首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Monolayer cultures of fetal rat myocardial cells can be utilized to examine substrate preferences and interactions. The specific activity of glucose oxidation by myocardial cell cultures was high in sparse cultures but decreased with increased cell density. In contrast, palmitate oxidation was independent of initial cell density. Palmitate inhibited glucose oxidation by 50% in rat heart cultures. Glucose had only a slight sparing effect on palmitate oxidation. This suggests that fetal and newborn rat myocardial cells in culture preferentially oxidize palmitate similar to adult heart. The sparing effect of palmitate on glucose oxidation is accounted for by inhibition of the glycolytic-aerobic pathway and not by inhibition of the pentose phosphate pathway. Data on oxidation of 14C-pyruvate specifically labelled suggest that palmitate or a product of its oxidation such as acetyl-CoA may be acting directly to inhibit the pyruvate dehydrogenase complex. Palmitate oxidation per mg of cell protein was constant from 15 days gestational age to 2 days postnatal age. The observed differences between cultured cells and the intact heart may relate to decreased aerobic metabolism in monolayer cell culture and suggest that the increase in fatty acid oxidation observed in vivo is controlled by the oxygen environment of the cell. These studies show that heart cells in monolayer culture can be utilized to obtain metabolic information similar to an adult organ perfusion model.  相似文献   

3.
Erucic acid oxidation by beating heart cells in culture   总被引:2,自引:0,他引:2  
A Pinson  P Padieu 《FEBS letters》1974,39(1):88-90
  相似文献   

4.
Fatty acid oxidation and signaling in apoptosis   总被引:7,自引:0,他引:7  
Tang DG  La E  Kern J  Kehrer JP 《Biological chemistry》2002,383(3-4):425-442
It is well established that fatty acid metabolites of cyclooxygenase, lipoxygenase (LOX), and cytochrome P450 are implicated in essential aspects of cellular signaling including the induction of programmed cell death. Here we review the roles of enzymatic and non-enzymatic products of polyunsaturated fatty acids in controlling cell growth and apoptosis. Also, the spontaneous oxidation of polyunsaturated fatty acids yields reactive aldehydes and other products of lipid peroxidation that are potentially toxic to cells and may also signal apoptosis. Significant conflicting data in terms of the role of LOX enzymes are highlighted, prompting a re-evaluation of the relationship between LOX and prostate cancer cell survival. We include new data showing that LNCaP, PC3, and Du145 cells express much lower levels of 5-LOX mRNA and protein compared with normal prostate epithelial cells (NHP2) and primary prostate carcinoma cells (TP1). Although the 5-LOX activating protein inhibitor MK886 killed these cells, another 5-LOX inhibitor AA861 hardly showed any effect. These observations suggest that 5-LOX is unlikely to be a prostate cancer cell survival factor, implying that the mechanisms by which LOX inhibitors induce apoptosis are more complex than expected. This review also suggests several mechanisms involving peroxisome proliferator activated receptor activation, BCL proteins, thiol regulation, and mitochondrial and kinase signaling by which cell death may be produced in response to changes in non-esterified and non-protein bound fatty acid levels. Overall, this review provides a context within which the effects of fatty acids and fatty acid oxidation products on signal transduction pathways, particularly those involved in apoptosis, can be considered in terms of their overall importance relative to the much better studied protein or peptide signaling factors.  相似文献   

5.
A cyanide insensitive fatty acid oxidation system is detected in human liver and is shown to be localized in peroxisomes by subcellular fractionation in Metrizamide continuous density gradients. Fatty acyl-CoA oxidase, its characteristic enzyme, acts maximally on C12–C18 saturated fatty acids and on oleoyl-CoA and requires FAD. These results, together with the already established properties of the system in rat liver, support its potential contribution to lipid metabolism and to the hypolipidemic effect of Clofibrate and related drugs in humans.  相似文献   

6.
Fatty acid synthetase from cow mammary gland tissue cells   总被引:8,自引:0,他引:8  
  相似文献   

7.
8.
9.
Bone marrow (BM) harbors precursors (Pre-NK) to NK cells. Recently, we devised an in vitro culture system that induces differentiation of the presumptive BM Pre-NK cells into cytotoxic cells to YAC in the presence of rat concanavalin A (Con A) conditioned medium. We have now analyzed the antigenic phenotype of the effector cells, precursor cells, and the target specificity of these cytotoxic cells. The cytotoxic cells had antigenic profiles similar to endogenous NK cells with the exception of Lyt-2 antigen. They are strongly positive for Qa-5, Thy-1, and partially positive for NK-1, Ly-5, Ly-6, Ly-10, and AsGm-1 and Lyt-2 antigens. The Pre-NK or accessory cells are positive for Qa-5, Ly-10, and Ly-20 and partially positive for NK-1, Thy-1, and AsGm-1 antigens. These Qa-5+ NK cells do not exhibit cytotoxic activity to WEHI or P815. They could also be generated from BM of nude mice as well as beige mice. We concluded from these studies that rat Con A-conditioned medium contained factors that could differentiate Pre-NK cells to mature NK cells and that these cells are heterogeneous. This in vitro culture system is useful in delineating the ontogeny of NK cells.  相似文献   

10.
11.
12.
Inhibition of fatty acid synthase (FAS) induces apoptosis in human breast cancer cells in vitro and in vivo without toxicity to proliferating normal cells. We have previously shown that FAS inhibition causes a rapid increase in malonyl-CoA levels identifying malonyl-CoA as a potential trigger of apoptosis. In this study we further investigated the role of malonyl-CoA during FAS inhibition. We have found that: [i] inhibition of FAS with cerulenin causes carnitine palmitoyltransferase-1 (CPT-1) inhibition and fatty acid oxidation inhibition in MCF-7 human breast cancer cells likely mediated by elevation of malonyl-CoA; [ii] cerulenin cytotoxicity is due to the nonphysiological state of increased malonyl-CoA, decreased fatty acid oxidation, and decreased fatty acid synthesis; and [iii] the cytotoxic effect of cerulenin can be mimicked by simultaneous inhibition of CPT-1, with etomoxir, and fatty acid synthesis with TOFA, an acetyl-CoA carboxylase (ACC) inhibitor. This study identifies CPT-1 and ACC as two new potential targets for cancer chemotherapy.  相似文献   

13.
Immature rat Sertoli cells synthesize and secrete a protein species which has immunological similarity with chicken egg thiamin carrier protein (TCP) as assessed by immunocytochemical localization, liquid phase radioimmunoassay (RIA), immunoprecipitation of [35S]-methionine incorporated newly synthesized proteins by polyclonal antibodies (pAbs) to chicken TCP and tryptic peptide mapping of iodinated immunoprecipitated proteins. FSH and testosterone together bring about 4-fold induction of Sertoli cell TCP over the control levels which is inhibitable upto 75% by an aromatase inhibitor. Addition of optimal concentrations of exogenous estradiol-17beta to the cultures causes 2-fold enhancement of secretion of TCP which can significantly be inhibited by tamoxifen, when added along with estradiol-17beta. These results show that Sertoli cells produce estrogen-inducible TCP, presumably to transport the vitamin to the developing germ cells.  相似文献   

14.
15.
The goal of this study was to determine whether differences in physical activity-related fat oxidation exist between lean and obese African-American (LAA and OAA) and lean and obese Caucasian (LC and OC) premenopausal women. Lean AA (28.4 +/- 2.8 yr, n = 7), LC (24.7 +/- 1.8 yr, n = 9), OAA (30.9 +/- 2.2 yr, n = 11), and OC (34.1 +/- 2.5 yr, n = 9) women underwent preliminary assessment of peak aerobic capacity (VO2 peak). On a subsequent testing day, participants exercised after an 8-h fast on a cycle ergometer at 15 W (approximately 40% VO2 peak) for 10 min and then for 10 min at approximately 65% VO2 peak). Fatty acid oxidation was determined using the average respiratory exchange ratio and O2 consumption during minutes 5-9 of the exercise session. Percent body fat and fat-free mass were lower (P < 0.05) in LAA (25.8 +/- 2.8% and 48.3 kg) and LC (26.4 +/- 2.0% and 45.8 +/- 1.7 kg) than in OAA (41.2 +/- 1.3% and 58.8 +/- 3.3 kg) and OC (39.3 +/- 2.7% and 58.6 kg) women. Fat oxidation among the groups was analyzed statistically using analysis of covariance with fat-free mass and VO2 peak) as covariates. During exercise at 15 W, fat oxidation was as low in LAA (0.134 +/- 0.024 g/min) as in OAA (0.144 +/- 0.026 g/min) and OC (0.156 +/- 0.020 g/min) women: all these rates of fat oxidation were lower than in LC women (0.200 +/- 0.021 g/min, P < 0.05, LC vs. all other groups). Fatty acid oxidation during higher-intensity exercise (65% VO2 peak)) was higher in LC than in OC women but was not statistically different between African-American and Caucasian groups. Fatty acid oxidation was therefore lower during low-intensity physical activity in OAA, LAA, and OC than in LC women.  相似文献   

16.
Effectors of fatty acid synthesis in hepatoma tissue culture cells   总被引:1,自引:0,他引:1  
An investigation was undertaken to better understand the process of fatty acid synthesis in hepatoma tissue culture (HTC) cells. By comparing the findings to the normal liver some of the differences between normal and cancer tissue were defined. Incubation of the HTC cells in a buffered salt-defatted albumin medium showed that fatty acid synthesis was dependent upon the addition of substrate. The order of stimulation was glucose + pyruvate ~- glucose + alanine ~- glucose + lactate ~- pyruvate > glucose > alanine ? no additions. Fatty acid synthesis in HTC cells was decreased by oleate. In these respects HTC cells are similar to the liver; however, in contrast to the normal liver, N6, O2-dibutyryl cyclic adenosine 3′,5′-monophosphate (dibutyryl-cAMP) did not inhibit glycolysis or fatty acid synthesis. The cytoplasmic redox potential, as reflected by the lactate to pyruvate ratio, was found to be elevated compared to normal liver but unchanged by the addition of dibutyryl cAMP. Since higher rates of fatty acid synthesis are associated with lower lactate-to-pyruvate ratios in normal liver, it was expected that by decreasing the lactate-to-pyruvate ratio in HTC cells the rate of fatty acid synthesis would increase. One way to lower the lactate to pyruvate ratio is to increase the activity of the malate-aspartate shuttle. Stimulators of the hepatic malate-aspartate shuttle in normal liver (ammonium ion, glutamine, and lysine) had mixed effects on the redox state and fatty acid synthesis in HTC cells. Both ammonium ion and glutamine decreased the redox potential and increased the rate of fatty acid synthesis. Lysine was without effect on either process. Since NH4Cl and glutamine stimulate the movement of reducing equivalents into the mitochondria and decrease the redox potential, then the stimulation of fatty acid synthesis by NH4Cl and glutamine may be due to an increase in the movement of reducing equivalents into the mitochondria. However, if the shuttle were rate determining for fatty acid synthesis the rate from added lactate would be the same as from glucose alone but would be lower than from pyruvate which does not require the movement of reducing equivalents. This was not the case. Lactate and pyruvate gave comparable rates which were higher than glucose alone. Other possible sites of stimulation were investigated. The possibility that NH4+ and glutamine stimulated fatty acid synthesis by activating pyruvate dehydrogenase was excluded by finding that dichloroacetate, an activator of pyruvate dehydrogenase, did not stimulate fatty acid synthesis when glucose was added. Stimulation by NH4+ and glutamine at steps beyond pyruvate dehydrogenase was ruled out by the observation that NH4+ caused no stimulation from added pyruvate. NH4+ and glutamine did not alter the pentose phosphate pathway as determined by 14CO2 production from [1-14C]- or [6-14C]glucose. Ammonium ion and glutamine increased glucose consumption and increased lactate and pyruvate accumulation. The increased glycolysis in HTC cells appears to be the explanation for the stimulation of fatty acid synthesis by NH4+ and glutamine, even though glycolysis is much more rapid than fatty acid synthesis in these cells. The following observations support this conclusion. First, the percentage increase in glycolysis caused by NH4+ or glutamine is closely matched by the percentage increase in fatty acid synthesis. Second, the malate-aspartate shuttle, the pentose phosphate pathway, and the steps past pyruvate are not limiting in the absence of NH4+ or glutamine.  相似文献   

17.
The importance of fat oxidation and fatty acid synthesis were examined in rats fed approximately one half their ad libitum food intake for a period of 13 days followed by 7 days of ad libitum feeding (refed rats). This study was undertaken because previous reports demonstrated that refed rats rapidly accumulated body fat. Our results confirmed this observation: refed rats accrued body fat and body weight at rates that were approximately 3 times higher than controls. Evidence for a period of increased metabolic efficiency was demonstrated by measuring the net energy requirement for maintenance over the refeeding period: refed rats had a reduced metabolic rate during the period of energy restriction (approximately 30% lower than control) and this persisted up to 2 days after the reintroduction of ad libitum feeding. The major factor responsible for the rapid fat gain was a depressed rate of fatty acid oxidation. Calculations of protein and carbohydrate intake over the refeeding period showed that the simplest explanation for the decrease in fatty acid oxidation is fat sparing. This is possible because of the large increase in dietary carbohydrate and protein intake during the refeeding period when metabolic rates are still depressed. The increased carbohydrate and protein may adequately compensate for the increasing energy requirements of the ER rats over the refeeding period affording rats the luxury of storing the excess dietary fat energy.  相似文献   

18.
We have examined the potential role of fatty acid oxidation (FAO) in AMP‐activated protein kinase (AMPK)‐induced meiotic maturation. Etomoxir and malonyl CoA, two inhibitors of carnitine palmitoyl transferase‐1 (CPT1), and thus FAO, blocked meiotic induction in dbcAMP‐arrested cumulus cell‐enclosed oocytes (CEO) and denuded oocytes (DO) by the AMPK activator, AICAR. C75, an activator of CPT1 and FAO, stimulated meiotic resumption in CEO and DO. This effect was insensitive to the AMPK inhibitor, compound C, indicating an action downstream of AMPK. Palmitic acid or carnitine also promoted meiotic resumption in DO in the presence of AICAR. Since C75 also suppresses the activity of fatty acid synthase (FAS), we tested another FAS inhibitor, cerulenin. Cerulenin stimulated maturation in arrested oocytes, but to a lesser extent, exhibited significantly slower kinetics and was effective in CEO but not DO. Moreover, etomoxir completely blocked C75‐induced maturation but was ineffective in cerulenin‐treated oocytes, suggesting that the meiosis‐inducing action of C75 is through activation of FAO within the oocyte, while that of cerulenin is independent of FAO and acts within the cumulus cells. Finally, we determined that long chain, but not short chain, fatty acyl carnitine derivatives were stimulatory to oocyte maturation. Palmitoyl carnitine stimulated maturation in both CEO and DO, with rapid kinetics in DO; this effect was blocked by mercaptoacetate, a downstream inhibitor of FAO. These results indicate that activation of AMPK stimulates meiotic resumption in mouse oocytes by eliminating a block to FAO. Mol. Reprod. Dev. 76: 844–853, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号