首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reconstitution studies of the human erythrocyte nucleoside transporter   总被引:3,自引:0,他引:3  
The human erythrocyte nucleoside transporter has been identified as a band 4.5 polypeptide (Mr 45,000-66,000) on the basis of reversible binding and photoaffinity labeling experiments with the nucleoside transport inhibitor, nitrobenzylthioinosine (NBMPR). In the present study, the NBMPR-binding protein was extracted from protein-depleted human erythrocyte "ghosts" with Triton X-100 and reconstituted into soybean phospholipid vesicles by a freeze-thaw-sonication procedure. The reconstituted proteoliposomes exhibited nitrobenzylthioguanosine (NBTGR)-sensitive [14C]uridine transport. A partially purified preparation of the NBMPR-binding protein, consisting largely of band 4.5 polypeptides, was also shown to have nucleoside transport activity. This band 4.5 preparation exhibited a 10-fold increase in uridine transport activity and a 7-fold increase in NBMPR-binding activity relative to the crude membrane extract. Uridine transport by the reconstituted band 4.5 preparation was saturable (apparent Km = 0.21 mM; Vmax = 9 nmol/mg of protein/5 s) and was inhibited by dipyridamole, dilazep, adenosine, and inosine. The vesicles reconstituted with the band 4.5 preparation also exhibited stereospecific glucose transport which was inhibited by cytochalasin B, but unaffected by NBTGR. In contrast, cytochalasin B was a poor inhibitor of NBTGR-sensitive uridine transport. These experiments implicate band 4.5 polypeptides in both nucleoside and sugar permeation.  相似文献   

2.
Reconstitution of the glucose transporter from bovine heart   总被引:1,自引:0,他引:1  
Reconstitution of the glucose transporter from heart should be useful as an assay in its purification and in the study of its regulation. We have prepared plasma membranes from bovine heart which display D-glucose reversible binding of cytochalasin B (33 pmol sites/mg protein; Kd = 0.2 muM). The membrane proteins were reconstituted into liposomes by the freeze-thaw procedure. Reconstituted liposomes showed D-glucose transport activity which was stereospecific, saturable and inhibited by cytochalasin B, phloretin, and mercuric chloride. Compared to membrane proteins reconstituted directly, proteins obtained by dispersal of the membranes with low concentrations of cholate or by cholate solubilization showed 1.2- or 2.3-fold higher specific activities for reconstituted transport, respectively. SDS-polyacrylamide gel electrophoresis followed by electrophoretic protein transfer and labeling with antisera prepared against the human erythrocyte transporter identified a single band of about 45 kDa in membranes from both dog and bovine hearts, a size similar to that reported for a number of other glucose transporters in various animals and tissues.  相似文献   

3.
T J Wheeler  M A Hauck 《Life sciences》1987,40(24):2309-2316
As a step in the purification and characterization of the glucose transporter from rat skeletal muscle, we have reconstituted glucose transport activity in liposomes. Plasma membranes were prepared from skeletal muscle which display D-glucose reversible binding of cytochalasin B (10 pmol sites/mg protein; KD = 0.3 microM). Older rats gave a slightly lower specific activity and much lower yield of sites per g muscle than young rats. Glucose transport activity was reconstituted into liposomes by the freeze-thaw procedure using either plasma membranes directly or cholate-extracted membrane proteins; the latter gave a 50% higher specific activity. The reconstituted transport activity was stereospecific, saturable, and inhibited by cytochalasin B, phloretin, and mercuric chloride. The optimum cholate concentration for extraction and reconstitution of transport activity was about 1.5%, and the highest specific activity of reconstituted transport was seen only at low ratios of protein to lipid in the reconstitution. Chromatography on agarose lentil lectin and agarose ethanethiol doubled both the specific activity of reconstituted transport and the fraction of glucose uptake which was stereospecific. In all of these respects the results were similar to our results with the bovine heart transporter (T. J. Wheeler and M. A. Hauck, Biochim. Biophys. Acta 818, 171-182 (1985)). Our findings suggest that further purification procedures developed for the heart transporter may be applicable to the skeletal muscle transporter as well.  相似文献   

4.
Gel chromatography of solubilized Ehrlich cell plasma membranes and preformed asolectin vesicles coupled to a freeze-thaw cycle results in the reconstitution of 3-O-methyl-D-glucose transport. The transport activity of the liposomes formed is critically dependent on the cation present during reconstitution. Liposomes formed in K+ show high levels of carrier-mediated 3-O-methyl-D-glucose uptake (495 pmol/min/mg protein) while those formed in Na+ do not (33 pmol/min/mg protein). The inactivity in Na+ is not due to a diminished incorporation of glucose transporter nor is it due to carrier molecules reconstituted with a different orientation from those in K+ liposomes. Instead, the low glucose transport level in Na+ liposomes is related to the small size of vesicles formed with Na+. A second freeze-thaw cycle in K+ causes a two- to threefold increase in the available intravesicular volume of Na+ liposomes and results in an eightfold increase in carrier-mediated 3-O-methyl-D-glucose uptake. K+ liposomes, treated in an identical manner, show only a twofold increase in uptake. The glucose transporter was identified as a protein with a molecular mass range of 44.7 to 66.8 kDa, by the D-glucose-inhibitable photoincorporation of [3H]cytochalasin B. The carrier protein is inserted in reconstituted vesicles in a nonrandom manner with at least 80% of the molecules oriented with the cytoplasmic domain accessible to the external medium. In contrast, the neutral Na+-dependent amino acid transport system appears to be randomly reconstituted.  相似文献   

5.
Solubilization and reconstitution of the renal phosphate transporter   总被引:1,自引:0,他引:1  
Proteins from brush-border membrane vesicles of rabbit kidney cortex were solubilized with 1% octylglucoside (protein to detergent ratio, 1:4 (w/w). The solubilized proteins (80.2 +/- 2.3% of the original brush-border proteins, n = 10, mean +/- S.E.) were reconstituted into artificial lipid vesicles or liposomes prepared from purified egg yolk phosphatidylcholine (80%) and cholesterol (20%). Transport of Pi into the proteoliposomes was measured by rapid filtration in the presence of a Na+ or a K+ gradient (out greater than in). In the presence of a Na+ gradient, the uptake of Pi was significantly faster than in the presence of a K+ gradient. Na+ dependency of Pi uptake was not observed when the liposomes were reconstituted with proteins extracted from brush-border membrane vesicles which had been previously treated with papain, a procedure that destroys Pi transport activity. Measurement of Pi uptake in media containing increasing amounts of sucrose indicated that Pi was transported into an intravesicular (osmotically sensitive) space, although about 70% of the Pi uptake appeared to be the result of adsorption or binding of Pi. However, this binding of Pi was not dependent upon the presence of Na+. Both Na+-dependent transport and the Na+-independent binding of Pi were inhibited by arsenate. The initial Na+-dependent Pi transport rate in control liposomes of 0.354 nmol Pi/mg protein per min was reduced to 0.108 and 0 nmol Pi/mg protein per min in the presence of 1 and 10 mM arsenate, respectively. Future studies on reconstitution of Pi transport systems must analyze and correct for the binding of Pi by the lipids used in the formation of the proteoliposomes.  相似文献   

6.
Reaction centers (RCs) fromRhodopseudomonas sphaeroides were reconstituted into asolectin vesicles by cosonication. Equilibrium centrifugation on sucrose gradients showed that the vesicles were homogeneous in density (i.e., lipid-to-protein ratio) when reconstituted at a molar lipid-to-protein ratio between 500 to 1000. At lower ratios, a considerable fraction of RCs was not incorporated into closed vesicles, while at higher ratios, an increasing population of liposomes was protein-free. The average vesicle size decreased with increasing lipid-to-protein ratio, exhibiting considerable size heterogeneity within a sample. The average diameter of the largest and smallest population of vesicles, reconstituted at a molar lipid-to-protein ratio of 560, was 1200 and 400 nm, respectively. The orientation of reconstituted RCs with respect to the plane of the membrane was determined from the flash-induced rereduction kinetics of the special-pair bacteriochlorophyll dimer in the presence of reduced cytochromec. The predominant orientation of RCs was such that the cytochromec binding sites faced the external medium. The net orientation of RCs in reconstituted vesicles decreased with vesicle size and was strongly influenced by the ionic strength during reconstitution.Abbreviations RC reaction center - LDAO lauryldimethylamine-N-oxide - UQ0/UQ0H2 oxidized and reduced form of 2,3-dimethoxy-5-methyl-1,4-benzoquinone - CCCP carbonyl-cyanide-trichloromethoxy phenylhydrazone - D/D+ reduced and oxidized form of the primary electron donor of the reaction centers. During the course of this study K. J. H. was supported by a grant from the Netherlands Organization for the Advancement of Pure Research (Z.W.O.). This research was supported by grants from the National Institutes of Health (EY-02084) and from the Office of Naval Research (ONR-NOOO 14-79-C 0798) to M. Montal.  相似文献   

7.
N Sone 《Journal of biochemistry》1986,100(6):1465-1470
It is possible to prepare liposomal vesicles by solubilization of total bacterial membranes with n-heptyl beta-D-thioglucoside followed by reconstitution into proteoliposomes by a freeze-thaw-sonication procedure with soybean phospholipids. The resulting proteoliposomes from total membrane fraction of sufficiently aerated cells of the thermophilic bacterium PS3 containing cytochrome aa3 showed a reasonable H+ pumping activity upon addition of reduced cytochrome c. On the other hand, the proteoliposomes reconstituted from air-limited PS3 cells containing cytochrome o and those from Nitrobacter agilis cells containing cytochrome aa3 did not show H+ pumping upon addition of reduced cytochrome c, although the vesicles showed "respiratory control"; 3-4-fold stimulation of oxygen consumption took place upon addition of an uncoupler. In proteoliposomes prepared from PS3 membranes by this method, H+-translocating ATPase (F0 X F1) was successfully reconstituted as well, suggesting that this method has wide applicability for investigation of enzymes catalyzing transmembrane processes.  相似文献   

8.
Synaptic membranes from rat spinal cord were solubilized in the presence of 2% sodium cholate, phospholipids and 15% ammonium sulphate. The soluble extract was incorporated into liposomes consisting of asolectin and crude rat brain lipids. Reconstitution of the functional transporter protein was achieved by removal of detergent by gel filtration. Several parameters proved to be important for optimal reconstitution efficiency: (a) the lipid composition of the liposomes, (b) the type of detergent, and (c) the phospholipid/protein and detergent/protein ratio during reconstitution. In the reconstituted system, the transport of glycine showed a specific activity about twice that of native vesicles. The ionic dependence of the transport, the inhibitory effect of nigericin in the presence of external sodium and the stimulatory effect of valinomycin in the presence of internal potassium on glycine transport were preserved and more clearly observed in the reconstituted system. These results indicate that, in this preparation, the glycine transporter protein retains the same features displayed in the synaptic plasma membrane vesicles, namely dependence on sodium and chloride, electrogenicity and inhibitor sensitivity.  相似文献   

9.
Lipid requirements for coupled cytochrome oxidase vesicles   总被引:1,自引:0,他引:1  
T D Madden  M J Hope  P R Cullis 《Biochemistry》1983,22(8):1970-1974
Cytochrome c oxidase has been reconstituted with two synthetic phospholipids, dioleoylphosphatidylcholine and dioleoylphosphatidylethanolamine. Vesicles prepared from either of these two lipids alone showed no stimulation of enzyme activity upon addition of carbonyl cyanide (trifluoromethoxy)phenylhydrazone and valinomycin, indicating that they were leaky to small ions. However, when mixtures of the two lipids were used for the reconstitution, tightly coupled vesicles could be obtained. The coupling ratio was dependent upon the ratio of dioleoylphosphatidylcholine to dioleoylphosphatidylethanolamine and also on the lipid-to-protein ratio. Maximal rates of enzyme activity were not significantly different with different lipid mixtures. The results are discussed in terms of both the size distribution of the reconstituted vesicles and the possible requirement for a variety of lipid species to ensure tight sealing at the lipid-protein interface.  相似文献   

10.
Transport ratios of reconstituted (H+ + K+)-ATPase   总被引:2,自引:0,他引:2  
Gastric (H+ + K+)-ATPase was reconstituted into artificial phosphatidylcholine/cholesterol vesicles by means of a freeze-thaw-sonication procedure. The passive and active transport mediated by these vesicles were measured (Skrabanja, A.T.P., Asty, P., Soumarmon, A., De Pont, J.J.H.H.M. and Lewin, M.J.M. (1986) Biochim. Biophys. Acta 860, 131-136). To determine real initial velocities, the proteoliposomes were separated from non-incorporated enzyme, by means of centrifugation on a sucrose gradient. The purified proteoliposomes were used to measure active H+ and Rb+ transport, giving at room-temperature velocities of 46.3 and 42.5 mumol per mg per h, respectively. A transport ratio of two cations per ATP hydrolyzed was also measured. These figures indicate that the enzyme catalyzes an electroneutral H+-Rb+ exchange.  相似文献   

11.
Na+-dependent amino acid transport can be reconstituted by gel filtration of disaggregated plasma membrane and asolectin vesicles coupled to a freeze-thaw cycle. The resultant transport activity is markedly affected by the nature of the reconstitution medium. Reconstitution in K+ permits the formation of active liposomes, whereas reconstitution in Na+, Li+, or choline does not. Electron micrographs of K+ liposomes show a wide variation in liposome sizes. Ficoll density gradient fractionation of K+ liposomes shows that the largest vesicles are lipid rich, have the lowest density, and have the highest level of Na+-dependent amino acid transport. Liposomes formed in Na+ have a 34% smaller trapped volume than K+ liposomes and lack a population of large vesicles. A second freeze-thaw in K+ restores activity to Na+ liposomes which now contain large low density active vesicles. Fluorescence measurements of freeze-thaw-induced mixing of vesicle lipids indicates that the absence of large vesicles in Na+ liposomes is due to inhibition by Na+ of lipid vesicle fusion events during freezing and thawing. The large vesicle fraction is enriched in a 125-kDa peptide. It has not yet been established whether this peptide is part of the transport system for neutral amino acids.  相似文献   

12.
Solubilized Ehrlich cell plasma membrane proteins were incorporated into lipid vesicles in the presence of added phospholipid, using Sephadex G-50 chromatography combined with a freeze-thaw step. Liposomes formed in K+ exhibited high levels of Na+-dependent, alpha-aminoisobutyric acid uptake which was electrogenic and inhibited by other amino acids. The transport activity reconstituted was similar to that observed in native plasma membrane vesicles. In addition to transport by system A, leucine exchange activity (system L), Na+-dependent serine exchange activity (system ASC), and stereospecific glucose transport activity were also reconstituted. The latter was inhibited by D-glucose, D-galactose, cytochalasin B, and mercuric chloride. The medium used for reconstitution was critical for the recovery of Na+-dependent amino acid transport. The use of Na+ in the reconstitution procedure led to formation of liposomes which displayed little Na+-dependent and gradient-stimulated amino acid uptake. In contrast, all transport activities studied were efficiently reconstituted in K+ medium.  相似文献   

13.
The di-tripeptide transport system (DtpT) of Lactococcus lactis was purified to apparent homogeneity by pre-extraction of crude membrane vesicles with octaethylene glycol monodecyl ether (C10E8), followed by solubilization with n-dodecyl-beta-D-maltoside (DDM) and chromatography on a Ni-NTA resin. The DtpT protein was reconstituted into detergent-destabilized preformed liposomes prepared from E. coli phospholipid/phosphatidylcholine. A variety of detergents were tested for their ability to mediate the membrane reconstitution of DtpT and their effectiveness to yield proteoliposomes with a high transport activity. The highest activities were obtained with TX100, C12E8 and DM, whereas DDM yielded relatively poor activities, in particular when this detergent was used at concentrations beyond the onset of solubilization of the preformed liposomes. Parallel with the low activity, significant losses of lipid were observed when the reconstitution was performed at high DDM concentrations. This explained at least part of the reduced transport activity as the DtpT protein was highly dependent on the final lipid-to-protein ratios in the proteoliposomes. Consistent with the difference in mechanism of DDM- and TX100-mediated membrane protein reconstitution, the orientation of the DtpT protein in the membrane was random with DDM and inside-in when TX100 was used. The methodology to determine the orientation of membrane-reconstituted proteins from the accessibility of cysteines for thiol-specific reagents is critically evaluated.  相似文献   

14.
Plasma membranes, isolated from Ehrlich ascites tumor cells, were dissolved in 2% cholate, 4 M urea and then reformed into liposomes upon dialysis at 4 degrees with exogenous phospholipids. Reconstituted vesicles regain the ability to transport amino acids. Na+ was shown to accelerate the uptake of alpha-aminoisobutyrate, phenylalanine, and methionine, but not leucine or epsilon-aminohexanoic acid. With the reconstituted vesicles, methionine, but not leucine, inhibited the uptake of alpha-aminoisobutyrate. An apparent Km value for alpha-aminoisobutyrate uptake of 3.0 mM was obtained. This value is close to that observed with the intact cells and the native membrane vesicles. A Na+ gradient (high Na+ outside) increased alpha-aminoisobutyrate uptake, whereas a reversed gradient (high Na+ inside) increased alpha-aminoisobutyrate efflux. The latter flux was increased by valinomycin, suggesting electrogenic transport. A modest extent of coupling between a Na+ gradient and uphill flow of alpha-aminoisobutyrate was observed.  相似文献   

15.
The ATP- and pyrophosphate-dependent proton pumps from tonoplast-enriched vesicles prepared from Rubus hispidus cell cultures were solubilized in the presence of polyoxyethylene(9,10)p-t-octylphenol (Triton X-100) and reconstituted into liposomes of soybean phospholipids, using Bio-Beads SM-2 to remove the detergent. The specific activity of the two pumps was greatly increased by the solubilization-reconstitution procedure. Identical characteristics were found for pyrophosphate-dependent proton transport in native and reconstituted vesicles. On the other hand, the ATP-dependent proton transport of the reconstituted vesicles was no longer inhibited by KNO3.  相似文献   

16.
The glucose transporter of Trypanosoma brucei was reconstituted by incorporating Escherichia coli phospholipid liposomes into detergent-solubilised trypanosome membranes. Proteoliposome vesicles were formed by detergent dilution and used in glucose-uptake assays. The minima for functional reconstitution of the glucose transporter were established and used to probe the mechanism of glucose transport. The uptake pattern of radiolabelled glucose showed a counterflow transient at about 3 s, after which the sugar equilibrated across the proteoliposomal membrane. This observation is consistent with a facilitated transporter. There was a six-fold increase in the initial rate of glucose uptake compared to non-reconstituted or native membranes. In addition, the transporter exhibited stereospecificity to D-glucose but poorly transported L-glucose. Directionality, stereoselectivity or substrate specificity and cis-inhibition by phloridzin were therefore the main criteria for validation of glucose transport. The observed counterflow transient also provided further evidence for a facilitated glucose transporter within the trypanosome plasma membrane, and was the single most important criterion for this assertion. A stoichiometry of 0.78 mol of glucose per mol of transporter was estimated.  相似文献   

17.
The passive Ca2+ permeability of fragmented sarcoplasmic reticulum membranes is 10(4) to 10(61 times greater than that of liposomes prepared from natural or synthetic phospholipids. The contribution of membrane proteins to the Ca2+ permeability was studied by incorporating the purified [Ca2+ + Mg2+]-activated ATPase into bilayer membranes prepared from different phospholipids. The incorporation of the Ca2+ transport ATPase into the lipid phase increased its Ca2+ permeability to levels approaching that of sarcoplasmic reticulum membranes. The permeability change may arise from a reordering of the structure of the lipid phase in the environment of the protein or could represent a specific property of the protein itself. The calcium-binding protein of sarcoplasmic reticulum did not produce a similar effect. The increased rate of Ca2+ release from reconstituted ATPase vesicles is not a carrier-mediated process as indicated by the linear dependence of the Ca2+ efflux upon the gradient of Ca2+ concentration and by the absence of competition and countertransport between Ca2+ and other divalent metal ions. The increased Ca2+ permeability upon incorporation of the transport ATPase into the lipid phase is accompanied by similar increase in the permeability of the vesicles for sucrose, Na+, choline, and SO42- indicating that the transport ATPase does not act as a specific Ca2+ channel. Native sarcoplasmic reticulum membranes are asymmetric structures and the 75-A particles seen by freeze-etch electron microscopy are located primarily in the outer fracture face. In reconstituted ATPase vesicles the distribution of the particles between the two fracture faces is even, indicating that complete structural reconstitution was not achieved. The Ca2+ transport activity of reconstituted ATPase vesicles is also much less than that of fragmented sarcoplasmic reticulum. The density of the 40-A surface particles visible after negative staining of native or reconstituted vesicles is greater than that of the intramembranous particles and the relationship between these two structures remains to be established.  相似文献   

18.
Plasma membranes were isolated from barley roots by two-phase partitioning, and octylglucoside-soluble and -insoluble fractions were obtained. The insoluble fractions were reconstituted into liposomes, and the plasma membrane H(+)-ATPase was shown to participate in MgATP-dependent H(+) transport activity. The H(+) transport was decreased when the octylglucoside-soluble fraction was reconstituted together with the insoluble fraction. The decrease was not due to inhibition of the H(+)-ATPase, but rather was likely due to the increased H(+) leakage from the proteoliposome. The octylglucoside-soluble fraction was, therefore, reconstituted in the liposomes and the passive H(+) transport was determined using the pH jump method. A pH gradient across the membranes was generated by the pH jump, and the gradient was found to be dissipated by passive H(+) transport. The H(+) transport required ATP, K(+), and valinomycin. The H(+)-transport also occurred when ADP, AMP, GTP, or ATP-gamma-S was present instead of ATP, and did not occur when the octylglucoside-soluble fraction was boiled before the reconstitution. These findings suggest that nucleotide-dependent H(+ )transport protein is present in the plasma membrane of root cells.  相似文献   

19.
An ATP-dependent calcium transport component from rat liver plasma membranes was solubilized by cholate and reconstituted into egg lecithin vesicles by a cholate dialysis procedure. The uptake of Ca2+ into the reconstituted vesicles was ATP-dependent and the trapped Ca2+ could be released by A23187. Nucleotides, including ADP, UTP, GTP, CTP, GDP, AMP, and adenyl-5'-yl beta, gamma-imidophosphate, and p-nitrophenylphosphate did not substitute for ATP. The concentration of ATP required for half-maximal stimulation of Ca2+ uptake into the reconstituted vesicles was 6.2 microM. Magnesium was required for calcium uptake. Inhibitors of mitochondrial calcium-sequestering activities, i.e. oligomycin, sodium azide, ruthenium red, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and valinomycin did not affect the uptake of Ca2+ into the vesicles. In addition, strophanthidin and p-chloromercuribenzoate did not affect the transport. Calcium transport, however, was inhibited by vanadate in a concentration-dependent fashion with a K0.5 of 10 microM. A calcium-stimulated, vanadate-inhibitable phosphoprotein was demonstrated in the reconstituted vesicles with an apparent molecular weight of 118,000 +/- 1,300. These properties of Ca2+ transport by vesicles reconstituted from liver plasma membranes suggest that this ATP-dependent Ca2+ transport component is different from the high affinity (Ca2+-Mg2+)-ATPase found in the same membrane preparation (Lotersztajn, S., Hanoune, J. and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215; Lin, S.-H., and Fain, J.N. (1984) J. Biol. Chem. 259, 3016-3020). When the entire reconstituted vesicle population was treated with ATP and 45Ca in a buffer containing oxalate, the vesicles with Ca2+ transport activity could be separated from other vesicles by centrifugation in a density gradient and the ATP-dependent Ca2+ transport component was purified approximately 9-fold. This indicates that transport-specific fractionation may be used to isolate the ATP-dependent Ca2+ transport component from liver plasma membrane.  相似文献   

20.
Rabbit kidney cortical brush-border membrane vesicles were irradiated in the frozen state with increasing doses of high energy electrons from a Van de Graaff generator. Sodium-dependent D-glucose and L-alanine transport showed a simple exponential loss of activity with increasing radiation dosage. Target size calculation based on these data gives estimates of 1.0 X 10(6) daltons for the glucose transporter and 1.2 X 10(6) daltons for the alanine transporter. A highly purified glucose transport protein extracted from rabbit kidney cortex was similarly irradiated both before and after reconstitution into liposomes. The target size of this purified glucose transporter was 343,000 daltons, based on inactivation of transport. The intensity of the major 165,000-dalton sodium dodecyl sulfate-gel electrophoresis band of this preparation was decreased by radiation. The decrease in staining intensity was dose-dependent, yielding a target size of 298,000 daltons, in situ. We propose that the purified glucose transporter reconstituted into liposomes is a tetramer comprised of 85,000-dalton subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号