首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult male rats were injected intraperitoneally either with saline or 2-Br- α-ergocryptine(CB-154)(10 ng/0.5 ml/rat) 30 min prior to an intraventricular injection of saline or β-endorphin (1 μg/10 μl or 5 μg/10 μl) and 30 min after β-endorphin, they were sacrificed by decapitation. Intraventricular injection of β-endorphin elicited significant increases in serum GH, prolactin and LH levels in a dose-related manner. Pretreatment with CB-154 inhibited the release of GH, prolactin and LH induced by β-endorphin. These results indicate that the stimulatory effects of β-endorphin on GH, prolactin and LH may be involved in an inhibition of dopaminergic mechanism in the central nervous system.  相似文献   

2.
Specific binding of human β-endorphin to rabbit cerebellar and brain membranes was measured using [3H2-Tyr27]-βh-endorphin as the primary ligand. In both tissues binding was time dependent and saturable, with apparent equilibrium dissociation constants of 0.275 nM and 0.449 nM in the cerebellum and brain, respectively. The binding capacity of cerebellum is greater than that of brain. Kinetic studies showed that the association rate constants were 2.7 × 107 M?1min?1 for cerebellum and 2.4 × 107 M?1min?1 for brain. Dissociation of tritiated βh-endorphin from both cerebellum and brain is not consistent with a first order decay from a single site. In the cerebellum, these is a time-dependent increase in slowly dissociating complex. The potency of several opioid peptides and opiates to inhibit the binding of tritiated βh-endorphin was determined. Ligands with preference for μ, δ, and κ opiate receptor (morphine, Metenkephalin and ethylketocyclazocine) all have similar affinities toward βh-endorphin sites in both brain and cerebellar membranes.  相似文献   

3.
Some opiates with morphinan- and benzomorphan-structures possess affinities for neuroleptic receptors as revealed by their abilities to compete with 3H-spiroperidol for common binding sites in rat striatum in vitro (IC50 in the range between 10?6 and 10?5M). The binding of these opiates to neuroleptic receptors appears to be of pharmacological significance, since in vivo studies in mice revealed a small but significant displacement of spiroperidol by high doses of the opiate antagonist levallorphan from specific binding sites in the striatum. In addition, there exists some correlation between the ability of opiates to bind to neuroleptic receptor sites in vitro and their potency to evoke “bizarre behavior” in rats in vivo. In contrast, a wide variety of other opiates having morphine-, morphinone- or oripavine-structure showed no affinity for neuroleptic binding sites in vitro (IC50 greater than 10?4 M). Of the opioid peptides (methionine-enkephalin, leucine-enkephalin and β-endorphin) none has an affinity for neuroleptic binding sites. A variety of other peptides were also investigated but did not interfere with spiroperidol binding. Only ACTH showed a moderate affinity for neuroleptic binding sites.  相似文献   

4.
Hydrocortisone (cortisol) increased the binding of thyrotropin-releasing hormone (TRH) to specific membrane receptors in 4 clonal strains of rat pituitary cells. At the highest effective cortisol concentration (3–5 × 10?6 M), the increase was observed within 6–8 hr and became maximal (140 to 160% of control binding) by 18–24 hr. Half-maximum stimulation occurred in serum-containing medium at 9 × 10?8 M cortisol, and a significant increase in TRH binding was seen at 3 × 10?8 M. Equilibrium binding studies showed that enhanced TRH binding was explained by an increase in receptor number with no change in affinity. Similar effects were seen with Dexamethasone, but no increase in TRH binding was noted when testosterone, methyltestosterone, progesterone, estradiol or the antiestrogen Lilly 88571 were added to the culture medium. Cortisol treatment did not cause the appearance of specific TRH binding sites in cell strains previously shown to lack receptors for the tripeptide (F4C1, GH12C1 and R5 cells). When added cortisol was removed from medium, receptor number decayed to control values with a T12 of about 30 hr. Previous studies have shown that TRH receptors in GH-cells can be down-modulated by TRH and thyroid hormones; the present findings demonstrate that glucocorticoid hormones can increase the number of TRH receptors in GH-cells.  相似文献   

5.
Leydig cells isolated from adult rat testes bound 125I-labelled luteinizing hormone releasing hormone (LHRH) agonist with high affinity (KA=1.2 × 109M) and specificity. LHRH and the 3–9 and 4–9 fragments of LHRH agonist competed for binding sites with 125I-LHRH agonist but with reduced affinities, whereas fragments of LHRH, and oxytocin and TRH were largely inactive. Somatostatin inhibited binding at high (10?4M) concentrations but was inactive at 10?6M and less. Pretreatment of rats for 7 days with 5 μg/day of LHRH agonist reduced binding of 125I-LHRH agonist to Leydig cells in vitro by 25%, whilst inhibition of endogenous LHRH by antibodies for 7 days caused a 40% decrease.  相似文献   

6.
An antiserum to βh-lipotropin (LPH) which does not cross react with βh-endorphin has been obtained utilizing two different methods of affinity chromatography. This was employed in studies of three normal human subjects in whom the metabolic clearance rate (MCR) apparent volume of distribution (Vd) and fractional rate of disappearance (Kd) of ACTH and βh-LPH were determined following bolus simultaneous injection of 270 μg highly purified βh-LPH and 230 μg of synthetic human ACTH. A biphasic disappearance curve was noted for both hormones. βh-LPH: MCR-0.571, 0.519, and 0.461 L/minute; Vd-30.7, 27.7, 25.0 liters, representing 49, 46 and 35% of body weight; Kd-0.0186, 0.0187, 0.0185 min?1. ACTH: MCR-0.274, 0.266, and 0.332 L/minute; Vd-6.5, 6.5, 14.5 liters, representing 10.4, 10.8 and 20.4% of body weight; Kd-0.0418, 0.0409, 0.0229 min?1. The observed larger MCR of βh-LPH can account for previous observations of basal plasma ACTH/LPH ratios greater than unity, even though these peptides are present in the pituitary in equimolar concentrations.  相似文献   

7.
The ability of the Luteinizing Hormone-Releasing Hormone (LH-RH) analogs to displace LH-RH from its pituitary receptors was evaluated invitro. The two superactive analogs tested showed higher potency than the antagonists and LH-RH itself, D-Trp6-LH-RH being the most potent. The LH-RH specific binding activity in the pituitary fluctuated throughout the age of the rats. The highest number of LH-RH binding sites were seen on day 35 of age (276 fmol × 10?2/pit) and an increment was induced by 0.05 μg D-Trp6-LH-RH (400 fmol × 10?2/pit). However, 1 μg D-Trp6-LH-RH reduced the binding of LH-RH at all the times studied. In the control animals the number of estradiol binding sites increased on day 42 of age, and 0.05 μg D-Trp6-LH-RH augmented them on day 35 of age. On the contrary, 1 μg D-Trp6-LH-RH diminished the estradiol uterine receptors at all the times studied. Similar results were obtained in the ovariectomized-hypophysectomized rats on day 35 of age. Our studies demonstrated a biphasic action of D-Trp6-LH-RH on LH-RH pituitary receptors and a direct effect on uterus which could be mediated through the uterine estradiol receptors.  相似文献   

8.
Thyrotopin releasing hormone (TRH) produces “wet dog shakes” in rats similar to those observed during morphine withdrawal. The shaking behavior precipitated by morphine abstinence can be exacerbated by TRH administration while the other components of the morphine withdrawal syndrome remain unchanged. Morphine, chlorpromazine, apomorphine, and Δ9-tetrahydrocannabinol effectively block shakes induced by either TRH administration or morphine withdrawal. These results suggest the possibility that endogenous TRH may be associated with the “wet dog shakes” observed as a portion of morphine's abstinence syndrome in rats. However, TRH is unable to alter the stereospecific binding of morphine invivo or invitro, and naloxone fails to potentiate the number of TRH-induced shakes. TRH has no antinociceptive properties, and it cannot alter those of morphine. These data suggest that more than one neuromechanism may be responsible for shaking behavior in rats.  相似文献   

9.
β-Endorphin (5–80 μg) or [D-Ala2, Met5] enkephalinamide (DALA) (5–40 μg) was administered intracerebroventricularly to rats. With both opioid peptides, there was no direct relationship between log dose and mean number of wet-dog shakes (WDS) that occured during the following 15 min. When the results were analyzed quantally, the dose of DALA that caused 50% of the rats to shake at least twice was 8.6 μg (4.9–15 μg). β-Endorphin had such poor efficacy that an ED 50 could not be obtained. Morphine (1 and 5 mg/kg, s.c.) antagonized shaking caused by the optimal dose of DALA (20 μg). Naloxone (0.1–10 mg/kg, s.c.) attenuated both DALA- and β-endorphin-induced WDS in a dose-related manner. This latter result differentiates shaking associated with opioid peptides from that caused by thyrotropin releasing hormone (TRH), another endogenous stimulant of WDS in rats. There was no cross-tolerance between RX 336-M (7,8-dihydro-5′,6′-dimethylylohex-5′-eno-1′,2′,8′,14 codeinone), a novel shake inducing agent, and β-endorphin. This finding again differentiates β-endorphin-induced shaking from that caused by TRH and also from that associated with several exogenous stimulants of WDS.  相似文献   

10.
The site at which opiate agonists and antagonists act to alter secretion of prolactin, growth hormone and luteinizing hormone as well as the pharmacological specificity of the opiate receptors mediating these effects were examined in rats. Injection of β-endorphin but not a 10 fold higher dose of the non opiate peptide β-endorphin, increased release of prolactin and growth hormone in male rats while inhibiting luteinizing hormone release in ovariectomized, estrogen primed female rats. Prior treatment with naltrexone i.p. blocked these responses. Injection of naltrexone into the hypothalamus lowered prolactin release. In rats with a surgically formed hypothalamic island systemic administration of morphine or naltrexone altered prolactin release in the same manner as was observed in intact animals. In contrast no effects of β-endorphin or naltrexone were observed on the spontaneous secretion of prolactin invitro. In addition β-endorphin did not alter the inhibition of prolactin release produced by apomorphine invitro. The ED50 for stimulation of prolactin release following intraventricular administration of β-endorphin or the synthetic enkephalin analog FK 33-824 was the same, approximately 0.1 ng/rat. However FK 33-824 at 0.2 ng/rat was able to produce much greater analgesia and catatonia than β-endorphin. The metabolism and distribution of β-endorphin was examined but did not account for these differential effects. These results indicate that opiate agonists and antagonists can act at the hypothalamic but not the anterior pituitary level to alter release of prolactin, growth hormone and luteinizing hormone. In addition the data suggest that the opiate receptors mediating release of prolactin may have a different pharmacological specificity from those involved with analgesia and catatonia.  相似文献   

11.
J W Holaday  L F Tseng  H H Loh  C H Li 《Life sciences》1978,22(17):1537-1544
Injection of 30 μg β endorphin intraventricularly (ivt) in rats produced an alteration of body temperature, a state of catalepsy, and an increase in antinociceptive latencies. Subsequent ivt injections of 20 μg of thyrotropin releasing hormone (TRH) reversed the ongoing changes in body temperature and catalepsy produced by β endorphin. Since TRH antagonized these effects in hypophysectomized rats, it is implied that these effects of TRH are independent of pituitary-thyroid involvement. In contrast to the above, TRH did not alter the antinociception produced by β endorphin in either sham-control or hypophysectomized rats. The failure of TRH to antagonize all three of these opiate effects, as well as the inability of TRH to displace bound dihydromorphine from synaptic plasma membranes, suggests that the level of TRH-β endorphin interaction is not at the opiate receptor.  相似文献   

12.
A number of sites have been hypothesized as loci at which opioid substances act to alter the secretion of luteinizing hormone (LH) and prolactin (PRL) (1–8). The aim of the present study was to determine the site(s) at which the opioid peptide β-endorphin (β-END) acts to influence plasma LH and PRL levels in the ovariectomized (OVX) rat. β-END, administered into the third ventricle of conscious OVX rats fitted with jugular catheters, significantly decreased plasma LH in doses ? 50 ng and increased PRL levels at all doses administered (10, 50, 100 and 250 ng) in a dose dependent fashion. To identify possible central nervous system sites of action, 250 ng β-END was unilaterally infused into various brain sites. Plasma LH was significantly decreased and plasma PRL significantly increased by infusions into the ventromedial hypothalamic area, the anterior hypothalamic area, and the preoptic-septal area. There was no significant effect of β-END infusions into the lateral hypothalamic area, amygdala, midbrain central gray, or caudate nucleus. When hemipituitaries of OVX rats were incubated invitro with β-END (10?7M to 10?5M), there was no suppression of basal or LHRH-induced LH release, nor was there any alteration of basal PRL release. It is concluded that β-END acts at a medial hypothalamic and/or preoptic-septal site and not the pituitary, to alter secretion of LH and PRL.  相似文献   

13.
Extracts of rat posterior intermediate pituitary and extracts of brains from normal and hypophysectomized rats were separated by gel filtration chromatography and fractions were analyzed by both a classical β-endorphin radioimmunoassay and by a radioimmunoassay specific for α-N-acetyl β-endorphin. In posterior intermediate pituitary extracts, more than 90 percent of the β-endorphin-sized immunoreactive material was α-N-acetylated. In extracts of brains from normal rats, less than 2 percent of the β-endorphin-sized immunoreactive material corresponded to α-N-acetylβ-endorphin, whereas in brains from hypophysectomized animals, no α-N-acetylβ-endorphin-like material could be detected. Immunofluorescence on normal brain sections, using either affinity purified antibodies to α-N-acetylβ-endorphin or conventional β-endorphin antibodies, showed no α-N-acetylβ-endorphin immunoreactivity in β-endorphin neurons. Only in brain sections which had been acetylated invitro prior to immunostaining could α-N-acetylβ-endorphin-like material be detected in the β-endorphin neurons. These results suggest that—in contrast to the cells in the intermediate lobe of the pituitary—the β-endorphin in brain neurons is not α-N-acetylated and that the small amount of α-N-acetyl β-endorphin which can be found in extracts of brains from normal animals is probably of pituitary origin.  相似文献   

14.
Conscious ovariectomized (OVX) rats bearing a cannula implanted in the 3rd ventricle were injected with 2 μl of 0.9% NaCl containing varying doses of synthetic gastrin and plasma gonadotropin, GH and TSH levels were measured by RIA in jugular blood samples drawn through an indwelling silastic catheter. Control injections of saline iv or into the 3rd ventricle did not modify plasma hormone levels. Intraventricular injection of 1 or 5 μg gastrin produced significant suppression of plasma LH and prolactin (Prl) levels within 5 min of injection. Injection of 1 μg gastrin had no effect on plasma GH, but increasing the dose to 5 μg induced a progressive elevation, which reached peak levels at 60 min. By contrast, TSH levels were lowered by both doses of gastrin within 5 min of injection and the lowering persisted for 60 min. Intravenous injection of gastrin had no effect on plasma gonadotropin, GH and TSH, but induced an elevation in Prl levels. Invitro incubation of hemipituitaries with gastrin failed to modify gonadotropin, GH or Prl but slightly inhibited TSH release at the highest dose of 5 μg gastrin. The results indicate that synthetic gastrin can alter pituitary hormone release in unrestrained OVX rats and implicate a hypothalamic site of action for the peptide to alter release of a gonadotropin, Prl and GH. Its effect on TSH release may be mediated both via hypothalamic neurons and by a direct action on pituitary thyrotrophs.  相似文献   

15.
Male Long-Evans rats, implanted in the lateral cerebroventricle with chronic indwelling push-pull cannulae, were perfused (10 μl/min) for 120 min: 20 min with 1.5 × 10?6M morphine in sterile isotonic saline containing 2.3 mM CaCl2 (vehicle); 40 min with vehicle; 20 min with 1.5 × 10?6M morphine; 10 min with vehicle and 30 min with 1 × 10?6M naloxone in vehicle. These rats and drug-naive rats were implanted s.c. with 2 × 50 mg morphine pellets. After 72 hr the pellets were removed and 18–24 hr later the above perfusion procedure was repeated. The amount of morphine collected in the perfusate during the washout with naloxone was elevated, compared to the amount collected during the corresponding time of the washout with vehicle for both naive and withdrawn groups. The enhanced morphine release during the washout with naloxone did not differ significantly between the naive and withdrawn rats. However, significantly less morphine was recovered in the perfusate collected during the vehicle washout from the withdrawn rats, compared to that collected from the naive rats. The data suggest that in vivo morphine is specifically bound to receptors and is sensitive to naloxone displacement. It is also concluded that morphine is differentially taken up or otherwise disposed of by brains of rats which are in opiate withdrawal.  相似文献   

16.
β-Endorphin was able to enhance plasma α-MSH levels in rats after intracerebroventricular injection. This effect could be inhibited by naloxone or by removing tyrosine from position 61 of the peptide. Neither α- and γ-endorphin nor their des-tyrosine analogs appeared to be able to modify plasma α-MSH levels. The stimulating effect of β-endorphin on plasma α-MSH levels could be completely blocked by a simultaneous injection of apomorphine, in an amount in which apomorphine itself had no effect on α-MSH levels in plasma. A single injection of haloperidol increased plasma α-MSH levels in a dose related manner. A dose of haloperidol, which caused an apomorphine antagonizable increase in plasma α-MSH, did not modify β-endorphin elevated α-MSH levels. A high concentration of haloperidol was able to stimulate the basal release of α-MSH from isolated pituitaries in bitro, whereas β-endorphin appeared to be inactive in this respect.These observations indicate a central opiate receptor-mediated influence of β-endorphin on α-MSH release and the possible involvement of a dopaminergic system, mediating the β-endorphin effect.  相似文献   

17.
The hypothalamus of Amphibia contains large amounts of tripeptide P-Glu-His-Pro-NH2 (mammalian thyrotropin-releasing hormone, TRH). However, synthetic TRH is unable to stimulate thyrotropin release from frog pituitary gland. The recent discovery of TRH in the skin of the frog suggests a possible role of this peptide in skin-colour adaptation. Thus we have investigated the role of TRH upon melanotropin (α-MSH) release from perifused frog neurointermediate lobes. A dose related increase in α-MSH release was observed when TRH was added to the perifusion medium. Half-maximum stimulation occurred with the 1 × 10?8M dose. Theophylline at a dose of 2 × 10?3M strongly enhanced TRH-induced α-MSH release, indicating that cyclic AMP may be the second messenger. α-MSH releade was not modified by crude homogenates of rat hypothalamus but was significantly reduced when the hypothalamus extracts were preincubated with specific TRH antibodies. As far is known, these results provide the first evidence that P-Glu-His-Pro-NH2 stimulates the release of α-MSH from frog neurointermediate lobes in vitro. The present findings suggest a possible feedback loop between skin TRH and pituitary MSH in Amphibia.  相似文献   

18.
beta-Endorphin: characteristics of binding sites in the rat brain.   总被引:3,自引:0,他引:3  
Stereospecific binding of human β-endorphin to rat membrane preparations is described for the first time using [3H-Tyr27]-βh-endorphin as the ligand. The binding is time dependent and saturable with respect to βh-endorphin with an apparent dissociation constant of 0.3 nM. Sodium ion (100 mM) elevates this value to 2.5 nM but has no effect on the total number of binding sites present in the membrane preparation. The ability of certain β-endorphin analogs, opiate agonists as well as antagonists to inhibit the binding of βh-endorphin, is presented.  相似文献   

19.
Particles from rat oviduct homogenates sedimenting between 1,000 × g for 10 min and 48,000 × g for 30 min bound [3H]oxytocin in vitro. The apparent Kd for oxytocin binding to high affinity sites in particles prepared from estrogen-treated rats was 1.8 × 10?9 M. About 215 fmoles of oxytocin were bound per mg of particulate protein. Oviducal preparations from untreated rats had about 25% the affinity for oxytocin of preparations from estrogen-treated rats. Oxytocin analogues were bound to oviducal particles in the same rank order as their uterotonic potencies: (desamino)oxytocin > (4-threonine)oxytocin > oxytocin > (8-lysine)vasopressin ? desaminotocinol. No oxytocin binding could be shown with the particulate fractions from rat ovary. The binding of oxytocin to the oviduct and uterus are similar in affinity, number of binding sites, ligand specificity, and the increase in response to estrogen treatment.  相似文献   

20.
Youdaev et al. (1) reported that (pyro)Glu-Ser-Gly-NH2 isolated from bovine hypothalami or made synthetically stimulates the release of growth hormone (GH). Therefore, we synthesized the tripeptide and tested it in several in vivo and in vitro assay systems for GH releasing activity. Our results demonstrate that (pyro)Glu-Ser-Gly-NH2 does not stimulate the release of immunoreactive GH from rat pituitaries in vitro in doses of 0.1–1000 nanog/ml. Similarly, (pyro)Glu-Ser-Gly-NH2, injected intravenously into rats in doses of 1μg and 10μg/rat or infused into a hypophysial portal vessel in doses of 0.01 μg and 0.1 μg/rat did not increase serum GH levels as measured by radioimmunoassay. When this tripeptide was injected intravenously in doses of 500 μg into sheep it did not raise plasma GH levels. These results demonstrate that under the conditions of this investigation (pyro)Glu-Ser-Gly-NH2 does not display any GH-releasing activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号