共查询到20条相似文献,搜索用时 8 毫秒
1.
Aberrantly segregating centromeres activate the spindle assembly checkpoint in budding yeast 总被引:16,自引:5,他引:11 下载免费PDF全文
《The Journal of cell biology》1996,133(1):75-84
The spindle assembly checkpoint is the mechanism or set of mechanisms that prevents cells with defects in chromosome alignment or spindle assembly from passing through mitosis. We have investigated the effects of mini-chromosomes on this checkpoint in budding yeast by performing pedigree analysis. This method allowed us to observe the frequency and duration of cell cycle delays in individual cells. Short, centromeric linear mini-chromosomes, which have a low fidelity of segregation, cause frequent delays in mitosis. Their circular counterparts and longer linear mini-chromosomes, which segregate more efficiently, show a much lower frequency of mitotic delays, but these delays occur much more frequently in divisions where the mini-chromosome segregates to only one of the two daughter cells. Using a conditional centromere to increase the copy number of a circular mini-chromosome greatly increases the frequency of delayed divisions. In all cases the division delays are completely abolished by the mad mutants that inactivate the spindle assembly checkpoint, demonstrating that the Mad gene products are required to detect the subtle defects in chromosome behavior that have been observed to arrest higher eukaryotic cells in mitosis. 相似文献
2.
The spindle checkpoint delays the onset of anaphase until all pairs of sister chromatids are attached to the mitotic spindle. The checkpoint could monitor the attachment of microtubules to kinetochores, the tension that results from the two sister chromatids attaching to opposite spindle poles, or both. We tested the role of tension by allowing cells to enter mitosis without a prior round of DNA replication. The unreplicated chromatids are attached to spindle microtubules but are not under tension since they lack a sister chromatid that could attach to the opposite pole. Because the spindle checkpoint is activated in these cells, we conclude that the absence of tension at the yeast kinetochore is sufficient to activate the spindle checkpoint in mitosis. 相似文献
3.
4.
Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast 总被引:22,自引:3,他引:22 下载免费PDF全文
《The Journal of cell biology》1995,131(3):709-720
The spindle assembly checkpoint prevents cells from initiating anaphase until the spindle has been fully assembled. We previously isolated mitotic arrest deficient (mad) mutants that inactivate this checkpoint and thus increase the sensitivity of cells to benomyl, a drug that interferes with mitotic spindle assembly by depolymerizing microtubules. We have cloned the MAD1 gene and show that when it is disrupted yeast cells have the same phenotype as the previously isolated mad1 mutants: they fail to delay the metaphase to anaphase transition in response to microtubule depolymerization. MAD1 is predicted to encode a 90-kD coiled-coil protein. Anti-Mad1p antibodies give a novel punctate nuclear staining pattern and cell fractionation reveals that the bulk of Mad1p is soluble. Mad1p becomes hyperphosphorylated when wild-type cells are arrested in mitosis by benomyl treatment, or by placing a cold sensitive tubulin mutant at the restrictive temperature. This modification does not occur in G1- arrested cells treated with benomyl or in cells arrested in mitosis by defects in the mitotic cyclin proteolysis machinery, suggesting that Mad1p hyperphosphorylation is a step in the activation of the spindle assembly checkpoint. Analysis of Mad1p phosphorylation in other spindle assembly checkpoint mutants reveals that this response to microtubule- disrupting agents is defective in some (mad2, bub1, and bub3) but not all (mad3, bub2) mutant strains. We discuss the possible functions of Mad1p at this cell cycle checkpoint. 相似文献
5.
The spindle checkpoint arrests cells in mitosis in response to defects in the assembly of the mitotic spindle or errors in chromosome alignment. We determined which spindle defects the checkpoint can detect by examining the interaction of mutations that compromise the checkpoint (mad1, mad2, and mad3) with those that damage various structural components of the spindle. Defects in microtubule polymerization, spindle pole body duplication, microtubule motors, and kinetochore components all activate the MAD-dependent checkpoint. In contrast, the cell cycle arrest caused by mutations that induce DNA damage (cdc13), inactivate the cyclin proteolysis machinery (cdc16 and cdc23), or arrest cells in anaphase (cdc15) is independent of the spindle checkpoint. 相似文献
6.
Many asymmetrically dividing cells segregate the poles of the mitotic spindle non-randomly between their two daughters. In budding yeast, the protein Kar9 localizes almost exclusively to the astral microtubules emanating from the old spindle pole body (SPB) and promotes its movement toward the bud. Thereby, Kar9 orients the spindle relative to the division axis. Here, we show that beyond perturbing Kar9 distribution, activation of the spindle assembly checkpoint (SAC) randomizes SPB inheritance. Inactivation of the B-type cyclin Clb5 led to a SAC-dependent defect in Kar9 orientation and SPB segregation. Furthermore, unlike the Clb4-dependent pathway, the Clb5- and SAC-dependent pathways functioned genetically upstream of the mitotic exit network (MEN) in SPB specification and Kar9-dependent SPB inheritance. Together, our study indicates that Clb5 functions in spindle assembly and that the SAC controls the specification and inheritance of yeast SPBs through inhibition of the MEN. 相似文献
7.
《Cell cycle (Georgetown, Tex.)》2013,12(16):3109-3116
Many asymmetrically dividing cells segregate the poles of the mitotic spindle non-randomly between their two daughters. In budding yeast, the protein Kar9 localizes almost exclusively to the astral microtubules emanating from the old spindle pole body (SPB) and promotes its movement toward the bud. Thereby, Kar9 orients the spindle relative to the division axis. Here, we show that beyond perturbing Kar9 distribution, activation of the spindle assembly checkpoint (SAC) randomizes SPB inheritance. Inactivation of the B-type cyclin Clb5 led to a SAC-dependent defect in Kar9 orientation and SPB segregation. Furthermore, unlike the Clb4-dependent pathway, the Clb5- and SAC-dependent pathways functioned genetically upstream of the mitotic exit network (MEN) in SPB specification and Kar9-dependent SPB inheritance. Together, our study indicates that Clb5 functions in spindle assembly and that the SAC controls the specification and inheritance of yeast SPBs through inhibition of the MEN. 相似文献
8.
Peter Hornung Paulina Troc Francesca Malvezzi Michael Maier Zuzana Demianova Tomasz Zimniak Gabriele Litos Fabienne Lampert Alexander Schleiffer Matthias Brunner Karl Mechtler Franz Herzog Thomas C. Marlovits Stefan Westermann 《The Journal of cell biology》2014,206(4):509-524
Kinetochores are megadalton-sized protein complexes that mediate chromosome–microtubule interactions in eukaryotes. How kinetochore assembly is triggered specifically on centromeric chromatin is poorly understood. Here we use biochemical reconstitution experiments alongside genetic and structural analysis to delineate the contributions of centromere-associated proteins to kinetochore assembly in yeast. We show that the conserved kinetochore subunits Ame1CENP-U and Okp1CENP-Q form a DNA-binding complex that associates with the microtubule-binding KMN network via a short Mtw1 recruitment motif in the N terminus of Ame1. Point mutations in the Ame1 motif disrupt kinetochore function by preventing KMN assembly on chromatin. Ame1–Okp1 directly associates with the centromere protein C (CENP-C) homologue Mif2 to form a cooperative binding platform for outer kinetochore assembly. Our results indicate that the key assembly steps, CENP-A recognition and outer kinetochore recruitment, are executed through different yeast constitutive centromere-associated network subunits. This two-step mechanism may protect against inappropriate kinetochore assembly similar to rate-limiting nucleation steps used by cytoskeletal polymers. 相似文献
9.
10.
ABSTRACT : Mitotic exit and cytokinesis must be tightly coupled to nuclear division both in time and space in order to preserve genome stability and to ensure that daughter cells inherit the right set of chromosomes after cell division. This is achieved in budding yeast through control over a signal transduction cascade, the mitotic exit network (MEN), which is required for mitotic CDK inactivation in telophase and for cytokinesis. Current models of MEN activation emphasize on the bud as the place where most control is exerted. This review focuses on recent data that instead point to the mother cell as being the residence of key regulators of late mitotic events. 相似文献
11.
Eukaryotic cells have evolved a network of control mechanisms, known as checkpoints, which coordinate cell-cycle progression in response to internal and external cues. The yeast Saccharomyces cerevisiae has been invaluable in dissecting genetically the DNA damage checkpoint pathway. Recent results on posttranslational modifications and protein-protein interactions of some key factors provide new insights into the architecture of checkpoint protein complexes and their order of function. 相似文献
12.
With the goal of creating two genetically identical daughter cells, cell division culminates in the equal segregation of sister chromatids. This phase of cell division is monitored by a cell cycle checkpoint known as the spindle assembly checkpoint (SAC). The SAC actively prevents chromosome segregation while one or more chromosomes, or more accurately kinetochores, remain unattached to the mitotic spindle. Such unattached kinetochores recruit SAC proteins to assemble a diffusible anaphase inhibitor. Kinetochores stop production of this inhibitor once microtubules (MTs) of the mitotic spindle are bound, but productive attachment of all kinetochores is required to satisfy the SAC, initiate anaphase, and exit from mitosis. Although mechanisms of kinetochore signaling and SAC inhibitor assembly and function have received the bulk of attention in the past two decades, recent work has focused on the principles of SAC silencing. Here, we review the mechanisms that silence SAC signaling at the kinetochore, and in particular, how attachment to spindle MTs and biorientation on the mitotic spindle may turn off inhibitor generation. Future challenges in this area are highlighted towards the goal of building a comprehensive molecular model of this process. 相似文献
13.
Cells have evolved a signaling pathway called the spindle assembly checkpoint (SAC) to increase the fidelity of chromosome segregation by generating a “wait anaphase” signal until all chromosomes are properly aligned within the mitotic spindle. It has been proposed that tension generated by the stretch of the centromeric chromatin of bioriented chromosomes stabilizes kinetochore microtubule attachments and turns off SAC activity. Although biorientation clearly causes stretching of the centromeric chromatin, it is unclear whether the kinetochore is also stretched. To test whether intrakinetochore stretch occurs and is involved in SAC regulation, we developed a Drosophila melanogaster S2 cell line expressing centromere identifier–mCherry and Ndc80–green fluorescent protein to mark the inner and outer kinetochore domains, respectively. We observed stretching within kinetochores of bioriented chromosomes by monitoring both inter- and intrakinetochore distances in live cell assays. This intrakinetochore stretch is largely independent of a 30-fold variation in centromere stretch. Furthermore, loss of intrakinetochore stretch is associated with enhancement of 3F3/2 phosphorylation and SAC activation. 相似文献
14.
15.
The spindle assembly checkpoint monitors proper chromosome attachment to spindle microtubules and is conserved from yeast to humans. Checkpoint components reside on kinetochores of chromosomes and show changes in phosphorylation and localization as cells proceed through mitosis. Adaptation to prolonged checkpoint arrest can occur by inhibitory phosphorylation of Cdc2. 相似文献
16.
Although the budding yeast centromere is extremely short (125 bp) compared to those of other eukaryotes, the kinetochore that assembles on this DNA displays a rich molecular complexity. Here, we describe recent advances in our understanding of kinetochore function in budding yeast and present a model describing the attachment that is formed between spindle microtubules and centromeric DNA. This analysis may provide general principles for kinetochore function and regulation. 相似文献
17.
Garry G Sedgwick Jón Otti Sigurdsson Werner Streicher Jesper V Olsen Jakob Nilsson 《EMBO reports》2014,15(3):282-290
The spindle assembly checkpoint (SAC) ensures accurate chromosome segregation by delaying entry into anaphase until all sister chromatids have become bi‐oriented. A key component of the SAC is the Mad2 protein, which can adopt either an inactive open (O‐Mad2) or active closed (C‐Mad2) conformation. The conversion of O‐Mad2 into C‐Mad2 at unattached kinetochores is thought to be a key step in activating the SAC. The “template model” proposes that this is achieved by the recruitment of soluble O‐Mad2 to C‐Mad2 bound at kinetochores through its interaction with Mad1. Whether Mad1 has additional roles in the SAC beyond recruitment of C‐Mad2 to kinetochores has not yet been addressed. Here, we show that Mad1 is required for mitotic arrest even when C‐Mad2 is artificially recruited to kinetochores, indicating that it has indeed an additional function in promoting the checkpoint. The C‐terminal globular domain of Mad1 and conserved residues in this region are required for this unexpected function of Mad1. 相似文献
18.
Bub3 is one of at least six proteins that transmit the spindle assembly checkpoint signal. These proteins delay cell cycle progression from metaphase to anaphase in response to attachment defects between kinetochores and spindle microtubules and to tension defects between sister chromatids. To explore the molecular interactions mediated by Bub3, we have determined the crystal structure of the Saccharomyces cerevisiae protein Bub3p at 2.35 A resolution. Bub3p is a seven-blade beta-propeller, although its sequence diverges from that of other WD40 family members. Several loops are substantially elongated, but extra domains or insertions are not present at the termini. In particular, two extended loops project from the top face of the propeller, forming a cleft. Amino acid residues across the top face and one aspect of the lateral surface (spanning blades 5-6) are highly conserved among Bub3 proteins. We propose that these conserved surfaces are the loci for key interactions with conserved motifs in spindle checkpoint proteins Bub1 and Mad3/BubR1. Comparison of the Bub3 sequence to the WD40 protein, Rae1, shows high sequence conservation along the same surfaces. Rae1 interaction with Bub1 is, therefore, likely to involve a similar mode of binding. 相似文献
19.
20.
Minor alteration of microtubule dynamics causes loss of tension across kinetochore pairs and activates the spindle checkpoint 总被引:7,自引:0,他引:7
Zhou J Panda D Landen JW Wilson L Joshi HC 《The Journal of biological chemistry》2002,277(19):17200-17208
We have previously identified the opium alkaloid noscapine as a microtubule interacting agent that binds stoichiometrically to tubulin and alters its conformation. Here we show that, unlike many other microtubule inhibitors, noscapine does not significantly promote or inhibit microtubule polymerization. Instead, it alters the steady-state dynamics of microtubule assembly, primarily by increasing the amount of time that the microtubules spend in an attenuated (pause) state. Further studies reveal that even at high concentrations, noscapine does not alter the tubulin polymer/monomer ratio in HeLa cells. Cells treated with noscapine arrest at mitosis with nearly normal bipolar spindles. Strikingly, although most of the chromosomes in these cells are aligned at the metaphase plate, the rest remain near the spindle poles, both of which exhibit loss of tension across kinetochore pairs. Furthermore, levels of the spindle checkpoint proteins Mad2, Bub1, and BubR1 decrease by 138-, 3.7-, and 3.9-fold, respectively, at the kinetochore region upon chromosome alignment. Our results thus suggest that an exquisite control of microtubule dynamics is required for kinetochore tension generation and chromosome alignment during mitosis. Our data also support the idea that Mad2 and Bub1/BubR1 respond to kinetochore-microtubule attachment and/or tension to different degrees. 相似文献