. It also rose in the liver of the diabetic animals. Hexokinase activity in the kidney rose in diabetic insulin-treated normoglycemic rats and also during ketoacidosis. The same pattern was observed in the liver of these diabetic rats. Renal and hepatic phosphofructokinase activities were elevated in all groups of experimental animals. Fructose-1,6-diphosphatase and malate dehydrogenase did not vary significantly in the kidney and the liver. Malic enzyme was lower in the kidney and liver of the hyperglycemic diabetic animals and also in the liver of the ketoacidotic rats. Lactate dehydrogenase fell slightly in the liver of diabetic hyperglycemic and NH4Cl acidotic animals. The present study indicates that glutaminase I is associated with the first step of increased renal ammoniagenesis during ketoacidosis. PEPCK activity is influenced both by hyperglycemia and ketoacidosis, acidosis playing an additional role. Insulin appears to prevent renal gluconeogenesis and to favour glycolysis. The latter would seem to remain operative in hyperglycemic and ketoacidotic diabetic animals.  相似文献   

2.
Metabolic acidosis (6 days NH4Cl) causes a fourfold increase in the relative abundance of mRNA encoding phosphoenolpyruvate carboxykinase in rat kidney. Streptozotocin-diabetes (6 days) also results in an increased abundance of the mRNA but this increase can be prevented if the acidosis associated with bicarbonate is corrected by treatment with bicarbonate. The results confirm that renal phosphoenolpyruvate carboxykinase is regulated primarily by changes in acid-base status and that this control is at a pretranslational step. Isolated kidney tubules in short-term incubation have been used to identify which agents regulate levels of phosphoenolpyruvate carboxykinase mRNA. The relative abundance of the mRNA was increased by glucocorticoids and hormones which act via cAMP, or by cAMP analogues directly, but was not affected by hormones acting via Ca2+. Neither incubation at pH 7.1 nor the presence of serum from acidotic rats had any effect on the level of phosphoenolpyruvate carboxykinase mRNA. It is concluded that acidosis, glucocorticoids, and cAMP independently regulate expression of renal phosphoenolpyruvate carboxykinase.  相似文献   

3.
Previous investigations of the phosphoenolpyruvate carboxykinase (PEPCK) gene have been conducted using rats. In a recent comparative study, we investigated, for the first time, the effects of fasting, refeeding, alloxan-induced diabetes, and insulin treatment on the levels of PEPCK mRNA in mouse liver, kidney, and adipose tissues. As in rats, fasting and diabetes induced, while insulin repressed, hepatic PEPCK mRNA. In contrast, the response of renal PEPCK mRNA to fasting, refeeding, and diabetes in mice differed quantitatively with that in rats: fasting caused a twofold increase in mice and a fourfold increase in rats. Moreover, diabetes, which induces renal PEPCK mRNA indirectly by causing acidosis in rats, was without effect in mice. In adipose tissue, the results of previous studies in both rats and mice have shown that the amount of PEPCK protein and its rate of synthesis are increased by fasting and diabetes and decreased by refeeding and insulin treatment. Thus, it was surprising to find that fasting, refeeding, alloxan-induced diabetes, and insulin treatment had no effect on adipose tissue PEPCK mRNA in either rats or mice.  相似文献   

4.
5.
Serine dehydratase (SDH) is abundant in the rat liver but scarce in the kidney. When administrated with dexamethasone, the renal SDH activity was augmented 20-fold, whereas the hepatic SDH activity was affected little. In situ hybridization and immunohistochemistry revealed that SDH was localized to the proximal straight tubule of the nephron. To address the role of this hormone, rats were made acidotic by gavage of NH(4)Cl. Twenty-two hours later, the SDH activity was increased three-fold along with a six-fold increment in the phosphoenolpyruvate carboxykinase (PEPCK) activity, a rate-limiting enzyme of gluconeogenesis. PEPCK, which is localized to the proximal tubules under the normal condition, spreads throughout the entire cortex to the outer medullary rays by acidosis, whereas SDH does not change regardless of treatment with dexamethasone or NH(4)Cl. When NH(4)Cl was given to adrenalectomized rats, in contrast to the SDH activity no longer increasing, the PEPCK activity responded to acidosis to the same extent as in the intact rats. A simultaneous administration of dexamethasone and NH(4)Cl into the adrenalectomized rats fully restored the SDH activity, demonstrating that the rise in the SDH activity during acidosis is primarily controlled by glucocorticoids. The present findings clearly indicate that the localization of SDH and its hormonal regulation during acidosis are strikingly different from those of PEPCK.  相似文献   

6.
The Cl(-)/anion exchanger pendrin (SLC26A4) is expressed on the apical side of renal non-type A intercalated cells. The abundance of pendrin is reduced during metabolic acidosis induced by oral NH(4)Cl loading. More recently, it has been shown that pendrin expression is increased during conditions associated with decreased urinary Cl(-) excretion and decreased upon Cl(-) loading. Hence, it is unclear if pendrin regulation during NH(4)Cl-induced acidosis is primarily due the Cl(-) load or acidosis. Therefore, we treated mice to increase urinary acidification, induce metabolic acidosis, or provide an oral Cl(-) load and examined the systemic acid-base status, urinary acidification, urinary Cl(-) excretion, and pendrin abundance in the kidney. NaCl or NH(4)Cl increased urinary Cl(-) excretion, whereas (NH(4))(2)SO(4), Na(2)SO(4), and acetazolamide treatments decreased urinary Cl(-) excretion. NH(4)Cl, (NH(4))(2)SO(4), and acetazolamide caused metabolic acidosis and stimulated urinary net acid excretion. Pendrin expression was reduced under NaCl, NH(4)Cl, and (NH(4))(2)SO(4) loading and increased with the other treatments. (NH(4))(2)SO(4) and acetazolamide treatments reduced the relative number of pendrin-expressing cells in the collecting duct. In a second series, animals were kept for 1 and 2 wk on a low-protein (20%) diet or a high-protein (50%) diet. The high-protein diet slightly increased urinary Cl(-) excretion and strongly stimulated net acid excretion but did not alter pendrin expression. Thus, pendrin expression is primarily correlated with urinary Cl(-) excretion but not blood Cl(-). However, metabolic acidosis caused by acetazolamide or (NH(4))(2)SO(4) loading prevented the increase or even reduced pendrin expression despite low urinary Cl(-) excretion, suggesting an independent regulation by acid-base status.  相似文献   

7.
8.
9.
We confirmed that release of 20-hydroxyeicosatetraenoic acid (20-HETE) from the isolated perfused kidney of diabetic rats is greatly reduced compared with age-matched control rats. The present studies were undertaken to examine potential mechanisms for the deficit in renal 20-HETE in rats with streptozotocin-induced diabetes of 3-4 wk duration. A role for oxidative stress was excluded, inasmuch as treatment of diabetic rats with tempol, an SOD mimetic, for 4 wk did not affect the renal release of 20-HETE. Similarly, chronic inhibition of nitric oxide formation with nitro-l-arginine methyl ester or aldose reductase with zopolrestat failed to alter the release of 20-HETE from the diabetic rat kidney. Inasmuch as 20-HETE may be metabolized by cyclooxygenase (COX), the expression/activity of which is increased in diabetes, we included indomethacin in the perfusate of the isolated kidney to inhibit COX but found no effect on 20-HETE release. Diabetic rats were treated for 3 wk with fenofibrate to increase expression of cytochrome P-450 (CYP4A) in an attempt to find an intervention that would restore release of 20-HETE from the diabetic rat kidney. However, fenofibrate reduced 20-HETE release in diabetic and control rat kidneys but increased expression of CYP4A. Only insulin treatment of diabetic rats for 2 wk to reverse the hyperglycemia and maintain blood glucose levels at <200 mg/dl reversed the renal deficit in 20-HETE. We conclude that oxidative stress, increased aldose reductase activity, or increased COX activity does not contribute to the renal deficit of 20-HETE in diabetes, which may be directly related to insulin deficiency.  相似文献   

10.
11.
12.
13.
14.
Chi TC  Chen WP  Chi TL  Kuo TF  Lee SS  Cheng JT  Su MJ 《Life sciences》2007,80(18):1713-1720
Resveratrol, a polyphenolic substance found in grape skin, is proposed to account in part for the protective effect of red wine in the cardiovascular system. The aim of the present study is to investigate the action and possible mechanisms of resveratrol-produced regulation of plasma glucose in normal and diabetic rats including the animal model of streptozotocin (STZ)-induced and nicotinamide-STZ-induced (NA-STZ), and insulin-resistant diabetic rats. Resveratrol (p.o.) produced a hypoglycemic effect in a dose-dependent manner in normal and diabetic rats, and the insulin level was increased following resveratrol treatment in normal and NA-STZ diabetic rats. In insulin-deficient STZ-diabetic rats, resveratrol significantly lowered the plasma glucose 90 min after oral treatment, and the hypoglycemic effect was abolished by phosphatidyl-3-kinase (PI3K) inhibitors (LY294002 and wortmannin) which also inhibited resveratrol-induced Akt phosphorylation in soleus muscle of STZ-diabetic rats. The change in the protein expression level of glucose transporter subtype 4 (GLUT4) in the soleus muscle and phosphoenolpyruvate carboxykinase (PEPCK) in the liver of STZ-diabetic rats treated with resveratrol (3 mg/kg, p.o.) for 7 days was examined. Resveratrol normalized hepatic PEPCK expression and increased GLUT4 expression in the soleus muscle of STZ-diabetic rats. The results indicate that the mechanisms contributing to the hypoglycemic effect of resveratrol include insulin-dependent and insulin-independent pathway, and PI3K-Akt-signaling was involved in the latter mechanism to enhance glucose uptake in skeletal muscle.  相似文献   

15.
Cyclooxygenase (COX)-2 expression is increased in the kidney of rats made diabetic with streptozotocin and associated with enhanced release of prostaglandins stimulated by arachidonic acid (AA). Treatment of diabetic rats with nitro-L-arginine methyl ester (L-NAME) to inhibit nitric oxide synthase or with tempol to reduce superoxide prevented these changes, suggesting the possibility that peroxynitrite (ONOO) may be the stimulus for the induction of renal COX-2 in diabetes. Consequently, we tested the effects of an ONOO decomposition catalyst, 5,10,15,20-tetrakis(N-methyl-4'-pyridyl)porphyrinato iron(III) (FeTMPyP), which was administered for 3-4 wk after the induction of diabetes. FeTMPyP treatment normalized the twofold increase in the expression of nitrotyrosine, a marker for ONOO formation, in the diabetic rat and prevented the increase in renal COX-2 expression without modifying the two- to threefold increases in renal release of prostaglandins PGE(2) and 6-ketoPGF(1α) in response to AA. FeTMPyP treatment of diabetic rats reduced the elevated creatinine clearance and urinary excretion of TNF-α and transforming growth factor (TGF)-β, suggesting a renoprotective effect. Double immunostaining of renal sections and immunoprecipitation of COX-2 and nitrotyrosine suggested nitration of COX-2 in diabetic rats. In cultured human umbilical vein endothelial cells (HUVECs) exposed to elevated glucose (450 mg/dl) or ONOO derived from 3-morpholinosydnonimine (SIN-1), expression of COX-2 was increased and was prevented when endothelial cells were treated with FeTMPyP. These results indicate that elevated glucose increases the formation of ONOO, which contributes to the induction of renal COX-2 in the diabetic rat.  相似文献   

16.
Summary The acinar activity pattern of phosphoenolpyruvate carboxykinase (PEPCK) was investigated in livers of streptozotocin diabetic male and female rats and in addition in livers of diabetic males, which had undergone estrogen treatment. In all diabetic animals blood glucose levels were supranormal and liver PEPCK activity was increased. This increase in activity was greatest in estrogen treated diabetic males and lowest in diabetic females. Plasma insulin levels were reduced after the application of streptozotocin to otherwise normal male and female rats. Yet, in males treated in addition with estrogens the plasma insulin levels reached the normal range again. The PEPCK activity showed a heterotopic distribution along the acinus. The periportal to perivenous gradient was steeper in males compared to females in the untreated as well as in the diabetic state. The application of estrogens to males resulted in a further steepening of the gradient.  相似文献   

17.
M Wimmer 《Histochemistry》1989,93(1):49-53
The acinar activity pattern of phosphoenolpyruvate carboxykinase (PEPCK) was investigated in livers of streptozotocin diabetic male and female rats and in addition in livers of diabetic males, which had undergone estrogen treatment. In all diabetic animals blood glucose levels were supranormal and liver PEPCK activity was increased. This increase in activity was greatest in estrogen treated diabetic males and lowest in diabetic females. Plasma insulin levels were reduced after the application of streptozotocin to otherwise normal male and female rats. Yet, in males treated in addition with estrogens the plasma insulin levels reached the normal range again. The PEPCK activity showed a heterotopic distribution along the acinus. The periportal to perivenous gradient was steeper in males compared to females in the untreated as well as in the diabetic state. The application of estrogens to males resulted in a further steepening of the gradient.  相似文献   

18.
In short-term experiments, male Wistar rats were made diabetic for 10 days with a single injection of streptozotocin (65 mg/kg body weight). One group of diabetic rats was treated with insulin for 3 days prior to sacrifice. In long-term experiments, vitamin D replete or vitamin D depleted rats were made diabetic for 6 weeks. Criteria for diabetes were loss of weight, glycosuria (Tes-Tape), and hyperglycemia. In long-term diabetic rats the activity of renal mitochondrial 25-hydroxyvitamin D3 (25-(OH)D3) 1 alpha-hydroxylase was significantly decreased and that of 25-(OH)D3 24-hydroxylase increased. However, the parathyroid hormone (PTH) sensitive renal adenylate cyclase activity of diabetic rats was not different from that of the nondiabetic rats in either the vitamin D replete group or the vitamin D depleted group. On the other hand, the PTH-sensitive renal adenylate cyclase activity was significantly higher in short-term diabetic rats than in control and insulin-treated rats. These differences were observed at doses of 10(-8) to 10(-5) M of PTH. This study has demonstrated for the first time that there are differences in the PTH-sensitive adenylate cyclase response between long-term and short-term diabetic rats. The hypersensitivity to PTH of the renal adenylate cyclase observed in short-term diabetic rats probably represents a response to insulin deficiency during the early development of diabetes mellitus in the rats.  相似文献   

19.
Nitric oxide (NO) plays a significant role in the development of diabetic nephropathy. We investigated the effects of an antioxidant, carnosine, on streptozotocin (STZ)-induced renal injury in diabetic rats. We used four groups of eight rats: group 1, control; group 2, carnosine treated; group 3, untreated diabetic; group 4, carnosine treated diabetic. Kidneys were removed and processed, and sections were stained with periodic acid-Schiff (PAS) and subjected to eNOS immunohistochemistry. Examination by light microscopy revealed degenerated glomeruli, thickened basement membrane and glycogen accumulation in the tubules of diabetic kidneys. Carnosine treatment prevented the renal morphological damage caused by diabetes. Moreover, administration of carnosine decreased somewhat the oxidative damage of diabetic nephropathy. Appropriate doses of carnosine might be a useful therapeutic option to reduce oxidative stress and associated renal injury in diabetes mellitus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号