首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surveys of variability of homologous microsatellite loci among species reveal an ascertainment bias for microsatellite length where microsatellite loci isolated in one species tend to be longer than homologous loci in related species. Here, we take advantage of the availability of aligned human and chimpanzee genome sequences to compare length difference of homologous microsatellites for loci identified in humans to length difference for loci identified in chimpanzees. We are able to quantify ascertainment bias for a range of motifs and microsatellite lengths. Because ascertainment bias should not exist if a microsatellite selected in one species is as likely to be longer as it is to be shorter than its homologue, we propose that the nature of ascertainment bias can provide evidence for understanding how microsatellites evolve. We show that bias is greater for longer microsatellites but also that many long microsatellites have short homologues. These results are consistent with the notion that growth of long microsatellites is constrained by an upper length boundary that, when reached, sometimes results in large deletions. By evaluating ascertainment bias separately for interrupted and uninterrupted repeats we also show that long microsatellites tend to become interrupted, thereby contributing a second component of ascertainment bias. Having accounted for ascertainment bias, in agreement with results published elsewhere, we find that microsatellites in humans are longer on average than those in chimpanzees. This length difference is similar among repeat motifs but surprisingly comprises two roughly equal components, one associated with the repeats themselves and one with the flanking sequences. The differences we find can only be explained if microsatellites are both evolving directionally under a biased mutation process and are doing so at different rates in different closely related species.  相似文献   

2.
A Phylogenetic Perspective on Sequence Evolution in Microsatellite Loci   总被引:9,自引:0,他引:9  
We examined the evolution of the repeat regions of three noncoding microsatellite loci in 58 species of the Polistinae, a subfamily of wasps that diverged over 140 million years ago. A phylogenetic approach allows two new kinds of approaches to studying microsatellite evolution: character mapping and comparative analysis. The basic repeat structure of the loci was highly conserved, but was often punctuated with imperfections that appear to be phylogenetically informative. Repeat numbers evolved more rapidly than other changes in the repeat region. Changes in number of repeats among species seem consistent with the stepwise mutation model, which is based on slippage during replication as the main source of mutations. Changes in repeat numbers can occur even when there are very few tandem repeats but longer repeats, especially perfect repeats led to greater rates of evolutionary change. Species phylogenetically closer to the one from which we identified the loci had longer stretches of uninterrupted repeats and more different motifs, but not longer total repeat regions. The number of perfect repeats increased more often than it decreased. However, there was no evidence that some species have consistently greater numbers of repeats across loci than other species have, once ascertainment bias is eliminated. We also found no evidence for a population size effect posited by one form of the directionality hypothesis. Overall, phylogenetic variation in repeat regions can be explained by adding neutral evolution to what is already known about the mutation process. The life cycle of microsatellites appears to reflect a balance between growth by slippage and degradation by an essentially irreversible accumulation of imperfections. Received: 13 April 1999 / Accepted: 8 September 1999  相似文献   

3.
Microsatellite primers are often developed in one species and used to assess neutral variability in related species. Such analyses may be confounded by ascertainment bias (i.e. a decline in amplification success and allelic variability with increasing genetic distance from the source of the microsatellites). In addition, other factors, such as the size of the microsatellite, whether it consists of perfect or interrupted tandem repeats, and whether it is autosomal or X-linked, can affect variation. To test the relative importance of these factors on microsatellite variation, we examine patterns of amplification and allelic diversity in 52 microsatellite loci amplified from five individuals in each of six populations of Cyrtodiopsis stalk-eyed flies that range from 2.2 % to 11.2% mitochondrial DNA sequence divergence from the population used for microsatellite development. We find that amplification success and most measures of allelic diversity declined with genetic distance from the source population, in some cases an order of magnitude faster than in birds or mammals. The median and range of the repeat array length did not decline with genetic distance. In addition, for loci on the X chromosome, we find evidence of lower observed heterozygosity compared with loci on autosomes. The differences in variability between X-linked and autosomal loci are not adequately explained by differences in effective population sizes of the chromosomes. We suggest, instead, that periodic selection events associated with X-chromosome meiotic drive, which is present in many of these populations, reduces X-linked variation.  相似文献   

4.
The application of microsatellites in evolutionary studies requires an understanding of the patterns governing their evolution in different species. The finding that homologous microsatellite loci are longer, i.e., containing more repeat units, in human and in other primates has been taken as evidence for directional microsatellite evolution and for a difference in the rate of evolution between species. However, it has been argued that this finding is an inevitable consequence of biased selection of longer-than-average microsatellites in human, because cloning procedures are adopted to generate polymorphic and, hence, long markers. As a test of this hypothesis, we conducted a reciprocal comparison of the lengths of microsatellite loci in cattle and sheep using markers derived from the bovine genome as well as the ovine genome. In both cases, amplification products were longer in the focal species, and loci were also more polymorphic in the species from which they were originally cloned. The crossing pattern that we found suggests that interspecific length differences detected at homologous microsatellite loci are the result of biased selection of loci associated with cloning procedures. Hence, comparisons of microsatellite evolution between species are flawed unless they are based on reciprocal analyses or on genuinely random selection of loci with respect to repeat length.   相似文献   

5.
Species-specific differences in microsatellite locus length and ascertainment bias have both been proposed to explain differences in microsatellite variability and length usually observed when loci isolated in one species are used to survey variation in a related species. Here we provide a simple algebraic approach to independently estimate the contributions of true species-specific length differences and ascertainment bias. We apply this approach to a reciprocal-isolation microsatellite study and show contributions of both ascertainment bias and a true longer average microsatellite length in Drosophila melanogaster compared with D. simulans.  相似文献   

6.
Mutation Patterns at Dinucleotide Microsatellite Loci in Humans   总被引:13,自引:0,他引:13       下载免费PDF全文
Microsatellites are a major type of molecular markers in genetics studies. Their mutational dynamics are not clear. We investigated the patterns and characteristics of 97 mutation events unambiguously identified, from 53 multigenerational pedigrees with 630 subjects, at 362 autosomal dinucleotide microsatellite loci. A size-dependent mutation bias (in which long alleles are biased toward contraction, whereas short alleles are biased toward expansion) is observed. There is a statistically significant negative relationship between the magnitude (repeat numbers changed during mutation) and direction (contraction or expansion) of mutations and standardized allele size. Contrasting with earlier findings in humans, most mutation events (63%) in our study are multistep events that involve changes of more than one repeat unit. There was no correlation between mutation rate and recombination rate. Our data indicate that mutational dynamics at microsatellite loci are more complicated than the generalized stepwise mutation models.  相似文献   

7.
Interspecific comparisons of microsatellite loci have repeatedly shown that the loci are longer and more variable in the species from which they are derived (the focal species) than are homologous loci in other (nonfocal) species. There is debate as to whether this is due to directional evolution or to an ascertainment bias during the cloning and locus selection processes. This study tests these hypotheses by performing a reciprocal study. Eighteen perfect dinucleotide microsatellite loci identified from a Drosophila simulans library screen and 18 previously identified in an identical Drosophila melanogaster library screen were used to survey natural populations of each species. No difference between focal and nonfocal species was observed for mean PCR fragment length. However, heterozygosity and number of alleles were significantly higher in the focal species than in the nonfocal species. The most common allele in the Zimbabwe population of both species was sequenced for 31 of the 36 loci. The length of the longest stretch of perfect repeat units is, on average, longer in the focal species than in the non-focal species. There is a positive correlation between the length of the longest stretch of perfect repeats and heterozygosity. The difference in heterozygosity can thus be explained by a reduction in the length of the longest stretch of perfect repeats in the nonfocal species. Furthermore, flanking-sequence length difference was noted between the two species at 58% of the loci sequenced. These data do not support the predictions of the directional-evolution hypothesis; however, consistent with the ascertainment bias hypothesis, the lower variability in nonfocal species is an artifact of the microsatellite cloning and isolation process. Our results also suggest that the magnitude of ascertainment bias for repeat unit length is a function of the microsatellite size distribution in the genomes of different species.   相似文献   

8.
A number of applications of analysis of human Y-chromosome microsatellite loci to human evolution and forensic science require reliable estimates of the mutation rate and knowledge of the mutational mechanism. We therefore screened a total of 4,999 meioses from father/son pairs with confirmed paternity (probability >/=99. 9%) at 15 Y-chromosomal microsatellite loci and identified 14 mutations. The locus-specific mutation-rate estimates were 0-8. 58x10-3, and the average mutation rate estimates were 3.17x10-3 (95% confidence interval [CI] 1.89-4.94x10-3) across 8 tetranucleotide microsatellites and 2.80x10-3 (95% CI 1.72-4.27x10-3) across all 15 Y-chromosomal microsatellites studied. Our data show a mutational bias toward length increase, on the basis of observation of more repeat gains than losses (10:4). The data are in almost complete agreement with the stepwise-mutation model, with 13 single-repeat changes and 1 double-repeat change. Sequence analysis revealed that all mutations occurred in uninterrupted homogenous arrays of >/=11 repeats. We conclude that mutation rates and characteristics of human Y-chromosomal microsatellites are consistent with those of autosomal microsatellites. This indicates that the general mutational mechanism of microsatellites is independent of recombination.  相似文献   

9.
Harr B  Schlötterer C 《Genetics》2000,155(3):1213-1220
Microsatellites are short tandemly repeated DNA sequence motifs that are highly variable in most organisms. In contrast to mammals, long microsatellites (>15 repeats) are extremely rare in the Drosophila melanogaster genome. To investigate this paucity of long microsatellites in Drosophila, we studied 19 loci with exceptionally long microsatellite alleles. Inter- and intraspecific analysis showed that long microsatellite alleles arose in D. melanogaster only very recently. This lack of old alleles with many repeats indicated that long microsatellite alleles have short persistence times. The size distribution of microsatellite mutations in mutation-accumulation lines suggests that long alleles have a mutation bias toward a reduction in the number of repeat units. This bias causes the short persistence times of long microsatellite alleles. We propose that species-specific, size-dependent mutation spectra of microsatellite alleles may provide a general mechanism to account for the observed differences in microsatellite length between species.  相似文献   

10.
Evidence for complex mutations at microsatellite loci in Drosophila.   总被引:6,自引:0,他引:6  
I Colson  D B Goldstein 《Genetics》1999,152(2):617-627
Fifteen lines each of Drosophila melanogaster, D. simulans, and D. sechellia were scored for 19 microsatellite loci. One to four alleles of each locus in each species were sequenced, and microsatellite variability was compared with sequence structure. Only 7 loci had their size variation among species consistent with the occurrence of strictly stepwise mutations in the repeat array, the others showing extensive variability in the flanking region compared to that within the microsatellite itself. Polymorphisms apparently resulting from complex nonstepwise mutations involving the microsatellite were also observed, both within and between species. Maximum number of perfect repeats and variance of repeat count were found to be strongly correlated in microsatellites showing an apparently stepwise mutation pattern. These data indicate that many microsatellite mutation events are more complex than represented even by generalized stepwise mutation models. Care should therefore be taken in inferring population or phylogenetic relationships from microsatellite size data alone. The analysis also indicates, however, that evaluation of sequence structure may allow selection of microsatellites that more closely match the assumptions of stepwise models.  相似文献   

11.
Horse microsatellites and their amenability to comparative equid genetics   总被引:1,自引:0,他引:1  
We investigated the applicability of microsatellite primers, designed in horses, for use in plains and mountain zebras. Fifteen of the 20 tested horse-isolated primer pairs reliably amplified polymorphic loci in two wild equid species. We used this information to assess whether levels of genetic variation and repeat size differed in species from which microsatellites were isolated and in closely related target species. Target equid species exhibited similar levels of genetic variation to the horse, the species from which primers were originally isolated. We show that ascertainment bias results in lower mean and modal repeat size in target species. The data also provide evidence for a bi-directional mutational constraint in allele size across three equid species.  相似文献   

12.
Rapid divergence of microsatellite abundance among species of Drosophila   总被引:4,自引:0,他引:4  
Among major taxonomic groups, microsatellites exhibit considerable variation in composition and allele length, but they also show considerable conservation within many major groups. This variation may be explained by slow microsatellite evolution so that all species within a group have similar patterns of variation, or by taxon-specific mutational or selective constraints. Unfortunately, comparing microsatellites across species and studies can be problematic because of biases that may exist among different isolation and analysis protocols. We present microsatellite data from five Drosophila species in the Drosophila subgenus: D. arizonae, D. mojavensis, and D. pachea (three cactophilic species), and D. neotestacea and D. recens (two mycophagous species), all isolated at the same time using identical protocols. For each species, we compared the relative abundance of motifs, the distribution of repeat size, and the average number of repeats. Dimers were the most abundant microsatellites for each species. However, we found considerable variation in the relative abundance of motif size classes among species, even between sister taxa. Frequency differences among motifs within size classes for the three cactophilic species, but not the two mycophagous species, are consistent with other studied Drosophila. Frequency distributions of repeat number, as well as mean size, show significant differences among motif size classes but not across species. Sizes of microsatellites in these five species are consistent with D. virilis, another species in the subgenus Drosophila, but they have consistently higher means than in D. melanogaster, in the subgenus Sophophora. These results confirm that many aspects of microsatellite variation evolve quickly but also are subject to taxon-specific constraints. In addition, the nature of microsatellite evolution is dependent on temporal and taxonomic scales, and some variation is conserved across broad taxonomic levels despite relatively high rates of mutation for these loci.  相似文献   

13.
Microsatellite Evolution: Testing the Ascertainment Bias Hypothesis   总被引:5,自引:0,他引:5  
Previous studies suggest the median allele length of microsatellites is longest in the species from which the markers were derived, suggesting that an ascertainment bias was operating. We have examined whether the size distribution of microsatellite alleles between sheep and cattle is source dependent using a set of 472 microsatellites that can be amplified in both species. For those markers that were polymorphic in both species we report a significantly greater number of markers (P < 0.001) with longer median allele sizes in sheep, regardless of microsatellite origin. This finding suggests that any ascertainment bias operating during microsatellite selection is only a minor contributor to the variation observed. Received: 6 January 1997 / Accepted: 19 May 1997  相似文献   

14.
Mutation and evolution of microsatellite loci in Neurospora   总被引:5,自引:0,他引:5  
Dettman JR  Taylor JW 《Genetics》2004,168(3):1231-1248
The patterns of mutation and evolution at 13 microsatellite loci were studied in the filamentous fungal genus Neurospora. First, a detailed investigation was performed on five microsatellite loci by sequencing each microsatellite, together with its nonrepetitive flanking regions, from a set of 147 individuals from eight species of Neurospora. To elucidate the genealogical relationships among microsatellite alleles, repeat number was mapped onto trees constructed from flanking-sequence data. This approach allowed the potentially convergent microsatellite mutations to be placed in the evolutionary context of the less rapidly evolving flanking regions, revealing the complexities of the mutational processes that have generated the allelic diversity conventionally assessed in population genetic studies. In addition to changes in repeat number, frequent substitution mutations within the microsatellites were detected, as were substitutions and insertion/deletions within the flanking regions. By comparing microsatellite and flanking-sequence divergence, clear evidence of interspecific allele length homoplasy and microsatellite mutational saturation was observed, suggesting that these loci are not appropriate for inferring phylogenetic relationships among species. In contrast, little evidence of intraspecific mutational saturation was observed, confirming the utility of these loci for population-level analyses. Frequency distributions of alleles within species were generally consistent with the stepwise mutational model. By comparing variation within species at the microsatellites and the flanking-sequence, estimated microsatellite mutation rates were approximately 2500 times greater than mutation rates of flanking DNA and were consistent with estimates from yeast and fruit flies. A positive relationship between repeat number and variance in repeat number was significant across three genealogical depths, suggesting that longer microsatellite alleles are more mutable than shorter alleles. To test if the observed patterns of microsatellite variation and mutation could be generalized, an additional eight microsatellite loci were characterized and sequenced from a subset of the same Neurospora individuals.  相似文献   

15.
Abstract We analyze published data from 592 AC microsatellite loci from 98 species in five vertebrate classes including fish, reptiles, amphibians, birds, and mammals. We use these data to address nine major questions about microsatellite evolution. First, we find that larger genomes do not have more microsatellite loci and therefore reject the hypothesis that microsatellites function primarily to package DNA into chromosomes. Second, we confirm that microsatellite loci are relatively rare in avian genomes, but reject the hypothesis that this is due to physical constraints imposed by flight. Third, we find that microsatellite variation differs among species within classes, possibly relating to population dynamics. Fourth, we reject the hypothesis that microsatellite structure (length, number of alleles, allele dispersion, range in allele sizes) differs between poikilotherms and homeotherms. The difference is found only in fish, which have longer microsatellites and more alleles than the other classes. Fifth, we find that the range in microsatellite allele size at a locus is largely due to the number of alleles and secondarily to allele dispersion. Sixth, length is a major factor influencing mutation rate. Seventh, there is a directional mutation toward an increase in microsatellite length. Eighth, at the species level, microsatellite and allozyme heterozygosity covary and therefore inferences based on large-scale studies of allozyme variation may also reflect microsatellite genetic diversity. Finally, published microsatellite loci (isolated using conventional hybridization methods) provide a biased estimate of the actual mean repeat length of microsatellites in the genome.  相似文献   

16.
Chloroplast DNA sequences and microsatellites are useful tools for phylogenetic as well as population genetic analyses of plants. Chloroplast microsatellites tend to be less variable than nuclear microsatellites and therefore they may not be as powerful as nuclear microsatellites for within-species population analysis. However, chloroplast microsatellites may be useful for phylogenetic analysis between closely related taxa when more conventional loci, such as ITS or chloroplast sequence data, are not variable enough to resolve phylogenetic relationships in all clades. To determine the limits of chloroplast microsatellites as tools in phylogenetic analyses, we need to understand their evolution. Thus, we examined and compared phylogenetic relationships of species within the genus Clusia, using both chloroplast sequence data and variation at seven chloroplast microsatellite loci. Neither ITS nor chloroplast sequences were variable enough to resolve relationships within some sections of the genus, yet chloroplast microsatellite loci were too variable to provide any useful phylogenetic information. Size homoplasy was apparent, caused by base substitutions within the microsatellite, base substitutions in the flanking regions, indels in the flanking regions, multiple microsatellites within a fragment, and forward/reverse mutations of repeat length resulting in microsatellites of identical base composition that were not identical by descent.  相似文献   

17.
Randomly cloned DNA fragments and a poly-(GATA) containing sequence were used as probes to identify sex chromosomal inheritance and to detect differences at the molecular level between the homomorphic X and Y in the phorid fly,Megaselia scalaris. Restriction fragment length differences between males and females and between two laboratory stocks of different geographic origin were used to differentiate between sex chromosomal and autosomal origin of the respective fragments. Five random probes detected X and Y chromosomal DNA loci and two others recognized autosomal DNA loci. One random probe and the poly(GATA) probe hybridized with both sex chromosomal and autosomal restriction fragments. Most of the Y chromosomal restriction fragments were conserved in length between the two stocks while most of the X chromosomal and autosomal fragments showed length polymorphism. It was concluded, therefore, that the Y chromosome contains a conserved segment in which crossover is suppressed and restriction site differences have accumulated relative to the X. These chromosomes, therefore, conform to a theoretically expected early stage of sex chromosome evolution.  相似文献   

18.
We examined microsatellite variation in two diploid, outcrossing relatives of Arabidopsis thaliana, Arabis petraea and Arabis lyrata. The primer sequences were derived from A. thaliana. About 50% (14 loci) of the A. thaliana primers could successfully amplify microsatellites in the related species. Analysis of microsatellite structure in the related species showed that there had been large changes in the microsatellites: there were large differences in repeat numbers and many of the A. thaliana simple repeats were shorter in the related species. For the loci we compared, the related species had a much lower level of variability at the microsatellites than Japanese wild populations of A. thaliana. This is presumably related to the different microsatellite structures, because allozyme data showed that the outcrossing relatives were highly polymorphic compared to other outcrossing herbaceous species. Use of microsatellites in assessing variability or phylogenetic relationships between different species requires caution, because changes in microsatellite structure may alter evolutionary rates.   相似文献   

19.
Interspecific evolution in plant microsatellite structure   总被引:1,自引:0,他引:1  
Barrier M  Friar E  Robichaux R  Purugganan M 《Gene》2000,241(1):101-105
Several intragenically linked microsatellites have been identified in the floral regulatory genes A. sandwicense APETALA1 (ASAP1) and A. sandwicense APETALA3/TM6 (ASAP3/TM6) in 17 species of the Hawaiian and North American Madiinae (Asteraceae). Thirty-nine microsatellite loci were observed in the introns of these two genes, suggesting that they are hotspots for microsatellite formation. The sequences of four of these microsatellites were mapped onto the phylogenies of these floral regulatory genes, and the structural evolution of these repeat loci was traced. Both nucleotide substitutions and insertion/deletion mutations may be responsible for the formation of perfect microsatellites from imperfect repeat regions (and vice versa).  相似文献   

20.
Microsatellite loci have high mutation rates and high levels of allelic variation, but the factors influencing their mutation rate are not well understood. The proposal that heterozygosity may increase mutation rates has profound implications for understanding the evolution of microsatellite loci, but currently has limited empirical support. We examined 20 microsatellite mutations identified in an analysis of 12 260 meiotic events across three loci in two populations of a songbird, the house wren (Troglodytes aedon). We found that for an allele of a given length, mutation was significantly more likely when there was a relatively large difference in size between the allele and its homologue (i.e. a large ‘allele span’). Our results support the proposal of heterozygote instability at microsatellite loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号