首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have constructed a linear plasmid in yeast containing the entire bovine papillomavirus genome and tested its physical stability following microinjection into stage VI oocytes of Xenopus laevis. Our results show that unmodified telomeres, in contrast to the yeast-passaged telomeres, drastically affect the stability of the injected linear plasmid. Plasmids carrying unmodified Tetrahymena thermophila telomeric sequences are rapidly degraded in oocytes. When these plasmids are passed through yeast, the telomere ends become modified by the addition of yeast telomeric sequences. These plasmids are stably maintained in X. laevis oocytes, demonstrating that yeast-modified telomeres are sufficient to prevent linear DNA degradation.  相似文献   

3.
4.
5.
Sequence-dependent DNA replication in preimplantation mouse embryos.   总被引:16,自引:7,他引:9       下载免费PDF全文
Circular, double-stranded DNA molecules were injected into nuclei of mouse oocytes and one- or two-cell embryos to determine whether specific sequences were required to replicate DNA during mouse development. Although all of the injected DNAs were stable, replication of plasmid pML-1 DNA was not detected unless it contained either polyomavirus (PyV) or simian virus 40 (SV40) DNA sequences. Replication occurred in embryos, but not in oocytes. PyV DNA, either alone or recombined with pML-1, underwent multiple rounds of replication to produce superhelical and relaxed circular monomers after injection into one- or two-cell embryos. SV40 DNA also replicated, but only 3% as well as PyV DNA. Coinjection of PyV DNA with either pML-1 or SV40 had no effect on the replicating properties of the three DNAs. These results are consistent with a requirement for specific cis-acting sequences to replicate DNA in mammalian embryos, in contrast to sequence-independent replication of DNA injected into Xenopus eggs. Furthermore, PyV DNA replication in mouse embryos required PyV large T-antigen and either the alpha-beta-core or beta-core configuration of the PyV origin of replication. Although the alpha-core configuration replicated in differentiated mouse cells, it failed to replicate in mouse embryos, demonstrating cell-specific activation of an origin of replication. Replication or expression of PyV DNA interfered with normal embryonic development. These results reveal that mouse embryos are permissive for PyV DNA replication, in contrast to the absence of PyV DNA replication and gene expression in mouse embryonal carcinoma cells.  相似文献   

6.
7.
8.
9.
M Hartl  T Willnow    E Fanning 《Journal of virology》1990,64(6):2884-2894
Simian virus 40 (SV40)-containing DNA was rescued after the fusion of SV40-transformed VLM cells with permissive COS1 monkey cells and cloned, and prototype plasmid clones were characterized. A 2-kilobase mouse DNA fragment fused with the rescued SV40 DNA, and derived from mouse DNA flanking the single insert of SV40 DNA in VLM cells, was sequenced. Insertion of the intact rescued mouse sequence, or two nonoverlapping fragments of it, into wild-type SV40 plasmid DNA suppressed replication of the plasmid in TC7 monkey cells, although the plasmids expressed replication-competent T antigen. Rat cells were transformed with linearized wild-type SV40 plasmid DNA with or without fragments of the mouse DNA in cis. Although all of the rat cell lines expressed approximately equal amounts of T antigen and p53, transformants carrying SV40 DNA linked to either of the same two replication suppressor fragments produced significantly less free SV40 DNA after fusion with permissive cells than those transformed by SV40 DNA without a cellular insert or with a cellular insert lacking suppressor activity. The results suggest that two independent segments of cellular DNA act in cis to suppress SV40 replication in vivo, either as a plasmid or integrated in chromosomal DNA.  相似文献   

10.
11.
12.
13.
Somatic cells efficiently join unrelated DNA segments end-to-end.   总被引:44,自引:23,他引:21       下载免费PDF全文
Molecular substrates for probing nonhomologous recombination in somatic cells were constructed by inserting pBR322 sequences at selected sites on the simian virus 40 (SV40) genome. The chimeric products are too large to be packaged into an SV40 capsid. Therefore, production of viable progeny requires that most of the pBR322 sequences be deleted without altering any SV40 sequences that are essential for lytic infection. As judged by plaque assay, these recombination events occur at readily detectable frequencies after transfection into CV1 monkey kidney cells. Depending on the site of pBR322 insertion, the infectivities of the full-length circular or linear chimeras ranged from 0.02 to 2% of the infectivity of linear wild-type SV40 DNA. Nucleotide sequence analysis of several recombinant progeny revealed three distinct classes of recombination junction and indicated that the causative recombination events were minimally dependent on sequence homology. Potential mechanisms involving recombination at internal sites or at ends were distinguished by measuring the infectivity of chimeric molecules from which various lengths of pBR322 had been removed. These data support end-to-end joining as the primary mechanism by which DNA segments recombine nonhomologously in somatic cells. This end joining appears to be very efficient, since SV40 genomes with complementary single-stranded tails or with short non-complementary pBR322 tails were comparably infectious. Overall, this study indicates that mammalian somatic cells are quite efficient at the willy-nilly end-to-end joining of unrelated DNA segments.  相似文献   

14.
15.
S(1) nuclease, the single-strand specific nuclease from Aspergillus oryzae can cleave both strands of circular covalently closed, superhelical simian virus 40 (SV40) DNA to generate unit length linear duplex molecules with intact single strands. But circular, covalently closed, nonsuperhelical DNA, as well as linear duplex molecules, are relatively resistant to attack by the enzyme. These findings indicate that unpaired or weakly hydrogen-bonded regions, sensitive to the single strand-specific nuclease, occur or can be induced in superhelical DNA. Nicked, circular SV40 DNA can be cleaved on the opposite strand at or near the nick to yield linear molecules. S(1) nuclease may be a useful reagent for cleaving DNAs at regions containing single-strand nicks. Unlike the restriction endonucleases, S(1) nuclease probably does not cleave SV40 DNA at a specific nucleotide sequence. Rather, the sites of cleavage occur within regions that are readily denaturable in a topologically constrained superhelical molecule. At moderate salt concentrations (75 mM) SV40 DNA is cleaved once, most often within either one of the two following regions: the segments defined as 0.15 to 0.25 and 0.45 to 0.55 SV40 fractional length, clockwise, from the EcoR(I) restriction endonuclease cleavage site (defined as the zero position on the SV40 DNA map). In higher salt (250 mM) cleavage occurs preferentially within the 0.45 to 0.55 segment of the map.  相似文献   

16.
17.
Linear DNA injected into Xenopus laevis oocyte nuclei recombines with high efficiency if homologous sequences are present at overlapping molecular ends. We found that injected linear DNA was degraded by a 5'----3' strand-specific exonuclease activity during incubation in the oocyte nucleus to leave a heterogeneous population of 3'-tailed molecules. Decreasing the concentration of DNA injected increased the heterogeneity and the average rate of degradation. The 3' tails created were relatively stable; among molecules persisting after overnight incubation, many had 3' tails intact to within 10 bases of the original ends. DNA molecules that were efficient substrates for homologous recombination in oocytes were also partially degraded, leaving 3' tails. We found no evidence for other potent nuclease activities. If molecules with recessed 3'-OH ends were injected, endogenous polymerase efficiently resynthesized complementary strands before degradation of the 5' tails occurred. 3'-tailed molecules are plausible intermediates in the initiation of homologous recombination events in Xenopus oocyte nuclei.  相似文献   

18.
The DNA helicase activity associated with purified simian virus 40 (SV40) large tumor (T) antigen has been examined. A variety of DNA substrates were used to characterize this ATP-dependent activity. Linear single-stranded M13 DNA containing short duplex regions at both ends was used to show that SV40 T antigen helicase displaced the short, annealed fragment by unwinding in a 3' to 5' direction. Three different partial duplex structures consisting of 71-, 343-, and 851-nucleotide long fragments annealed to M13 single-stranded circular DNA were used to show that SV40 T antigen can readily unwind short and long duplex regions with almost equal facility. ATP and MgCl2 were required for this reaction. With the exception of GTP, dGTP, and CTP, the other common nucleoside triphosphates substituted for ATP with varied efficiency, while adenosine 5'-O-(thiotriphosphate) was inactive. The T antigen helicase activity was also examined using completely duplex DNA fragments (approximately 300 base pairs) with or without the SV40 origin sequence as substrates. In reactions containing small amounts (0.6 ng) of DNA, the ATP-dependent unwinding of duplex DNA fragments occurred with no dependence on the origin sequence. This reaction was stimulated 5- to 6-fold by the addition of the Escherichia coli single-stranded DNA-binding protein. When competitor DNA was added so that the ratio of SV40 T antigen to DNA was reduced 1000-fold, only DNA fragments containing a functional SV40 origin of replication were unwound. This reaction was dependent on ATP, MgCl2, and a DNA-binding protein, and was stimulated by inorganic phosphate or creatine phosphate. The origin sequence requirements for the unwinding reaction were the same as those for replication (the 64-base pair sequence present at T antigen binding site 2). Thus, under specified conditions, only duplex DNA fragments containing an intact SV40 core origin were unwound. In contrast, unwinding of partially duplex segments of DNA flanked by single-stranded regions can occur with no sequence specificity.  相似文献   

19.
Molecular interactions between purified poly(ADP-ribose) polymerase, whole thymus histones, histone H1, rat fibroblast genomic DNA, and closed circular and linearized SV40 DNA were determined by the nitrocellulose filter binding technique. Binding of the polymerase protein or histones to DNA was augmented greatly when both the enzyme protein and histones were present simultaneously. The polymerase protein also associated with histones in the absence of DNA. The cooperative or promoted binding of histones and the enzyme to relaxed covalently closed circular SV40 DNA was greater than the binding to the linearized form. Binding of the polymerase to SV40 DNA fragments in the presence of increasing concentrations of NaCl indicated a preferential binding to two restriction fragments as compared to the others. Polymerase binding to covalently closed relaxed SV40 DNA resulted in the induction of superhelicity. The simultaneous influence of the polymerase and histones on DNA topology were more than additive. Topological constraints on DNA induced by poly(ADP-ribose) polymerase were abolished by auto ADP-ribosylation of the enzyme. Benzamide, by inhibiting poly(ADP-ribosylation), reestablished the effect of the polymerase protein on DNA topology. Polymerase binding to in vitro-assembled core particle-like nucleosomes was also demonstrated.  相似文献   

20.
When DNA molecules are injected into Xenopus oocyte nuclei, they can recombine with each other. With bacteriophage lambda DNAs, it was shown that this recombination is stimulated greatly by introduction of double-strand breaks into the substrates and is dependent on homologous overlaps in the recombination interval. With plasmid DNAs it was shown that little or no recombination occurs between circular molecules but both intra- and intermolecular events take place very efficiently with linear molecules. As with the lambda substrates, homology was required to support recombination; no simple joining of ends was observed. Blockage of DNA ends with nonhomologous sequences interfered with recombination, indicating that ends are used directly to initiate homologous interactions. These observations are combined to evaluate possible models of recombination in the oocytes. Because each oocyte is capable of recombining nanogram quantities of linear DNA, this system offers exceptional opportunities for detailed molecular analysis of the recombination process in a higher organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号