首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earthworms have been shown to accumulate trace elements in general, and particularly high amounts of metal ions such as cadmium, copper and zinc. The earthworm's response to metal contamination has been linked to the induction and expression of metallothionein (MT) proteins, a detoxification strategy analogous to that found in other biological systems. The present study focuses on an inducible Cd-MT isolated from the compost-dwelling brandling worm Eisenia foetida (Savigny). A full characterization of the protein (including protein induction, MT cDNA, amino-acid sequence and metal stoichiometry) revealed a new dimension of knowledge to the molecular genetic information available to date. Whereas the elucidated cDNA codes for a putative protein which possesses 80 amino-acid residues, the characterized protein bears only 41 amino acids. The isolated product has evidently attained its size and shape by cleavage near the N-terminal site and at the linker region between the two putative metal-binding domains of the translated product, yielding a small MT moiety which contains 12 Cys residues (including one triple Cys-motif) binding four cadmium ions. It can be shown that the isolated MT molecule represents a self-sufficient one-domain MT which is stable in vitro. The isolation of the single-domain MT peptide raises the question about the method of formation and significance in vivo of such small MT moieties from tissues of E. foetida and possibly other terrestrial invertebrates. In this respect, two hypotheses are discussed: firstly, the possibility of formation of small MT peptides due to enzymatic cleavage of the intact protein during the process of preparation and isolation; and secondly, the possibility of deliberate post-translational processing of the translated gene product to yield functional one-domain MT moieties.  相似文献   

2.
The poliovirus polyprotein is cleaved at three different amino acid pairs. Viral polypeptide 3C is responsible for processing at the most common pair (glutamineglycine). We have found that a cDNA fragment encoding parts of the capsid protein region (P1) and the nonstructural protein region (P2), and including the P1-P2 processing site (tyrosine-glycine), can be expressed in E. coli. The translation product was correctly processed. Disruption of the coding sequence of 2A, a nonstructural polypeptide mapping carboxy-terminal to the tyrosine-glycine cleavage site, by linker mutagenesis or deletion, prevented processing. Deletion of the adjacent polypeptide 2B had no such effect. Antibodies against 2A specifically inhibited processing at the 3C'-3D' processing site (tyrosine-glycine) in vitro. We conclude that poliovirus encodes the second proteinase 2A, which processes the polyprotein at tyrosine-glycine cleavage sites.  相似文献   

3.
4.
5.
Human parathyroid hormone, hPTH, an 84 amino acid polypeptide, was produced intracellularly inEscherichia coli as a fusion protein, linked to the C-terminus of a 15 kD IgG-binding protein. Approximately 100 mg fusion protein was obtained per liter fermentation medium. To test the efficiency of two alternative enzymatic cleavage methods, two fusion proteins differing only in the linker region were constructed. Cleavage of a Phe-Phe-Pro-Arg linker was obtained with bovine thrombin and cleavage of a Phe-Ala-His-Tyr linker with recombinant H64A subtilisin. Both enzmes yielded the correct N-terminus and cleaved their respective linkers quantitatively, although additional internal cleavage sites in hPTH were detected and characterized. The linker cleavage conditions were optimized and hPTH was purified to homogeneity. Thrombin cleavage resulted in a final yield of 5 mg hPTH/L, while H64A subtilisin cleavage was more specific and gave 8 mg/L. The purified recombinant product was identical to native hPTH and exhibited full biological activity in an adenylate cyclase assay.  相似文献   

6.
Proteolytic shedding is an important step in the functional down-regulation and turnover of most membrane proteins at the cell surface. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a multifunctional glycoprotein that has two Ig-like domains in its extracellular portion and functions in cell adhesion as an inducer of matrix metalloproteinase (MMP) expression in surrounding cells. Although the shedding of EMMPRIN is reportedly because of cleavage by metalloproteinases, the responsible proteases, cleavage sites, and stimulants are not yet known. In this study, we found that human tumor HT1080 and A431 cells shed a 22-kDa EMMPRIN fragment into the culture medium. The shedding was enhanced by phorbol 12-myristate 13-acetate and inhibited by TIMP-2 but not by TIMP-1, suggesting the involvement of membrane-type MMPs (MT-MMPs). Indeed, down-regulation of the MT1-MMP expression in A431 cells using small interfering RNA inhibited the shedding. The 22-kDa fragment was purified, and the C-terminal amino acid was determined. A synthetic peptide spanning the cutting site was cleaved by MT1-MMP in vitro. The cleavage site is located in the linker region connecting the two Ig-like domains. The N-terminal Ig-like domain is important for the MMP inducing activity of EMMPRIN and for cell-cell interactions, presumably through its ability to engage in homophilic interactions, and the 22-kDa fragment retained the ability to augment MMP-2 expression in human fibroblasts. Thus, the MT1-MMP-dependent cleavage eliminates the functional N-terminal domain of EMMPRIN from the cell surface, which is expected to down-regulate its function. At the same time, the released 22-kDa fragment may mediate the expression of MMPs in tumor tissues.  相似文献   

7.
P-glycoprotein (Pgp), an anticancer drug-translocating ATPase, is responsible for multidrug resistance in cancer. We have previously shown (Nuti, S. L., Mehdi, A., and Rao, U. S. (2000) Biochemistry 39, 3424-3432) that tryptic cleavage of Pgp results in the activation of basal and drug-stimulated ATPase functions of Pgp. To understand this phenomenon, we determined the sites cleaved by trypsin and further examined whether the modulation of Pgp function is trypsin-specific or the result of proteolysis in general. The effects of chymotrypsin and proteinase K on Pgp ATPase function were studied. The results show that proteolysis of Pgp irrespective of the protease employed resulted in the activation of basal ATPase activity. However, drug-stimulated ATPase activities were differentially modulated. Immunoblot analysis of proteolytic digests indicated that, irrespective of the protease employed, Pgp was predominantly cleaved in the middle of the molecule. N-terminal amino acid sequencing of Pgp tryptic and chymotryptic peptides indicated Arg(680) and Leu(682) as the sites of cleavage, respectively. These two cleavage sites are part of the predicted linker region that joins the two halves of Pgp. Together, these results suggest that the linker region in Pgp is primarily accessible to protease action and that cleavage of this region modulates Pgp ATPase function.  相似文献   

8.
Angiopoietin-like 3 (ANGPTL3) is a secreted protein that is mainly expressed in the liver and regulates lipid metabolism by inhibiting the lipolysis of triglyceriderich lipoproteins. Using deletion mutants of human ANGPTL3, we demonstrated that the N-terminal coiled-coil domain-containing fragment-(17-207) and not the C-terminal fibrinogen-like domain-containing fragment-(207-460) increased the plasma triglyceride levels in mice. We also found that the N-terminal region 17-165 was required to increase plasma triglyceride levels in mice and that a substitution of basic amino acid residues in the region 61-66 of the fragment showed no increase in the plasma triglyceride levels and no inhibition of lipolysis by lipoprotein lipase. In addition, when we analyzed ANGPTL3 in human plasma, we detected cleaved fragments of ANGPTL3. By analyzing recombinant ANGPTL3 in mouse plasma, we found that it was cleaved at two sites, Arg221 downward arrow Ala222 and Arg224 downward arrow Thr225, which are located in the linker region between the coiled-coil domain and the fibrinogen-like domain. Furthermore, a cleavage-resistant mutant of ANGPTL3 was determined to be less active than wild-type ANGPTL3 in increasing mouse plasma triglyceride levels but not in inhibiting lipoprotein lipase activity. These findings suggest that the cleavage of ANGPTL3 is important for the activation of ANGPTL3 in vivo.  相似文献   

9.
A rat cystatin A cDNA clone was isolated from a lambda ZAP library representing newborn rat skin mRNA by screening with a synthetic oligonucleotide designed from amino acid sequence 15-23 of the cysteine proteinase inhibitor. The obtained clone contained a partial coding region of the inhibitor, lacking the 5'-untranslated region and coding sequence for the NH(2)-terminal 13 residues. The amino acid sequence deduced from the base sequence, Glu14-Phe103, coincided with that determined at the amino acid level. To obtain the recombinant cystatin A protein, the DNA was fused with a synthetic linker encoding its missing N-terminal 17 residues and introduced into an expression vector, pMK2. In Escherichia coli, however, the expression level of the semi-synthetic gene was low, 0. 5 mg of the purified recombinant protein per 1 liter culture being produced. Changing of the codon usage of the N-terminal region in a pET-15b expression system led to an increase in the yield depending on the instability of the putative secondary structure around an initiation codon of the mRNA. The expressed cystatin A showed identical characteristics with the authentic form except for the absence of the N-terminal acetyl blocking group. Using the expression system, two kinds of point mutation, the conservative Val54 in the first loop QxVxG region being changed to Lys and Glu, were introduced, but there was almost no effect on the inhibitory activity toward papain. This suggests that the conserved Val in the reactive site is not restricted and that the hydrophobicity of the position is not essential for the activity of rat cystatin A.  相似文献   

10.
11.
We have isolated almost full-length cDNA clones corresponding to human erythrocyte membrane sialoglycoproteins alpha (glycophorin A) and delta (glycophorin B). The predicted amino acid sequence of delta differs at two amino acid residues from the sequence determined by peptide sequencing. The sialoglycoprotein delta clone we have isolated contains an interrupting sequence within the region that gives rise to the cleaved N-terminal leader sequence for the protein and represents a product that is unlikely to be inserted into the erythrocyte membrane. Comparison of the cDNA sequences of alpha and delta shows very strong homology at the DNA level within the coding regions. The two mRNA sequences are closely related and differ by a number of clearly defined insertions and deletions.  相似文献   

12.
We have previously characterized a 65-kilodalton protein (p65) as an interleukin 2 stimulated phosphoprotein in human T cells and showed that three endopeptide sequences of p65 are present in the sequence of l-plastin [Zu et al. (1990) Biochemistry 29, 1055-1062]. In this paper, we present the complete primary structure of p65 based on the cDNA isolated from a human T lymphocyte (KUT-2) cDNA library. Analysis of p65 sequences and the amino acid composition of cleaved p65 N-terminal peptide indicated that the deduced p65 amino acid sequence exactly coincides with that of l-plastin over the C-terminal 580 residues [Lin et al. (1988) Mol. Cell. Biol. 8, 4659-4668] and has a 57-residue extension at the N-terminus to l-plastin. Computer-assisted structural analysis revealed that p65 is a multidomain molecule involving at least three intriguing functional domains: two putative calcium-binding sites along the N-terminal 80 amino acid residues; a putative calmodulin-binding site following the calcium-binding region; and two tandem repeats of putative actin-binding domains in its middle and C-terminal parts, each containing approximately 240 amino acid residues. These results suggest that p65 belongs to actin-binding proteins.  相似文献   

13.
Region 2 of the Escherichia coli K5 capsule gene cluster contains four genes (kfiA through -D) which encode proteins involved in the synthesis of the K5 polysaccharide. A DNA fragment containing kfiD was amplified by PCR and cloned into the gene fusion vector pGEX-2T to generate a GST-KfiD fusion protein. The fusion protein was isolated from the cytoplasms of IPTG (isopropyl-beta-D-thiogalactopyranoside)-induced recombinant bacteria by affinity chromatography and cleaved with thrombin. The N-terminal amino acid sequence of the cleavage product KfiD' corresponded to the predicted amino acid sequence of KfiD with an N-terminal glycyl-seryl extension from the cleavage site of the fusion protein. Anti-KfiD antibodies obtained with KfiD' were used to isolate the intact KfiD protein from the cytoplasms of E. coli organisms overexpressing the kfiD gene. The fusion protein, its cleavage product (KfiD'), and overexpressed KfiD converted UDPGlc to UDPGlcA. The KfiD protein could thus be characterized as a UDPglucose dehydrogenase.  相似文献   

14.
Previous work has demonstrated that the large subunit (rbcL) of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo) from wheat is cleaved at Gly-329 by the Fe(2+)/ascorbate/H(2)O(2) system (Ishida, H., Makino, A., and Mae, T. (1999) J. Biol. Chem. 274, 5222-5226). In this study, we found that the rbcL could also be cleaved into several other fragments by increasing the incubation time or the Fe(2+) concentration. By combining immunoblotting with N-terminal amino acid sequencing, cleavage sites were identified at Gly-404, Gly-380, Gly-329, Ala-296, Asp-203, and Gly-122. Conformational analysis demonstrated that five of them are located in the alpha/beta-barrel, whereas Gly-122 is in the N-terminal domain but near the bound metal in the adjacent rbcL. All of these residues are at or very close to the active site and are just around the metal-binding site within a radius of 12 A. Furthermore, their C(alpha)H groups are completely or partially exposed to the bound metal. A radical scavenger, activation of RuBisCo, or binding of a reaction-intermediate analogue to the activated RuBisCo, inhibited the fragmentation. These results strongly suggest that the rbcL is cleaved by reactive oxygen species generated at the metal-binding site and that proximity and favorable orientation are probably the most important parameters in determining the cleavage sites.  相似文献   

15.
A cDNA encoding the viral protease from the 3C region of human rhinovirus type 14 was expressed in Escherichia coli through the use of a periplasmic secretion vector. The recombinant protease contained an eight amino acid N-terminal extension that enabled its detection by a specific antibody. It was expressed at a level of approximately 1 mg/L of E. coli culture. Biological activity of the protease was assessed in vitro by using a chemically synthesized peptide consisting of a consensus picornavirus protease cleavage site, Arg-Ala-Glu-Leu-Gln-Gly-Pro-Tyr-Asp-Glu. The peptide was cleaved by the recombinant protease at the Gln-Gly bond, generating the product peptides Arg-Ala-Glu-Leu-Gln and Gly-Pro-Tyr-Asp-Glu, which could be separated from the substrate peptide by reversed-phase HPLC. An in vitro assay for the rhinovirus 3C protease was developed by observing the rate of disappearance of the substrate peak from chromatograms of the supernatants of digestion mixtures.  相似文献   

16.
Amyloid-beta precursor protein (APP) was identified on expression cloning from a human placenta cDNA library as a gene product that modulates the activity of membrane-type matrix metalloproteinase-1 (MT1-MMP). Co-expression of MT1-MMP with APP in HEK293T cells induced cleavage and shedding of the APP ectodomain when co-expressed with APP adaptor protein Fe65. Among the MT-MMPs tested, MT3-MMP and MT5-MMP also caused efficient APP shedding. The recombinant APP protein was cleaved by MT3-MMP in vitro at the A463-M464, N579-M580, H622-S623, and H685-Q686 peptide bonds, which included a cleavage site within the amyloid beta peptide region known to produce a C-terminal fragment. The Swedish-type mutant of APP, which produces a high level of amyloid beta peptide, was more effectively cleaved by MT3-MMP than wild-type APP in both the presence and absence of Fe65; however, amyloid beta peptide production was not affected by MT3-MMP expression. Expression of MT3-MMP enhanced Fe65-dependent transactivation by APP fused to the Gal4 DNA-binding and transactivation domains. These results suggest that MT1-MMP, MT3-MMP and MT5-MMP should play an important role in the regulation of APP functions in tissues including the central nervous system.  相似文献   

17.
The RNA genome of tobacco etch virus (TEV) is organized as a single translational unit coding for a 346,000 (346 kd) mol. wt (Mr) polyprotein. The 346 kd Mr polyprotein is cleaved by a 49 kd Mr virus-encoded proteinase at five different sites between the dipeptides Gln-Ser or Gln-Gly. These cleavage sites or gene product boundaries are defined by the heptapeptide sequence...Glu-Xaa-Xaa-Tyr-Xaa-Gln-Ser or Gly.... We have used the 54 kd Mr nuclear inclusion protein/30 kd Mr capsid protein junction as a model to examine the role of these conserved amino acids in defining a cleavage site. The 54 kd/30 kd Mr protein cleavage site sequence of 10 TEV isolates from geographically distinct locations has been deduced. The conserved amino acids are present in all isolates. To determine if these four amino acids are an absolute requirement for polyprotein substrate activity, a site-directed mutational analysis has been performed. A recombinant cDNA molecule encoding the TEV 54 kd/30 kd Mr gene product cleavage site was mutated and polyprotein substrates were synthesized and processed in a cell-free system. Single amino acid substitutions made at the different positions reveal a strong preference for the naturally conserved amino acids.  相似文献   

18.
Legumain (asparaginyl endopeptidase) was purified to homogeneity from bovine kidneys. The molecular mass of the purified enzyme was calculated to be 34000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of beta-mercaptoethanol. The enzyme rapidly hydrolyzed the substrate Z-Ala-Ala-Asn-MCA and was strongly inhibited by N-ethylmaleimide, p-chloromercuribenzene-sulfonic acid, Hg(2+) and Cu(2+). The amino acid sequence of the first 26 residues of the enzyme was Gly-Gly-Lys-His-Trp-Val-Val-Ile-Val-Ala-Gly-Ser-Asn-Gly-Gln-Tyr-Asn-Tyr-Arg-His-Gln-Ala-Phe-Ala-Asp-His-. This sequence is highly homologous to the sequences in the N-terminal of pig kidney legumain. We screened a bovine kidney cortex cDNA library using a DNA probe that originated from rat legumain, and we determined the bovine kidney cDNA structure and deduced the amino acid sequence. The cDNA is composed 1934 bp and encodes 433 amino acids in the coding region. The enzyme was strongly stained in the proximal tubules of the rat kidney in an immunohistochemical study. Vitamin D-binding protein which is known to be a ligand to megalin existing in the proximal tubules, was cleaved in a limited proteolytic manner by bovine kidney legumain. These results suggested that legumain contributes to the processing of macromolecules absorbed by proximal tubule cells. The enzyme also cleaved an N-terminal synthetic peptide of bovine annexin II (Gly(24)-Ser-Val-Lys-Ala-Tyr-Thr(30)-Asn-Phe-Asp-Ala-Glu(35)-Arg-Asp(37)) at a position between Asn(31) and Phe(32). The amino-terminal domain of annexin II has p11 subunit binding sites and phosphorylation sites for both pp60(src) and protein kinase C. This suggests that legumain plays an important role in inactivation and degradation of annexin II, which is abundant in the receptor-recycling compartments of endosomes/lysosomes.  相似文献   

19.
The complete amino acid sequence of recombinant human Cu-Zn superoxide dismutase (CuZnSOD) is presented. The S-carboxymethylated protein was cleaved at lysine residues (with Achromobacter protease I) to provide a set of nine non-overlapping fragments accounting for 90% of the sequence. These fragments were then overlapped and aligned, and the sequence was completed by using peptides generated by cleavage at glutamic acid residues (with S. aureus V8 protease) and at arginine (with clostripain). The recombinant protein contains a single disulfide bond between cysteine residues 57 and 146. The primary sequence of recombinant human CuZnSOD is identical to that predicted by its cDNA sequence.  相似文献   

20.
Profilaggrin consists of multiple filaggrin domains joined by linker segments which are removed during proteolytic conversion to filaggrin. Analysis of tryptic peptides of filaggrin defined a 26-residue linker segment when aligned on the amino acid sequence of one repeat unit of mouse profilaggrin deduced from a cDNA sequence (Rothnagel, J. A., Mehrel, T., Idler, W. W., Roop, D. R., and Steinert, P. M. (1987) J. Biol. Chem. 262, 15643-15648). Two types of linker segments were distinguished by their different susceptibility to thermolysin and by the presence of a Phe-Tyr-Pro-Val sequence in only one type. These data led to a model of profilaggrin in which the two types of linker segments alternate along the length of profilaggrin. This model provides a structural basis for the two stages of proteolytic processing seen in vivo. In the first stage intermediates accumulate which have several filaggrin domains still joined by linker segments lacking Phe-Tyr-Pro-Val. In the second stage, the other linker segments are cleaved and mature filaggrin domains are released. Proteolytic activity with specificity consistent with first stage cleavage was partially purified from rat epidermis. Chymostatin inhibited both the in vitro enzymatic activity and the processing of profilaggrin in a cultured rat keratinocyte cell line. The products formed in vitro were 3-5 kDa larger than intermediates produced in vivo, suggesting that the linker segments are cleaved at one end only. This implies the existence of a third protease which completes the removal of the linker segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号