首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wild-type recombinants were obtained at high frequency from coinfections of BHK cells involving temperature-sensitive, conditional-lethal mutants of snowshoe hare (SSH) and La Crosse (LAC) bunyaviruses. Analyses of two of the recombinants indicated that they have the genome compositions SSH/LAC/SSH and SSH/LAC/LAC for their respective L, M, and S virion RNA species. This evidence, together with that for the genetic stability of the recombinants, indicates that they were derived by segment reassortment of the competent genome pieces of the parental viruses. The SSH/LAC/SSH recombinant appears, from polypeptide analysis, to have the SSH type of nucleocapsid protein (N), whereas the SSH/LAC/LAC recombinant has the LAC nucleocapsid protein, suggesting that the viral S RNA codes for the N protein.  相似文献   

2.
Tryptic peptide digests of the two viral glycoproteins (G1 and G2) of snowshow hare (SSH) virus, La Crosse, La Crosse (LAC) virus, and an SSH/LAC recombinant virus which has a large (L)/medium (M)/small (S) RNA segment genome composition of SSH/LAC/SSH were analyzed by ion-exchange column chromatography. The analyses prove that the M RNA species of bunyaviruses codes for the two viral glycoproteins.  相似文献   

3.
Recombination between snowhoe hare and La Crosse bunyaviruses.   总被引:2,自引:2,他引:0       下载免费PDF全文
We have previously reported heterologous genetic recombination resulting from crosses involving temperature-sensitive (ts) mutants of La Crosse (LAC) group II and snowshoe hare (SSH) group I ts mutants (J. Gentsch, L. R. Wynne, J. P. Clewley, R. E. Shope, and D. H. L. Bishop, J. Virol. 24:893-902, 1977). From those crosses two reassortant viruses having the large/medium/small viral RNA segment genotypes of SSH/LAC/SSH and SSH/LAC/LAC were obtained. In this study it has been found that the reciprocal cross (SSH group II x LAC group I ts mutants) has not yielded the expected LAC/SSH/SSH or LAC/SSH/LAC reassortant viruses. The backcross of a SSH/LAC/SSH group II ts mutant with a LAC group I ts mutant has produced a new reassortant virus, LAC/LAC/SSH, whereas the backcross of SSH/LAC/LAC group I ts mutants with SSH group II ts mutants gave another reassortant, SSH/SSH/LAC. Backcross analyses of LAC/LAC/SSH group I ts mutants with Group II ts mutants of SSH have not yielded the expected LAC/SSH/SSH reassortant virus, nor have backcrosses of SSH/SSH/LAC group II ts mutants with group I ts mutants of LAC virus yielded the expected LAC/SSH/LAC reassortant. Possible reasons why certain reassortant viruses are not produced are discussed. A procedure to screen SSH-LAC reassortant viruses which differ in their virion N polypeptides is described.  相似文献   

4.
Analyses of bunyavirus-infected cell extracts identified at least two virus-induced nonstructural polypeptides. With snowshoe hare (SSH), La Crosse (LAC), and six SSH-LAC reassortant viruses, it was shown that one of these nonstructural polypeptides (NSs, approximate molecular weight, 7.4 X 10(3)) is coded by the SSH small (S)-size viral RNA species. This nonstructural polypeptide was not detected (at least in the same relative abundancies) in LAC virus-infected cells or in cells infected with reassortants having LAC S RNA. For SSH virus, tryptic peptide analyses of either [3H]leucine- or [3H]arginine-labeled NSs indicated that it contains unique sequences not present in the SSH nucleocapsid (N) polypeptide (also coded by the S RNA; J. R. Gentsch and D. H. L. Bishop, J. Virol. 28:417-419, 1978). Analyses of SSH virus-infected cell extracts and extracts of cells infected with SSH-LAC reassortants having SSH medium (M)-size RNA species indicated that a nonstructural polypeptide (NSM; approximate molecular weight, 12 X 10(3)) is coded by the SSH M RNA species. In extracts of LAC virus-infected cells (or cells infected with SSH-LAC reassortants having LAC M RNA), a polypeptide with an electrophoretic mobility slightly faster than that of the SSH NSM polypeptide was observed (approximate molecular weight, 11 X 10(3)); it has been designated LAC NSM. The relationships of the NSM polypeptides to the other M RNA-coded polypeptides (G1 and G2; J. R. Gentsch and D. H. L. Bishop, J. Virol. 30;767-770, 1979) have not been determined. Two additional polypeptides present in both LAC- and SSH-infected cell extracts also appear to be virus induced (one with an approximate molecular weight of 10 X 10(3), p10; the other with an approximate molecular weight of 18 X 10(3), p18). Whether these polypeptides are virus coded has not been determined.  相似文献   

5.
6.
Bunyavirus ribonucleoprotein (RNP) that is assembled by polymerized nucleoproteins (N) coating a viral RNA and associating with a viral polymerase can be both the RNA synthesis machinery and the structural core of virions. Bunyaviral N and RNP thus could be assailable targets for host antiviral defense; however, it remains unclear which and how host factors target N/RNP to restrict bunyaviral infection. By mass spectrometry and protein-interaction analyses, we here show that host protein MOV10 targets the N proteins encoded by a group of emerging high-pathogenic representatives of bunyaviruses including severe fever with thrombocytopenia syndrome virus (SFTSV), one of the most dangerous pathogens listed by World Health Organization, in RNA-independent manner. MOV10 that was further shown to be induced specifically by SFTSV and related bunyaviruses in turn inhibits the bunyaviral replication in infected cells in series of loss/gain-of-function assays. Moreover, animal infection experiments with MOV10 knockdown corroborated the role of MOV10 in restricting SFTSV infection and pathogenicity in vivo. Minigenome assays and additional functional and mechanistic investigations demonstrate that the anti-bunyavirus activity of MOV10 is likely achieved by direct impact on viral RNP machinery but independent of its helicase activity and the cellular interferon pathway. Indeed, by its N-terminus, MOV10 binds to a protruding N-arm domain of N consisting of only 34 amino acids but proving important for N function and blocks N polymerization, N-RNA binding, and N-polymerase interaction, disabling RNP assembly. This study not only advances the understanding of bunyaviral replication and host restriction mechanisms but also presents novel paradigms for both direct antiviral action of MOV10 and host targeting of viral RNP machinery.  相似文献   

7.
Two-dimensional gel electrophoreses of RNase T1-derived oligonucleotides of the three individual RNA segments of the bunyavirus snowshow hare virus indicate that its three RNA segments possess distinct nucleotide sequences. The fingerprints of the RNA species of snowshoe hare virus differ from those of the antigenically closely related La Crosse virus. Three viral RNA species have been identified in preparations of Melao and Trivittatus as well as snowshoe hare, Lumbo, and La Crosse bunyaviruses.  相似文献   

8.
The complete sequence of the small (S) viral RNA species of snowshoe hare (SSH) bunyavirus has been determined, principally from a DNA copy of the RNA cloned in the E.coli plasmid pBr322. The viral S RNA (negative sense strand) is 982 nucleotides long (3.3 x 10(5) daltons) with complementary 5' and 3' end sequences. It has a base composition of 30.5%U, 25.8%A, 24.9%C and 18.7%G. In the viral complementary (plus sense) strand there are two overlapping open reading frames initiated by methionine codons. One reading frame codes for a 26.8 x 10(3) dalton protein, the other for a 10.5 x 10(3) dalton protein. The larger gene product is presumably related to the viral nucleoprotein (N) that is coded by the S RNA (Gentsch and Bishop (1978) J. Virol. 28, 417-419). The smaller gene product is probably related to the recently identified S RNA coded nonstructural protein (NSS) induced in virus infected cells (Fuller and Bishop (1982) J. Virol. 41, 643-648).  相似文献   

9.
Members of the Bunyaviridae family of RNA viruses (bunyaviruses, hantaviruses, nairoviruses, phleboviruses and uukuviruses) have been studied at the molecular and genetic level to understand the basis of their evolution and infection in vertebrate and invertebrate (arthropod) hosts. With the exception of the hantaviruses, these viruses infect and are transmitted by a variety of blood-sucking arthropods (mosquitoes, phlebotomines, gnats, ticks, etc.). The viruses are responsible for infection of various vertebrate species, occasionally causing human disease, morbidity and mortality (e.g. Rift Valley fever, Crimean-Congo haemorrhagic fever, Korean haemorrhagic fever). Genetic and molecular analyses of bunyaviruses have established the coding assignments of the three viral RNA species and documented which viral gene products determine host range and virulence. Ecological studies, with molecular techniques, have provided evidence for bunyavirus evolution in nature through genetic drift (involving the accumulation of point mutations) and shift (RNA-segment reassortment).  相似文献   

10.
11.
Blood samples were collected from free-ranging elk (Cervus elaphus) harvested in Michigan's northern Lower Peninsula, from moose (Alces alces) relocated from Ontario's Algonquin Provincial Park to Michigan's Upper Peninsula, and from moose from Michigan's Isle Royale National Park. Sera were tested by serum dilution neutralization tests in Vero cell culture for neutralizing antibody to California serogroup viruses, in particular Jamestown Canyon (JC), La Crosse/snowshoe hare (LAC/SSH), and trivittatus (TVT) viruses. Specific neutralizing antibody to JC virus was detected in 71% of 31 and 65% of 20 moose from Algonquin and Isle Royale, respectively. An additional six moose from Algonquin and five from Isle Royale showed evidence of multiple infection. One juvenile moose from Isle Royale had specific neutralizing antibody to TVT virus. Specific neutralizing antibody to JC virus was detected also in 54% of 50 elk from Michigan; 20 of the 50 elk showed evidence of multiple infection. While no single serum sample showed specific neutralizing antibody only to LAC/SSH virus, its presence in sera from some animals may have been masked by the high prevalence of antibody to JC virus.  相似文献   

12.
13.
Double-stranded RNA (dsRNA) is a by-product of viral RNA polymerase activity, and its recognition is one mechanism by which the innate immune system is activated. Cellular responses to dsRNA include induction of alpha/beta interferon (IFN) synthesis and activation of the enzyme PKR, which exerts its antiviral effect by phosphorylating the eukaryotic initiation factor eIF-2 alpha, thereby inhibiting translation. We have recently identified the nonstructural protein NSs of Bunyamwera virus (BUNV), the prototype of the family Bunyaviridae, as a virulence factor that blocks the induction of IFN by dsRNA. Here, we investigated the potential of NSs to inhibit PKR. We show that wild-type (wt) BUNV that expresses NSs triggered PKR-dependent phosphorylation of eIF-2 alpha to levels similar to those of a recombinant virus that does not express NSs (BUNdelNSs virus). Furthermore, the sensitivity of viruses in cell culture to IFN was independent of PKR and was not determined by NSs. PKR knockout mice, however, succumbed to infection approximately 1 day earlier than wt mice or mice deficient in expression of RNase L, another dsRNA-activated antiviral enzyme. Our data indicate that (i) bunyaviruses activate PKR, but are only marginally sensitive to its antiviral effect, and (ii) NSs is different from other IFN antagonists, since it inhibits dsRNA-dependent IFN induction but has no effect on the dsRNA-activated PKR and RNase L systems.  相似文献   

14.
We performed 3′ RNA sequence analyses of [32P]pCp-end-labeled La Crosse (LAC) virus, alternate LAC virus isolate L74, and snowshoe hare bunyavirus large (L), medium (M), and small (S) negative-stranded viral RNA species to determine the coding capabilities of these species. These analyses were confirmed by dideoxy primer extension studies in which we used a synthetic oligodeoxynucleotide primer complementary to the conserved 3′-terminal decanucleotide of the three viral RNA species (Clerx-van Haaster and Bishop, Virology 105:564-574, 1980). The deduced sequences predicted translation of two S-RNA gene products that were read in overlapping reading frames. So far, only single contiguous open reading frames have been identified for the viral M- and L-RNA species. For the negative-stranded M-RNA species of all three viruses, the single reading frame developed from the first 3′-proximal UAC triplet. Likewise, for the L-RNA of the alternate LAC isolate, a single open reading frame developed from the first 3′-proximal UAC triplet. The corresponding L-RNA sequences of prototype LAC and snowshoe hare viruses initiated open reading frames; however, for both viral L-RNA species there was a preceding 3′-proximal UAC triplet in another reading frame that was followed shortly afterward by a termination codon. A comparison of the sequence data obtained for snowshoe hare virus, LAC virus, and the alternate LAC virus isolate showed that the identified nucleotide substitutions were sufficient to account for some of the fingerprint differences in the L-, M-, and S-RNA species of the three viruses. Unlike the distribution of the L- and M-RNA substitutions, significantly fewer nucleotide substitutions occurred after the initial UAC triplet of the S-RNA species than before this triplet, implying that the overlapping genes of the S RNA provided a constraint against evolution by point mutation. The comparative sequence analyses predicted amino acid differences among the corresponding L-, M-, and S-RNA gene products of snowshoe hare virus and the two LAC virus isolates.  相似文献   

15.
16.
17.
Cofilin and its closely related protein, actin-depolymerizing factor (ADF), are key regulators of actin cytoskeleton dynamics that have been implicated in growth cone motility and neurite extension. Cofilin/ADF are inactivated by LIM kinase (LIMK)-catalyzed phosphorylation and reactivated by Slingshot (SSH)-catalyzed dephosphorylation. Here we examined the roles of cofilin/ADF, LIMKs (LIMK1 and LIMK2), and SSHs (SSH1 and SSH2) in nerve growth factor (NGF)-induced neurite extension. Knockdown of cofilin/ADF by RNA interference almost completely inhibited NGF-induced neurite extension from PC12 cells, and double knockdown of SSH1/SSH2 significantly suppressed both NGF-induced cofilin/ADF dephosphorylation and neurite extension from PC12 cells, thus indicating that cofilin/ADF and their activating phosphatases SSH1/SSH2 are critical for neurite extension. Interestingly, NGF stimulated the activities of both LIMK1 and LIMK2 in PC12 cells, and suppression of LIMK1/LIMK2 expression or activity significantly reduced NGF-induced neurite extension from PC12 cells or chick dorsal root ganglion (DRG) neurons. Inhibition of LIMK1/LIMK2 activity reduced actin filament assembly in the peripheral region of the growth cone of chick DRG neurons. These results suggest that proper regulation of cofilin/ADF activities through control of phosphorylation by LIMKs and SSHs is critical for neurite extension and that LIMKs regulate actin filament assembly at the tip of the growth cone.  相似文献   

18.
19.
During the summer of 1979, indicator rabbits were placed in three sites in Entrelacs (Laurentian area, province of Quebec) and mosquitoes were collected in order to monitor arbovirus activity in the area. Eight seroconversions to California encephalitis (CE) group viruses were detected in rabbits during June, July, and August. Twenty-five strains identified as members of the CE group were isolated: 3 were obtained from viremic rabbit sera, 1 from adult Aedes communis reared in the laboratory from field-collected larvae, and 21 from mosquito pools. Twenty-two of these were typed as snowshoe hare (SSH) virus. No evidence of La Crosse (LAC) virus was detected but three strains belonging to the CE group showed antigenic properties different from reference SSH, LAC, or Jamestown Canyon (JC) viruses. One isolate identified as Flanders virus was obtained from Culex pipiens. Three mosquito species (A. communis, A. punctor, and A. excrucians) were involved in the transmission cycle of SSH virus in Entrelacs. This is the first report, in the province of Quebec, of SSH isolation from animal sera and the first demonstration of its transovarial transmission.  相似文献   

20.
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection causes Coronavirus Disease 2019 (COVID-19), a pandemic that seriously threatens global health. SARS-CoV-2 propagates by packaging its RNA genome into membrane enclosures in host cells. The packaging of the viral genome into the nascent virion is mediated by the nucleocapsid (N) protein, but the underlying mechanism remains unclear. Here, we show that the N protein forms biomolecular condensates with viral genomic RNA both in vitro and in mammalian cells. While the N protein forms spherical assemblies with homopolymeric RNA substrates that do not form base pairing interactions, it forms asymmetric condensates with viral RNA strands. Cross-linking mass spectrometry (CLMS) identified a region that drives interactions between N proteins in condensates, and deletion of this region disrupts phase separation. We also identified small molecules that alter the size and shape of N protein condensates and inhibit the proliferation of SARS-CoV-2 in infected cells. These results suggest that the N protein may utilize biomolecular condensation to package the SARS-CoV-2 RNA genome into a viral particle.

The packaging of the SARS-CoV-2 genome is mediated by the nucleocapsid (N) protein; this study shows that the N protein forms liquid condensates with viral genomic RNA and identifies small molecules that alter these condensates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号