首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Rivolta C  Pagni M 《Genetics》1999,151(4):1239-1244
Sequencing of the complete Bacillus subtilis chromosome revealed the presence of approximately 4100 genes, 1000 of which were previously identified and mapped by classical genetic crosses. Comparison of these experimentally determined positions to those derived from the nucleotide sequence showed discrepancies reaching up to 24 degrees (approximately 280 kb). The size of these discrepancies as a function of their position along the chromosome is not random but, apparently, reveals some periodicity. Our analyses demonstrate that the discrepancies can be accounted for by inaccurate positioning of the early reference markers with respect to which all subsequently identified loci were mapped by transduction and transformation. We conclude (i) that specific DNA sequences, such as recombination hotspots or presence of heterologous DNA, had no detectable effect on the results obtained by classical mapping, and (ii) that PBS1 transduction appears to be an accurate and unbiased mapping method in B. subtilis.  相似文献   

3.
The jerker mutation causes degeneration of cochlea and vestibular sensory hair cells in mice. A frame-shift mutation in the actin bundling gene Espin (Espn) leads to hair bundle defects by disrupting the actin filament assembly in stereocilia. Previously, jerker was mapped to distal mouse chromosome 4. Here, analyzing 2536 informative meioses derived from two intersubspecific intercrosses, we localize jerker to a 0.51+/-0.14cM interval on chromosome 4. The following order and distances of genes and markers were determined: D4Mit180-0.44+/-0.13cM-Hes2, Espn(je)-0.08+/-0.06cM-D4Mit356-0.28+/-0.1cM-D4Mit208. A 300kb physical bacterial artificial chromosome (BAC) contig was generated containing the Espn(je) locus. The human homologous region maps to 1p36.31. We present a detailed high-resolution genetic and physical map of markers located at distal chromosome 4 and demonstrate concordance of Espn with jerker.  相似文献   

4.
Genes that enable crops to limit Na(+) accumulation in shoot tissues represent potential sources of salinity tolerance for breeding. In barley, the HvNax4 locus lowered shoot Na(+) content by between 12% and 59% (g(-1) DW), or not at all, depending on the growth conditions in hydroponics and a range of soil types, indicating a strong influence of environment on expression. HvNax4 was fine-mapped on the long arm of barley chromosome 1H. Corresponding intervals of ~200 kb, containing a total of 34 predicted genes, were defined in the sequenced rice and Brachypodium genomes. HvCBL4, a close barley homologue of the SOS3 salinity tolerance gene of Arabidopsis, co-segregated with HvNax4. No difference in HvCBL4 mRNA expression was detected between the mapping parents. However, genomic and cDNA sequences of the HvCBL4 alleles were obtained, revealing a single Ala111Thr amino acid substitution difference in the encoded proteins. The known crystal structure of SOS3 was used as a template to obtain molecular models of the barley proteins, resulting in structures very similar to that of SOS3. The position in SOS3 corresponding to the barley substitution does not participate directly in Ca(2+) binding, post-translational modifications or interaction with the SOS2 signalling partner. However, Thr111 but not Ala111 forms a predicted hydrogen bond with a neighbouring α-helix, which has potential implications for the overall structure and function of the barley protein. HvCBL4 therefore represents a candidate for HvNax4 that warrants further investigation.  相似文献   

5.
The physical location of the mouse IFN-alpha locus (Ifa) on chromosome 4 was defined by in situ hybridization of a cloned mouse IFN-alpha probe to metaphase spreads in which one chromosome 4 was present as part of a single metacentric chromosome, all other chromosomes being acrocentric. (This approach greatly facilitates analysis and can be used even when it is difficult to obtain good banding). Using unbanded chromosomes, the grains were localized over the chromosome 4 part of the metacentric, in a region 0.61 +/- 0.07 (SD) of the distance from the centromere to the telomere. In Giemsa-banded spreads, the majority of the grains were in the region 4C3----C6. Consideration of these results and of the known linkage maps for mouse and man indicates that the Galt - Aco-1 - Ifa syntenic group spans a distance of approximately 14 cM and suggests that the same group on human 9p will also occupy a similarly sized region, with GALT proximal and IFL distal to the centromere.  相似文献   

6.
7.
Park C  Longo CM  Ackerman SL 《Genomics》2000,69(1):135-138
Cerebellar deficient folia (cdf) is a recessive mouse mutation causing ataxia and cerebellar cytoarchitectural abnormalities, including hypoplasia, foliation defects, and Purkinje cell ectopia. To identify the cdf gene, we have generated a high-resolution genetic map of a 3.24 +/- 0.55 cM (95% CI) region encompassing the cdf gene using 1997 F2 mice generated from a (C3H/HeSnJ-cdf/cdf x CAST/Ei)F1 intercross. Linkage analysis showed that the cdf gene cosegregates with D6Mit208, D6Mit359, and D6Mit225. A contig of five YACs, nine BACs, and three P1s was constructed across the cdf nonrecombinant region. Based on genetic and physical maps, the cdf gene was localized to the 0.28 +/- 0.23 cM (95% CI) interval between D6Mit209 and D6Ack1. These results will greatly facilitate the map-based cloning of the cdf gene, which in turn should further knowledge of the molecular mechanisms of neuronal positioning and foliation during cerebellar development.  相似文献   

8.
Rod-cone dysplasia type 2 (rcd2) is an autosomal recessive disorder that segregates in collie dogs. Linkage disequilibrium and meiotic linkage mapping were combined to take advantage of population structure within this breed and to fine map rcd2 to a 230-kb candidate region that included the gene C1orf36 responsible for human and murine rd3, and within which all affected dogs were homozygous for one haplotype. In one of three identified canine retinal RD3 splice variants, an insertion was found that cosegregates with rcd2 and is predicted to alter the last 61 codons of the normal open reading frame and further extend the open reading frame. Thus, combined meiotic linkage and LD mapping within a single canine breed can yield critical reduction of the disease interval when appropriate advantage is taken of within-breed population structure. This should permit a similar approach to tackle other hereditary traits that segregate in single closed populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. A. V. Kukekova and O. Goldstein contributed equally to this work. Nucleotide sequence data reported here are available in the GenBank database under accession numbers EU687743, EU687744, and EU687745.  相似文献   

9.
We have cloned and sequenced mouse cDNAs corresponding to a third member of a family of melanocyte-specific mRNAs, which encode tyrosinase and related proteins. This new member, tyrosinase-related protein-2 (TRP-2), has approximately 40% amino acid identity with the two other proteins in the family and has the same structural features including two copper binding sites, two cysteine-rich regions, a signal peptide and a transmembrane domain. We now show that one of the cysteine-rich regions in this protein family is an 'EGF-like' repeat found in many extracellular and cell surface proteins. The gene encoding TRP-2 maps to mouse chromosome 14, in the region of the coat colour mutation slaty. We show that the TRP-2 of slaty mice has a single amino acid difference from wild-type TRP-2; a substitution of glutamine for arginine in the first copper binding site. TRP-2 is the much sought melanogenic enzyme DOPAchrome tautomerase (DT), which catalyses the conversion of DOPAchrome to 5,6,dihydroxyindole-2-carboxylic acid. Extracts from mice homozygous for the slaty mutation have a 3-fold or more reduction in DT activity, indicating that TRP-2/DT is encoded at the slaty locus, and the missense mutation reduces but does not abolish the enzyme activity.  相似文献   

10.
Assignment of the interleukin-2 locus to mouse chromosome 3   总被引:1,自引:0,他引:1  
  相似文献   

11.
Comparison of the physical and recombination maps of the mouse X chromosome   总被引:2,自引:0,他引:2  
The locations of five random mouse genomic DNA markers and five cloned genes, including the genes for clotting factors VIII and IX (Cf-8 and Cf-9), Duchenne muscular dystrophy (Dmd), phosphoglycerate kinase-1 (Pgk-1), and alpha-galactosidase (Ags), on the mouse X chromosome were determined by in situ hybridization. The five random DNA markers provide new genetic loci with useful restriction fragment length polymorphisms between mouse strains and species, including one locus close to the centromeric region of the mouse X chromosome. The physical map and the recombination map of these loci on the X chromosome were compared. There was good agreement in the order of loci. Relative distances between loci were consistent along the X chromosome, with the exception of the telomeric end of the long arm, where the recombination fraction observed between loci closely associated on the physical map was higher than that between similarly spaced markers located in the proximal region of the X chromosome. These results are discussed in comparison to the human X-chromosome map.  相似文献   

12.
13.
14.
15.
16.
The asebia (ab) mutation in the mouse is an autosomal recessive trait with hypoplastic sebaceous glands. As a first step toward cloning the ab gene, we report here the genetic mapping of the ab locus with respect to Chromosome 19 microsatellite markers. 644 backcross progeny were generated by mating (CAST/EiJ × DBA/1LacJ-ab2J/ab2J) F1 heterozygous females and parental ab2J/ab2J mutant males. Our results located the ab gene to an interval of 1.6 cM on mouse Chromosome 19 defined by flanking markers D19Mit11 and D19Mit53/D19Mit27, and identified a tightly linked polymorphic marker, D19Mit67, that co-segregates with the mutation in the backcross progeny examined. This places ab locus 4 cM distal to its present position as indicated in Mouse Genome Database at The Jackson Laboratory. We have also mapped a yeast artificial chromosome (YAC) contig in this locus interval which suggests the ab interval to be less than one megabase of DNA.  相似文献   

17.
18.
A null mutation at the phosphoglucomutase locus (Pgm-1) was discovered by electrophoretic analysis of the inbred mouse strain C57 BL/6J. The null allele (Pgm-1 n) was shown to segregate as a Mendelian unit alternative to the Pgm-1 a and Pgm-1 b alleles. Mice expressing the Pgm-1 n allele, either in the heterozygous or homozygous state, are viable, healthy, and fertile. The occurrence of the Pgm-1 n mutant revealed a previously unreported genetic locus (Pgm-3) that controls the expression of a third phosphoglucomutase. Two electrophoretically expressed alleles of Pgm-3 (inherited without dominance) are found in the inbred mouse strains C57 BL/6J and DBA/2J. Linkage observed between the Pgm-3 locus, the dilute locus (d) and the cytoplasmic malic enzyme locus (Mod-1) has allowed assignment of the Pgm-3 locus to chromosome 9. A striking tissue specific expression of Pgm-1 and Pgm-3 was observed. Products of the Pgm-3 locus were detected in kidney, testes, brain, and heart. In contrast, Pgm-1 controlled isozymes were present in kidney, spleen, ovaries, and erythrocytes.Financial support for this work was provided in part by Contract #263-78-C-0393 from the National Institute of Environmental Health Sciences to the Research Triangle Institute.  相似文献   

19.
20.
Type I autosomal dominant cerebellar ataxia (ADCA) is a type of spinocerebellar ataxia (SCA) characterized by ataxia with other neurological signs, including oculomotor disturbances, cognitive deficits, pyramidal and extrapyramidal dysfunction, bulbar, spinal and peripheral nervous system involvement. The global prevalence of this disease is not known. The most common type I ADCA is SCA3 followed by SCA2, SCA1, and SCA8, in descending order. Founder effects no doubt contribute to the variable prevalence between populations. Onset is usually in adulthood but cases of presentation in childhood have been reported. Clinical features vary depending on the SCA subtype but by definition include ataxia associated with other neurological manifestations. The clinical spectrum ranges from pure cerebellar signs to constellations including spinal cord and peripheral nerve disease, cognitive impairment, cerebellar or supranuclear ophthalmologic signs, psychiatric problems, and seizures. Cerebellar ataxia can affect virtually any body part causing movement abnormalities. Gait, truncal, and limb ataxia are often the most obvious cerebellar findings though nystagmus, saccadic abnormalities, and dysarthria are usually associated. To date, 21 subtypes have been identified: SCA1-SCA4, SCA8, SCA10, SCA12-SCA14, SCA15/16, SCA17-SCA23, SCA25, SCA27, SCA28 and dentatorubral pallidoluysian atrophy (DRPLA). Type I ADCA can be further divided based on the proposed pathogenetic mechanism into 3 subclasses: subclass 1 includes type I ADCA caused by CAG repeat expansions such as SCA1-SCA3, SCA17, and DRPLA, subclass 2 includes trinucleotide repeat expansions that fall outside of the protein-coding regions of the disease gene including SCA8, SCA10 and SCA12. Subclass 3 contains disorders caused by specific gene deletions, missense mutation, and nonsense mutation and includes SCA13, SCA14, SCA15/16, SCA27 and SCA28. Diagnosis is based on clinical history, physical examination, genetic molecular testing, and exclusion of other diseases. Differential diagnosis is broad and includes secondary ataxias caused by drug or toxic effects, nutritional deficiencies, endocrinopathies, infections and post-infection states, structural abnormalities, paraneoplastic conditions and certain neurodegenerative disorders. Given the autosomal dominant pattern of inheritance, genetic counseling is essential and best performed in specialized genetic clinics. There are currently no known effective treatments to modify disease progression. Care is therefore supportive. Occupational and physical therapy for gait dysfunction and speech therapy for dysarthria is essential. Prognosis is variable depending on the type of ADCA and even among kindreds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号