首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purification of the osteoblast-like cells (2-3%) among the bone marrow cells (BMC) of C57BL/6 mice using a specific anti-osteoblast serum and a fluorescence-activated cell sorter is described. The antiserum was raised against osteoblast cells isolated from calvaria from neonatal mice. The majority of the cells of the osteoblast-enriched fraction from bone marrow showed a parathormone-induced increase in cyclic adenine monophosphate but no response to calcitonin. This is similar to the response of osteoblast cells obtained from the calvaria. Electron microscopic studies of the extracellular matrix of cultured osteoblast-like cells purified from bone marrow showed the deposition of apatite crystals within and in close apposition to the vesicles. These findings suggest that the isolated cell population was enriched in osteoblasts. Such a cell system from bone marrow might provide an experimental system for investigating the mechanism of bone formation.  相似文献   

2.
Cultural adherent human mononuclear cells produce factor(s) which stimulate the release of calcium from new-born mouse calvaria in organ culture. This stimulation of bone resorption is accompanied by an inhibition of the incorporation of [3H]proline into collagen which is independent of increased prostaglandin production by the bone. When human osteoblast-like cells are treated with conditioned medium from human mononuclear cells, collagen accounts for a decreased proportion of the protein synthesised. This effect on matrix synthesis is not accompanied by an inhibitory action of the monocyte-conditioned medium preparations on net cell proliferation. In human osteoblast-like cell cultures, partially purified human interleukin 1 also inhibits the production of the bone-specific protein osteocalcin in a dose-dependent fashion. These observations are consistent with the hypothesis that products of human monocytes similar to, or identical with, human interleukin 1 may be important regulators of bone metabolism and may contribute to the bone loss seen in diseases such as chronic rheumatoid arthritis.  相似文献   

3.
IL-6 is produced by osteoblasts and induces bone resorption   总被引:39,自引:0,他引:39  
To examine the possible involvement of IL-6 in bone metabolism, a mouse osteoblastic cell line (MC3T3-E1) and primary osteoblast-like cells from fetal mouse calvaria were cultured with several systemic and local bone-resorbing agents and their expression of IL-6 mRNA was determined. Local bone-resorbing agents such as IL-1 alpha, IL-1 beta, TNF-alpha, and LPS greatly induced IL-6 mRNA expression in both MC3T3-E1 cells and primary osteoblast-like cells. Parathyroid hormone slightly increased expression of IL-6 mRNA in primary osteoblast-like cells but not in MC3T3-E1 cells. Neither IL-6 nor 1 alpha,25-dihydroxyvitamin D3 increased expression of IL-6 mRNA in either of the osteoblast-like cells. In agreement with the expression of IL-6 mRNA, biologically active IL-6 was produced in response to the treatment with IL-1 alpha, TNF-alpha, and LPS in MC3T3-E1 cells. Adding IL-6 dose dependently stimulated the release of 45Ca from prelabeled fetal mouse calvaria. Simultaneously adding suboptimal concentrations of IL-6 and IL-1 alpha induced bone resorption cooperatively. In accord with the increase in the release of 45Ca by IL-6, there were three times as many osteoclasts in the bone sections of calvaria cultured with IL-6 for 5 days as in the controls. IL-6 slightly suppressed alkaline phosphatase activity and collagen synthesis in MC3T3-E1 cells. These results indicate that IL-6 is also produced by osteoblasts, preferentially in response to local bone-resorbing agents, and it induces bone resorption both alone and in concert with other bone-resorbing agents.  相似文献   

4.
Helodermin belongs to the VIP family of polypeptides. Recent in vivo data suggest that helodermin-like peptides might be involved in the regulation of calcium metabolism. We show that helodermin specifically binds to a secretin-type receptor in osteoblast-like cells from fetal rat calvaria and increases the basal and PTH-stimulated cAMP concentration of these cells. In organ cultures of fetal rat calvaria, helodermin strongly inhibits bone matrix apposition and augments PTH-induced bone resorption. Helodermin-like peptides may thus be capable of enhancing the direct effects of PTH on bone metabolism.  相似文献   

5.
We investigated the effects of stearic acid (saturated), oleic acid (monounsaturated), linoleic acid (n-6 polyunsaturated), and alpha-linolenic acid (n-3 polyunsaturated) on lipid metabolism in a hepatocyte-derived cell line, HepG2. HepG2 cells were cultured in medium supplemented with either stearic acid (0.1% w/v), oleic acid (0.1% v/v), linoleic acid (0.1% v/v), or alpha-linolenic acid (0.1% v/v). After 24 h, expression of lipid metabolism-associated genes was evaluated by real-time PCR. Alpha-linolenic acid showed a suppressive effect on the hepatic fatty acid de novo synthesis and fatty acid oxidation pathways, while linoleic acid also showed a tendency to suppress these pathways although the effect was weaker. Moreover, alpha-linolenic acid enhanced the expression of enzymes associated with reactive oxygen species (ROS) elimination. In contrast, oleic acid tended to promote fatty acid synthesis and oxidation. In conclusion, alpha-linolenic acid and linoleic acid may be expected to ameliorate hepatic steatosis by downregulating fatty acid de novo synthesis and fatty acid oxidation, and by upregulating ROS elimination enzymes. Oleic acid had no distinct effects for improving steatosis or oxidative stress.  相似文献   

6.
We studied the effect of PTH (10–100 nM) on transductive mechanisms (adenylate cyclase activity, Ca2+ metabolism, IP3 levels) in cell cultures derived from normal and otosclerotic human bone fragments. The cultured cells were osteoblast-like but with calcitonin-receptors still present and with PTH receptors coupled with the adenylate cyclase system. The results showed that PTH activated adenylate cyclase and increased the intracellular Ca2+ levels with qualitative and quantitative differences between the two cellular populations. In particular, otosclerotic cells responded less to hormone stimulation, which is in accord with the current hypothesis of a desensitization of the receptor/enzyme complex associated with the pathological status.  相似文献   

7.
1. The effects of two diphosphonates (compounds containing a P-C-P bond), disodium dichloromethanediphosphonate and disodium 1-hydroxyethane-1,1-diphosphonate, on the metabolism of cultured rat calvaria cells, rabbit ear cartilage cells and rat skin fibroblasts were investigated. 2. The diphosphonates had no effect on the growth of cartilage cells and on the exponential growth of the calvaria cells and the fibroblasts. However, dichloromethanediphosphonate stopped the growth of the calvaria cells and the fibroblasts after the beginning of confluence, whereas the untreated cells were still growing to a certain extent. This inhibition was dose-dependent. After the drug was withdrawn, the cells recovered slowly. 1-Hydroxyethane-1,1-diphosphonate had no detectable effect on the growth of any of the cell types studied. Both diphosphonates decreased the cloning efficiency of calvaria cells and fibroblasts. 3. The K+ content of cartilage, calvaria and skin cells was diminished only by the highest (0.25 mM) concentration of dichloromethanediphosphonate. 4. Radioactive dichloromethanediphosphonate and 1-hydroxyethane-1,1-diphosphonate were taken up linearly with time for at least 48 h by calvaria cells and fibroblasts. The diphosphonate concentration in the cells depended on its concentration in the medium. 5. Both diphosphonates, in a dose-dependent fashion, markedly inhibited glycolysis, dichloromethanediphosphonate being more effective than 1-hydroxyethane-1,1-diphosphonate, at drug doses that had no effect on cell growth or cellular K+ content. Calvaria cells were much more sensitive than cartilage cells. When cartilage cells were cultured in an N2 atmosphere, these effects on glucose and lactate metabolism disappeared. 6. As increased acid production appears to be associated with resorption of bone, this decrease in lactate may explain why diphosphonates are effective inhibitors of bone resorption in vivo.  相似文献   

8.
Palanivel R  Sweeney G 《FEBS letters》2005,579(22):5049-5054
Resistin has been proposed as a potential link between obesity and insulin resistance. It is also well established that altered metabolism of fatty acids by skeletal muscle can lead to insulin resistance and lipotoxicity. However, little is known about the effect of resistin on long chain fatty acid uptake and metabolism in skeletal muscle. Here we show that treating rat skeletal muscle cells with recombinant resistin (50 nM, 24 h) decreased uptake of palmitate. This correlated with reduced cell surface CD36 content and lower expression of FATP1, but no change in FATP4 or CD36 expression. We also found that resistin decreased fatty acid oxidation by measuring 14CO2 production from [1-14C] oleate and an increase in intracellular lipid accumulation was detected in response to resistin. Decreased AMPK and ACC phosphorylation were observed in response to resistin while expression of ACC and AMPK isoforms was unaltered. Resistin mediated these effects without altering cell viability. In summary, our results demonstrate that chronic incubation of skeletal muscle cells with resistin decreased fatty acid uptake and metabolism via a mechanism involving decreased cell surface CD36 content, FATP1 expression and a decrease in phosphorylation of AMPK and ACC.  相似文献   

9.
Reversed-phase liquid chromatography techniques have been used to extract and purify human parathyrin from parathyroid adenomas and to analyse the circulating forms of human parathyrin in plasma. Both the supernatant from tissue homogenates, and plasma were extracted with octadecylsilyl-silica (ODS-silica) in a batch procedure. Extracts were subjected to reversed-phase high-pressure liquid chromatography (h.p.l.c.) employing solvent systems composed of aqueous acetonitrile containing trifluoroacetic acid or heptafluorobutyric acid as hydrophobic ion-pairing reagents. The volatile solvents facilitated the radioimmunoassay, bioassay in vitro and amino acid analysis of column fractions and permitted monitoring for u.v. absorbance at 210nm. Isolated glandular parathyrin was found to be homogeneous by sodium dodecyl sulphate/urea/polyacrylamide-gel electrophoresis, to have an amino acid composition conforming to that of human parathyrin-(1--84)-tetraoctacontapeptide and to be bioactive in both renal adenylate cyclase and cytochemical bioassays. ODS-silica extraction permitted examination of large plasms samples by reversed-phase h.p.l.c., facilitating the resolution of the various circulating molecular forms of parathyrin according to their hydrophobic character. Because of its rapidity, excellent recovery and high resolving power, the methodology utilized is uniquely suited to the purification and analysis of parathyrin in tissues and body fluids.  相似文献   

10.
Despite the key role Ca2+ plays in the nervous system, biochemical actions on neural tissue of the Ca2+-regulating peptide hormones parathyrin and calcitonin were unknown. Until a few years ago only neurons, but not glial cells, were considered as targets for peptide hormones. Our recent observation that peptide hormones do indeed act on glial cells is extended by the present report that these cells respond to the calcaemic peptide hormones parathyrin and calcitonin. In cultured murine brain cells mainly consisting of glioblasts, parathyrin stimulates the accumulation of cyclic AMP. The half-maximal effect is elicited at 30 nM parathyrin. With rat brain cells the effects are three times those observed with mouse brain cells. Calcitonin, which is less potent than parathyrin, elevates the concentration of cyclic AMP only in rat brain cells. If properly occupied, the inhibitory receptors present on the cells lower the increase in the level of cyclic AMP evoked by parathyrin and, to some extent, that elicited by calcitonin. The results suggest that: (i) these or closely related hormones might exert regulatory functions in brain; and (ii) glial cells must be considered in discussions of the targets of the calcaemic and other peptide hormones.  相似文献   

11.
Studies in experimental animals and murine osteoblast cells in culture have produced conflicting findings on the effect of conjugated linoleic acid (CLA) on bone formation. The present study investigated the influence of CLA on viability and metabolism of two human osteoblast-like cell lines (SaOS2 and MG63). Both cell lines were exposed to increasing concentrations (0-50 microM) of CLA either as pure cis (c) 9: trans (t) 11 and t10:c12 CLA isomers or a blend of isomers, or linoleic acid (C18:2). Cell cytotoxicity and degree of DNA fragmentation were unaffected by any fatty acid treatment. PGE2 biosynthesis by both cell lines was variably reduced by CLA isomer blend and t10:c12 CLA, but not c9:t11 CLA. Alkaline phosphatase activity was variably increased by all CLA treatments. These results suggest a lack of cytotoxic effect of CLA on human osteoblast-like cells and tentatively suggest a possible beneficial effect on bone formation in humans.  相似文献   

12.
The effects of insulin and of two lipolytic hormones (epinephrine and ACTH1) on the rate and pattern of glucose metabolism were compared during incubation of isolated fat cells, obtained from epididymal fat pads of rats of varying age and degrees of adiposity. Glucose metabolism and the intracellular free fatty acid levels were expressed on a per cell basis and in relation to adipocyte size. The data for total glucose metabolism show that, in contrast to the declining insulin effect observed with adipocyte enlargement, the stimulation of glucose uptake and metabolism by these lipolytic hormones was significantly greater in the larger fat cells from the older fatter rats than in the smaller ones from the younger leaner rats. Lipolytic hormones suppressed, whereas insulin enhanced, fatty acid synthesis; moreover the lipolytic hormones stiumlated glucose ce effect of epinephrine on the intracellular free fatty acid levels was greater in the small fat cells than in the large ones; this effect of epinephrine was markedly curtained by the presence of glucose in the incubation medium, making it unlikely that acceleration of glucose metabolism by the lipolytic stimulus was mediated by an elevation of the intracellular free fatty acid level. The present results show a markedly enhanced capacity of the large adipocytes to accelerate glucose metabolism in response to these liplytic hormones. Thus, in contrast to prevailing notions of declining hormonal responsiveness with expanding fat cell size in older and more obese animals, this study documents an instance of increased hormonal response in enlarged adipocytes and points to the need for a more comprehensive reevaluation of the various hormonal effects in adipocytes of different size.  相似文献   

13.
Melatonin promotes osteoblast differentiation and bone formation.   总被引:10,自引:0,他引:10  
  相似文献   

14.
Successful stem cell therapy requires the optimal proliferation, engraftment, and differentiation of stem cells into the desired cell lineage of tissues. However, stem cell therapy clinical trials to date have had limited success, suggesting that a better understanding of stem cell biology is needed. This includes a better understanding of stem cell energy metabolism because of the importance of energy metabolism in stem cell proliferation and differentiation. We report here the first direct evidence that human bone marrow mesenchymal stem cell (BMMSC) energy metabolism is highly glycolytic with low rates of mitochondrial oxidative metabolism. The contribution of glycolysis to ATP production is greater than 97% in undifferentiated BMMSCs, while glucose and fatty acid oxidation combined only contribute 3% of ATP production. We also assessed the effect of physiological levels of fatty acids on human BMMSC survival and energy metabolism. We found that the saturated fatty acid palmitate induces BMMSC apoptosis and decreases proliferation, an effect prevented by the unsaturated fatty acid oleate. Interestingly, chronic exposure of human BMMSCs to physiological levels of palmitate (for 24 hr) reduces palmitate oxidation rates. This decrease in palmitate oxidation is prevented by chronic exposure of the BMMSCs to oleate. These results suggest that reducing saturated fatty acid oxidation can decrease human BMMSC proliferation and cause cell death. These results also suggest that saturated fatty acids may be involved in the long-term impairment of BMMSC survival in vivo.  相似文献   

15.
1. Intact cells, cell fragments (membranes) and matrix vesicles were isolated from the proliferating and calcifying layers of epiphyseal cartilage by sequential hyaluronidase and collagenase digestion and differential centrifugation. Lipids were extracted and analyzed for various lipid classes and their fatty acid composition by column, thin-layer, paper and gas-liquid chromatography. 2. On a protein basis the isolated matrix vesicles had more total lipid than either the membrane or cell fractions, the vesicles and membranes being richer in non-polar lipids and containing smaller quantities of phospholipids than whole cells. Expressed as a percentage of the total lipid, the cells were richer in triacylglycerols and lower in free fatty acids than in the membrane or vesicle fractions. The proportion of free cholesterol and the cholesterol/phospholipid ratio were nearly twice as high in the matrix vesicles as in the other tissue fractions. Choline and ethanolamine phosphoglycerides progressively declined in the membrane and matrix vesicle fractions, whereas serine phosphoglycerides and sphinogomyelin increased. Non-phosphorus-containing polar lipids were present in all fractions, the vesicles being richer in polyhexosyl ceramides, cerebrosides, glycosyldiacylglycerols and certain uncharacterized acidic polar lipids. 3. Fatty acid patterns of the matrix vesicles were distinctive from those of isolated cells, being generally richer in 18 : 0 and 18 : 2, and lower in 16 : 1 and 18 : 1 fatty acids. Monoacyl forms were similarly increased in 16 : 0 and/or 18 : 0, and reduced in 16 : 1, 18 : 1 or 20 : 2 fatty acids, depending on the lipid class. The fatty acid composition of diphosphatidylglycerol from cells and matrix vesicles was markedly different, providing evidence that the cardiolipin in the vesicles was not from mitochondrial components. 4. Based on the fact that the matrix vesicles were significantly enriched in free cholesterol, sphingomyelin, glycolipids and serine-phosphoglycerides, it is concluded that they are derived from the plasma membrane of the cell, supporting earlier conclusions based upon morphological and enzymological evidence.  相似文献   

16.
To determine whether a system of ectopic bone formation induced by osteosarcoma-derived bone-inducing substance (bone morphogenetic protein-4) can be used as a model of developing bone at the molecular level, we studied the expression of bone-related protein mRNAs in the process of ectopic bone formation using non-radioisotopic in situ hybridization. Osteonectin mRNA was detected in fibroblast-like cells, which are similar to periosteal cells from the early to middle stages of bone development. The proportion of osteonectin mRNA-expressing cells was greater than that of osteopontin mRNA-expressing cells in hypertrophic chondrocytes and osteoblast-like cells. In contrast, osteopontin mRNA was localized in a limited population of hypertrophic chondrocytes, a single layer of osteoblast-like cells adjacent to the bone trabeculae in the middle stage of bone formation, and in a limited subset of osteocytes in the late stage. A strong osteocalcin mRNA signal was detected in osteoblast-like cells from the middle to late stages and in a limited subset of osteocytes in the late stage of bone development. Since the sequential gene expression pattern of bone-related proteins in the present system is comparable to that in embryonic osteogenesis, this system may be useful as a model for studying gene expression in osteogenesis.  相似文献   

17.
The development of the chick embryonic calvarium, an intramembranous bone, is characterized by direct differentiation of cranial ectomesenchymal cells into osteoblasts without the formation of a cartilage anlage. Collagen biosynthesis remains predominantly as type I in the calvaria. However, in severely calcium-deficient chick embryos maintained in shell-less (SL) culture, cartilage-specific type II collagen is synthesized by the calvaria. Immunohistochemistry localized the cells expressing type II collagen to undermineralized regions of the SL bone. In this study, collagen gene expression in bones of normal (N) and calcium-deficient SL chick embryos was examined at Incubation Day 14 by in situ cDNA-mRNA hybridization. A critical step in the procedure, which used biotinylated cDNA probes, was the selection of fixation conditions which maximized RNA retention and maintenance of tissue morphology. Tissues fixed in modified Carnoy's fixative (58% ethanol, 30% choloroform, 10% acetic acid, 2% formaldehyde) for 2-4 hr at -20 degrees C sectioned well and retained their cell morphology and cytoplasmic RNA. Other treatments important for the procedure included demineralization in 0.25 M HCl and removal of matrix by hyaluronidase digestion. In situ hybridization with type-specific collagen cDNA probes revealed that type II collagen mRNA was present in cells throughout the SL calvaria. More importantly, cells with type II collagen mRNA were also present in N calvaria which do not synthesize the protein. The overall abundance of type II-positive cells in N calvaria was not significantly different from that in SL calvaria, but their distribution throughout the bones differed. In general, the regional distribution of type II cells was inversely correlated with the extent of matrix mineralization. In the N calvaria, cells containing collagen type II mRNA were absent in the extensively mineralized superior zone, but were found in the temporal zone which showed limited mineralization. On the other hand, in the SL calvaria, which were substantially undermineralized overall, cells with type II mRNA were found throughout the tissue. Interestingly, the overall ratio of type I cells to type II cells was approximately 50% higher in N calvaria. These findings suggest that collagen type mRNA expression in the chick embryonic calvarium is correlated with, and perhaps dependent on, the extent of tissue matrix mineralization.  相似文献   

18.
Angiopoietin‐like protein (ANGPTL) 4 is a key factor in the regulation of lipid and glucose metabolism in metabolic diseases. ANGPTL4 is highly expressed in various cancers, but the regulation of energy metabolism in tumours remains to be determined. This study explored the role of ANGPTL4 in aerobic glycolysis, glutamine consumption and fatty acid oxidation in nonsmall cell lung cancer (NSCLC) cells. Two NSCLC cell lines (A549 and H1299) were used to investigate the role of ANGPTL4 in energy metabolism by tracer techniques and with Seahorse XF technology in ANGPTLs4 knockdown cells. RNA microarrays and specific inhibitors were used to identify targets in ANGPTLs4‐overexpressing cells. The results showed that knockdown of ANGPTLs4 could inhibit energy metabolism and proliferation in NSCLC. ANGPTLs4 had no significant effect on glycolysis but affected glutamine consumption and fatty acid oxidation. Knockdown of ANGPTLs4 also significantly inhibited tumour metastasis and energy metabolism in mice and had a weak effect on glycolysis. RNA microarray analysis showed that ANGPTLs4 significantly affected glutaminase (GLS) and carnitine palmitoyl transferase 1 (CPT1). ANGPTLs4‐overexpressing cells were exposed to a glutamine deprivation environment, and cell proliferation and energy metabolism were significantly decreased but still differed from normal NSCLC cells. Treatment of ANGPTLs4‐overexpressing cells with GLS and CPT1 inhibitors simultaneously prevented the regulatory effects on cell proliferation and energy metabolism. ANGPTLs4 could promote glutamine consumption and fatty acid oxidation but not glycolysis or accelerate energy metabolism in NSCLC.  相似文献   

19.
《BBA》2020,1861(12):148300
Alteration in metabolic repertoire is associated with resistance phenotype. Although a common phenotype, not much efforts have been undertaken to design effective strategies to target the metabolic drift in cancerous cells with drug resistant properties. Here, we identified that drug resistant AML cell line HL-60/MX2 did not follow classical Warburg effect, instead these cells exhibited drastically low levels of aerobic glycolysis. Biochemical analysis confirmed reduced glucose consumption and lactic acid production by resistant population with no differences in glutamine consumption. Raman spectroscopy revealed increased lipid and cytochrome content in resistant cells which were also visualized as lipid droplets by Raman mapping, electron microscopy and lipid specific staining. Gene set enrichment analysis data from sensitive and resistant cell lines revealed significant enrichment of lipid metabolic pathways in HL-60/MX2 cells. Further, HL-60/MX2 possessed higher mitochondrial activity and increased OXPHOS suggesting the role of fatty acid metabolism as energy source which was confirmed by increased rate of fatty acid oxidation. Accordingly, OXPHOS inhibitor increased sensitivity of resistant cells to chemotherapeutic drug and fatty acid oxidation inhibitor Etomoxir reduced colony formation ability of resistant cells demonstrating the requirement of fatty acid metabolism and dependency on OXPHOS by resistant leukemic cells for survival and tumorigenicity.  相似文献   

20.
The effects of unsaturated fatty acid deprivation on lipid synthesis in Saccharomyces cerevisiae strain GL7 were determined by following the incorporation of [14C]acetate. Compared to yeast cells grown with oleic acid, unsaturated fatty acid-deprived cells contained 200 times as much 14C label in squalene, with correspondingly less label in 2,3-oxidosqualene and 2,3;22,23-dioxidosqualene. Cells deprived of either methionine or cholesterol did not accumulate squalene, demonstrating that the effect of unsaturated fatty acid starvation on squalene oxidation was not due to an inhibition of cell growth. Cells deprived of olefinic supplements displayed additional changes in lipid metabolism: (i) an increase in 14C-labeled diacylglycerides, (ii) a decrease in 14C-labeled triacylglycerides, and (iii) increased levels of 14C-labeled decanoic and dodecanoic fatty acids. The changes in squalene oxidation and acylglyceride metabolism in unsaturated fatty acid-deprived cells were readily reversed by adding oleic acid. Pulse-chase studies demonstrated that the [14C]squalene and 14C-labeled diacylglycerides which accumulated during starvation were further metabolized when cells were resupplemented with oleic acid. These results demonstrate that unsaturated fatty acids are essential for normal lipid metabolism in yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号