首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The persistence and degradation of isoxathion 14C-labeled at the 5-position of the isoxazole ring were studied in three soil types under laboratory conditions. Persistence was influenced by soil type and moisture content; approx. half life at 30 ppmw dose level varied from 15 to 40 days in nonflooded models. In a flooded model isoxathion disappeared much faster. Isoxathion underwent biodegradation to a number of products with concomitant release of 14CO2. 3-Hydroxy-5-phenylisoxazole, 5-phenyl-4-oxazolin-2-one, benzoylacetamide and benzoic acid were the unequivocally identified metabolites; oxon derivative of isoxathion, 3-methoxy-5-phenylisoxazole, 2-methyl-5-phenyl-4-isoxazolin-3-one, 2-acetyl-5-phenyl-4-isoxazolin-3-one, 2, 5-diphenylpyrazine and acetophenone were tentatively identified as the minor products. None of these major products was persistent in soils. 3-Hydroxy-5-phenylisoxazole, the initial metabolite or hydrolyzate of isoxathion, was adsorbed to soil to a much greater extent than isoxathion, which explains the rapid disappearance of its fungicidal activity in soil.  相似文献   

2.
Four bacterial strains that use picric acid as their sole carbon and energy source were isolated. Mineralization of14C-UL-picric acid showed that up to 65% of the radioactivity was released as14CO2. HPLC and UV/Vis spectral analyses indicated complete degradation of picric acid by these organisms. HPLC and LC/MS analyses showed transient formation of 2,4-dinitrophenol during picric acid degradation. Degradation of picric acid was concomitant with stoichiometric release of three moles of nitrite per mole of picric acid. The four picric acid degraders were identified as close relatives ofNocardioides simplex (ATCC 6946) based on their small subunit (16S) rRNA gene sequences.This is contribution 7167 from Central Research & Development, Dupont Co, Wilmington, DE 19880, USA  相似文献   

3.
The disappearance of the organophosphorus insecticide, malathion, from a silt loam soil and from its organic and inorganic components was examined. Half-lives and the time taken for 90% decomposition in nonsterile, sodium azide-treated, and 2.5 Mrad-irradiated soils were similar (3/4–1 1/2 days and 4–6 days, respectively) but breakdown in autoclaved soils was negligible. Decay in nonsterile sand, silt, and clay minus organic matter fractions was 3–6 times slower than that recorded in the original soil. Breakdown of malathion in the clay plus organic matter fraction (organo-mineral complex) was rapid (half-life, 1 day), as was the case in the separated organic matter (half-life, 1 3/4 days). Filter-sterilized organic matter was not as effective in catalyzing the breakdown of malathion (half-life, 4 days), and no loss occurred from any of the autoclaved components. Irradiation doses of 2.5 and 5.0 Mrad had little influence on the ability of soil to degrade malathion. Thereafter, increases up to 20 Mrad had a more drastic, though far from totally inhibitory, effect. Our results suggest that either the colloidal organic matter itself, or a fraction associated with it, is the most important single factor concerned with the rapid breakdown of malathion in the soil studied. Direct microbial metabolism is a slower process and may have a significant role in malathion disappearance in coarsetextured soils low in colloidal organic matter. The catalytic component of the organic matter is suggested to be a stable exoenzyme and is supportive of reports by other workers. The quantitative effect of organo-mineral complex (containing the active degradative ingredient) additions to sand and silt fractions on the rate of subsequent malathion decay is also described.  相似文献   

4.
The potential of granular sludge from upflow anaerobic sludge blanket (UASB) reactors for bioremediation of chlorinated pollutants was evaluated by using carbon tetrachloride (CT) as a model compound. Granular sludges cultivated in UASB reactors on methanol, a volatile fatty acid mixture, or sucrose readily degraded CT supplied at a concentration of 1,500 nmol/batch (approximately 10 μM) without any prior exposure to organohalogens. The maximum degradation rate was 1.9 μmol of CT g of volatile suspended solids−1 day−1. The main end products of CT degradation were CO2 and Cl, and the yields of these end products were 44 and 68%, respectively, of the initial amounts of [14C]CT and CT-Cl. Lower chlorinated methanes accumulated in minor amounts temporarily. Autoclaved (dead) sludges were capable of degrading CT at rates two- to threefold lower than those for living sludges, indicating that abiotic processes (mediated by cofactors or other sludge components) played an important role in the degradation observed. Reduced components in the autoclaved sludge were vital for CT degradation. A major part (51%) of the CT was converted abiotically to CS2. The amount of CO2 produced (23%) was lower and the amount of Cl produced (86%) was slightly higher with autoclaved sludge than with living sludge. Both living and autoclaved sludges could degrade chloroform. However, only living sludge degraded dichloromethane and methylchloride. These results indicate that reductive dehalogenation, which was mediated better by living sludge than by autoclaved sludge, is only a minor pathway for CT degradation. The main pathway involves substitutive and oxidative dechlorination reactions that lead to the formation of CO2. Granular sludge, therefore, has outstanding potential for gratuitous dechlorination of CT to safe end products.  相似文献   

5.
[Carbonyl-14C] methabenzthiazuron (MBT) was applied to an arid region soil at a rate of 5mg kg−1 soil to give a14C content of 2400 KB kg−1 soil. After 15 weeks of incubation at 22°C and 50% of the maximum water holding capacity of the soil, 7.2% of the applied14C was mineralized to14CO2. Where the soil was amended with wheat straw, total mineralization increased to 17.3%. Soil disturbance caused a significant increase while chloroform fumigation caused a significant decrease in the rate of14CO2 production, both from amended and unamended soils. These results suggest that MBT is degraded mainly through microbial co-metabolism. Wheat straw amendment resulted in increased transformation of MBT into soil humus. In unamended soil, a major portion of14C was recovered in fulvic acid and in fractions extracted with organic solvents. Recovery of14C in non-extractable bound residues (humins) increased as incubation progressed and seemed to be derived from the fulvic acid fraction, which showed a concomitant decrease. More than 99% of the residual14C in unamended soil consisted of unaltered MBT; the remainder occurred as 1-methyl-1 (benzthiazolyl) urea. In amended soil, a relatively higher percentage of the extractable14C was found in the metabolite. Small amounts of three unidentified14C-labelled compounds were also observed. In amended soil, disturbance caused a decrease in extractable-14C whereas fumigation caused a significant increase, as compared to the untreated control. The effects were more pronounced when the soils were reated at an early stage of incubation. In general, soil disturbance increased the availability of MBT for further transformations while chloroform fumigation decreased the process.  相似文献   

6.
Summary Most of the washed conidia ofFusarium oxysporum f.melonis introduced into either autoclaved or naturally infested soils disappeared after 30 days incubation at temperatures between 5 and 30°C, but more rapid decline in population took place at the higher temperatures and in naturally infested soil. The population of f.melonis after 14 months incubation was greatest at 15 and lowest at 5°C in both autoclaved and nonautoclaved soils. The survival units were chlamydospores associated with the previously invaded organic particles. This association is considered to be an important factor in the organism's survival in soil.  相似文献   

7.
The degradation of aldicarb, and the metabolites aldicarb sulfoxide and aldicarb sulfone, was evaluated in cotton field soils previously exposed to aldicarb. A loss of efficacy had been observed in two (LM and MS) of the three (CL) field soils as measured by R. reniformis population development and a lack of cotton yield response. Two soils were compared for the first test—one where aldicarb had been effective (CL) and the second where aldicarb had lost its efficacy (LM). The second test included all three soils: autoclaved, non-autoclaved and treated with aldicarb at 0.59 kg a.i./ha, or not treated with aldicarb. The degradation of aldicarb to aldicarb sulfoxide and then to aldicarb sulfone was measured using high-performance liquid chromatography (HPLC) in both tests. In test one, total degradation of aldicarb and its metabolites occurred within 12 days in the LM soil. Aldicarb sulfoxide and aldicarb sulfone were both present in the CL soil at the conclusion of the test at 42 days after aldicarb application. Autoclaving the LM and MS soils extended the persistence of the aldicarb metabolites as compared to the same soils not autoclaved. The rate of degradation was not changed when the CL natural soil was autoclaved. The accelerated degradation was due to more rapid degradation of aldicarb sulfoxide and appears to be biologically mediated.  相似文献   

8.
14CO2 was applied repeatedly at 3- to 6-h intervals toKalanchoë daigremontiana leaves during continuous light of differing irradiances. The circadian rhythm in net CO2 uptake in gasexchange measurements and its disappearance at high irradiances was confirmed by oscillating rates of14CO2 incorporation. At 10–30 W m-2 a markedly circadian oscillation in the14CO2-uptake rate was measured; with increasing energy fluence rate the oscillation levelled off at a constant high uptake rate. The labelling patterns obtained during the 10 min of14CO2 fixation indicated that the rhythm of CO2 exchange is the consequence of a rhythmic behaviour in the C4 pathway of CO2 fixation. During the mininum of14CO2 uptake no C4 products were labelled; however, substantial amounts of label were transferred to C4 products during the peaks of14CO2 uptake. Metabolism of C3 and C4 products was also studied in pulsechase experiments at different points of the circadian cycle. In bright light (100 W m-2), when the14CO2 uptake was constantly high, the transfer of label into C4 products (malic acid) was high in spite of the fact that the malate pool is known to be reduced to a permanently low level under these conditions. This led us to the conclusion that it is not the capacity of the phosphoenolpyruvatecarboxylase-mediated CO2 fixation but rather the storage of malic acid in the vacuole that is disturbed under bright-light conditions when the circadian oscillation levelled off.Abbreviations CAM Crassulacean acid metabolism - LL continuous light - PEP phosphoenolpyruvate  相似文献   

9.
The metabolism of 14C-labeled 1-nitropyrene in microcosms containing nonsterile estuarine sediments, and in cultures of a Mycobacterium sp. previously isolated from oil-contaminated sediments was investigated. Although mineralization of 1-nitropyrene by pure cultures of the Mycobacterium sp. totaled only 12.3% after 10 days of incubation, over 80% of the ethyl acetate extractable 14C-labeled compounds consisted of 1-nitropyrene metabolites. High pressure liquid chromatographic analysis of 1-nitropyrene degradation products indicated that two major metabolites were formed. They were identified as 1-nitropyrene cis-9,10-and 4,5-dihydrodiols, based on their UV-visible, mass and NMR spectra. Time course studies in microcosms showed that 1-nitropyrene was degraded slowly under aerobic and anaerobic conditions in estuarine sediments. Less than 1% had been converted to 14CO2 after 8 weeks of aerobic incubation. The addition of 1-nitropyrene to anaerobic sediments resulted in no 14CO2 evolution; however, the nitro group of 1-nitropyrene was reduced to form 1-aminopyrene. Although the mineralization of 1-nitropyrene in sediments was slow, the Mycobacterium sp. metabolized 1-nitropyrene in pure culture. This bacterium appears promising for the bioremediation of this ubiquitous pollutant in contaminated waste.Abbreviations DEP Direct exposure probe - HPLC high pressure liquid chromatography - GC/MS gas chromatography/mass spectrometry - Nitro-PAHS nitropolycyclic aromatic hydrocarbons - TLC thin-layer chromatography - UV ultraviolet  相似文献   

10.
A stable methanogenic mixed culture was enriched from an industrial environment to utilize chloroacetate as sole carbon and energy source for growth. It immobilized spontaneously on activated charcoal and grew reproducibly on this carrier in a fluidized bed reactor when supplied with an anaerobic mineral salts medium. Substrate disappearance was complete. Methane, CO2 and chloride ions were conclusively identified as the metabolic products and quantified. The growth yield from chloroacetate was about 1 g of protein/mol of carbon. The calculated degradation rate in the fluidized bed reactor was 0.2 to 0.8 mmol/l·h. The first metabolic intermediate from [2–13C]monochloroacetate in portions of biofilm-coated carrier was shown by 13C-NMR to be glycolate, from which 13CO2 and 13CH4 were formed. Glycolate was formed in an oxygen-insensitive hydrolysis, but its conversion to CO2 and CH4 was strictly anaerobic and sensitive to inhibition by bromoethanesulfonate. Degradation of [1-14C]-and [2-14C]-chloroacetate each yielded the same amount of [14C]-methane. We thus presume glycolate to be cleaved to CO2 and H2, which were the substrates for methanogenesis. Dehalogenation was limited to chlorobromo-, iodo- and dichloroacetate. These four compounds and glycolate were utilized as the sole carbon and energy sources by the methanogenic mixed culture.  相似文献   

11.
ABSTRACT

Sugarcane top-derived biochar was added to an alluvial soil, a moist soil and a paddy soil at the rate of 0.2% and 0.5% (w/w). After the addition of 0.2% and 0.5% biochar, the sorption coefficients (Kd) of atrazine (Ce = 10 mg L?1) were increased by 26.97% and 79.58%, respectively, in the moist soil with a low level of total organic carbon (TOC), while it increased by 31.43% and 60.06%, respectively, in the paddy soil with a high TOC content. The half-time persistence values of atrazine in the alluvial soil, moist soil and paddy soil were 28.18, 23.74 and 39.84 d, respectively. In the 0.2% biochar amended soils, the corresponding half-times of atrazine for the alluvial soil, moist soil and paddy soil were extended by 10.33, 11.81 and 1.42 d, and they were prolonged by 16.83, 17.52 and 14.74 d, respectively, in the 0.5% biochar amended soils. Atrazine degradation products (deisopropylatrazine and desethylatrazine) decreased after they accumulated to 3.2 and 1 mg kg?1, respectively. Generally, increasing sorption was accompanied by decreasing degradation of atrazine which is found in biochar-amended soils.  相似文献   

12.
Anaerobic granules developed for the treatment of pentachlorophenol (PCP) completely minearilized14C-labeled PCP to14CH4 and14CO2. Release of chloride ions from PCP was performed by live cells in the granules under anaerobic conditions. No chloride ions were released under aerobic conditions or by autoclaved cells. Addition of sulfate enhanced the initial chloride release rate and accelerated the process of mineralization of14C-labeled PCP. Addition of molybdate (10 mM) inhibited the chloride release rate and severely inhibited PCP mineralization. This suggests involvement of sulfate-reducing bacteria in PCP dechlorination and mineralization. Addition of 2-bromoethane sulfonate slightly decreased the chloride release rate and completely stopped production of14CH4 and14CO2 from [14C]PCP. 2,4,6-trichlorophenol was observed as an intermediate during PCP dechlorination. On the basis of experimental results, dechlorination of 2,4,6-trichlorophanol by the granules was conducted through 2,4-dichlorophenol, 4-chlorophenol or 2-chlorophenol to phenol at pH 7.0–7.2.  相似文献   

13.
Soil properties impact pesticide persistence. Because these characteristics operate together in situ, identification of their clustered associations can help explain pesticide fate. Factor analysis was used to reduce the dimensionality of soil characteristics by grouping them into clustered independent factors, which were then related to the mineralization of atrazine and selected degradation intermediates. A Sharpsburg silty clay loam, Ortello sandy loam, and Hord silt loam were inoculated with a Hord soil that had a high capacity for atrazine mineralization. The soils were spiked with 14C-radiolabeled atrazine, deethylatrazine, hydroxyatrazine, N-isopropylammeline, N-isopropylammelide or cyanuric acid and sampled during incubation for 80 d (atrazine) or 40 d (degradation intermediates) at 22°C. Low mineralization in uninoculated soils demonstrated that the absence of atrazine-mineralizing microorganisms was most limiting. In inoculated soils, regression analysis indicated mineralization of atrazine (R2 = 0.88) and its degradation intermediates (R2 ≥ 0.89) was related to factors associated with bioavailability and microbial activity. For atrazine, this relationship indicated mineralization may be positively influenced by higher pH and available phosphorus, lower NO3-N, organic carbon and clay contents, and lower adsorption. Our results show how factor analysis can be used in conjunction with multiple regression to determine mineralization potential and thus help identify soils with limited degradation capacities and possible long-term persistence.  相似文献   

14.
Tracer Analysis of Methanogenesis in Salt Marsh Soils   总被引:11,自引:10,他引:1       下载免费PDF全文
Differences in paths of carbon flow have been found in soils of the tall (TS) and short (SS) Spartina alterniflora marshes of Sapelo Island, Ga. Gaseous end products of [U-14C]glucose metabolism were 14CO2 and 14CH4 in the SS region and primarily 14CO2 in the TS region. Sulfate concentration did not demonstrably affect glucose catabolism or the distribution of end products in either zone. [U-14C]acetate was converted to 14CO2 and 14CH4 in the SS soils and almost exclusively to 14CO2 in the TS soils. Sulfate concentration did not affect acetate metabolism in the SS soils; however, a noticeable effect of sulfate dilution was seen in TS soils. Sulfate dilution in TS samples resulted in increased methane formation. Total glucose and acetate metabolism were similar in TS and SS soils despite differences in end products. A microbial community characterized by fermentative/sulfate-reducing processes has developed in TS soils as opposed to the fermentative/methanogenic/sulfate-reducing community found in SS soils.  相似文献   

15.
Comamonas terrigena, strain N3H, which was isolated from soil polluted with crude oil products, degraded dioctyl sulphosuccinate, a synthetic commercial surfactant. The primary degradation of this compound, the cleavage of ester bonds between octyl groups and sulphosuccinate, lasted significantly shorter time than the subsequent breakdown of the sulphosuccinate moiety of dioctyl sulpho[2,3-14C]succinate. 14CO2 evolution had a significant shorter lag period with cells in Tris/phosphate medium, without inorganic sulphate and adapted to surfactant, than unadapted cells. The acceleration of the primary degradation by adapted cells also suggest that some enzymes involved in surfactant degradation are inducible. The bacterium may be useful for bioremediation.  相似文献   

16.
Batch experiments were carried out to investigate the stoichiometry and kinetics of microbial degradation of toluene under denitrifying conditions. The inoculum originated from a mixture of sludges from sewage treatment plants with alternating nitrification and denitrification. The culture was able to degrade toluene under anaerobic conditions in the presence of nitrate, nitrite, nitric oxide, or nitrous oxide. No degradation occurred in the absence of Noxides. The culture was also able to use oxygen, but ferric iron could not be used as an electron acceptor. In experiments with14C-labeled toluene, 34%±8% of the carbon was incorporated into the biomass, while 53%±10% was recovered as14CO2, and 6%±2% remained in the medium as nonvolatile water soluble products. The average consumption of nitrate in experiments, where all the reduced nitrate was recovered as nitrite, was 1.3±0.2 mg of nitrate-N per mg of toluene. This nitrate reduction accounted for 70% of the electrons donated during the oxidation of toluene. When nitrate was reduced to nitrogen gas, the consumption was 0.7±0.2 mg per mg of toluene, accounting for 97% of the donated electrons. Since the ammonia concentration decreased during degradation, dissimilatory reduction of nitrate to ammonia was not the reductive process. The degradation of toluene was modelled by classical Monod kinetics. The maximum specific rate of degradation, k, was estimated to be 0.71 mg toluene per mg of protein per hour, and the Monod saturation constant, K s , to be 0.2 mg toluene/l. The maximum specific growth rate, max , was estimated to be 0.1 per hour, and the yield coefficient, Y, was 0.14 mg protein per mg toluene.Abbreviations NVWP Non Volatile Water-soluble Products  相似文献   

17.
The biotransformation of toluene, benzene and naphthalene was examined in anaerobic sediment columns. Five columns filled with a mixture of sediments were operated in the presence of bicarbonate, sulfate, iron, manganese, or nitrate as electron acceptor. The columns were continuously percolated with a mixture of the three organic compounds (individual concentrations 25–200 M) at 20°C.Toluene was transformed readily (within 1 to 2 months) under all redox conditions tested. Benzene was recalcitrant over the test period of 375–525 days in all five columns. Naphthalene was partly transformed in the column with nitrate or manganese as electron acceptor present; the addition of benzoate had a positive effect in the column with nitrate. In the column with sulfate, the majority of the added naphthalene disappeared. No effect was observed after adding and omitting an easier degradable substrate. [14C]naphthalene was used to confirm this disappearance to be the result of degradation; two third of the naphthalene was converted to CO2.  相似文献   

18.
Rhizosphere soil contains important sources of nutrients for microorganisms resulting in high number of microorganisms capable of degrading various types of chemicals in the soil. Thus, this study investigated a carbofuran dissipation in rhizosphere soils of 6 weeds namely, umbrella sedge (Cyperus iria L.), fuzzy flatsedge (C. pilosus V.), small flower umbrella plant (C. difformis L.), tall-fringe-rush hoorah grass (Fimbristylis miliacea V.), cover fern (Marsilea crenata P.), and water primrose (Jussiaea linifolia V.). Rhizosphere soil of fuzzy flatsedge showed the shortest half-life (t1/2) of carbofuran (15 days) among other soils. So, it was selected to be used in the bioaugmentation experiment using carbofuran degrader namely Burkholderia cepacia, PCL3, as inoculum in order to examine whether they would improve carbofuran degradation in soil. The results showed that the addition of PCL3 into rhizosphere soil did not improve carbofuran degradation suggesting that microorganisms in rhizosphere soil might be capable enough to remove carbofuran from soil. The number of carbofuran degraders in the rhizosphere soils was greater than in bulk soil 10–100 times which might be responsible to a rapid degradation of carbofuran in rhizosphere soils without the addition of PCL3. The ability of PCL3 to degrade carbofuran was evident in bulk soil (t1/2 of 12 days) and autoclaved soils (t1/2 13–14 days) when compared to soils without an inoculation (t1/2 of 58 days) indicated that the addition of a degrader was useful in improving carbofuran degradation in soil.  相似文献   

19.
Fate of 14C-chlorpyrifos was studied in a model rice ecosystem. The level of 14C-residues in floodwater showed initially a rapid decline in first 10 days. These residues were observed till 30 days. The insecticide residues in soil did not show any appreciable build-up, thereby indicating that the residue levels of this insecticide may not be significant. Extractable residues were formed up to 10–13% of the applied 14C-activity during the period of 136 days, while the bound fraction of 14C-residues reached a maximum of 2.9% after 92 days. Algae and rice plants showed 14C-residues to the extent of only 0.01% of the applied 14C-activity. Rice grains did not show any residues at all. These results indicate that chlorpyrifos undergoes considerable degradation in rice soils and does not leave residues, which may be of environmental concern.  相似文献   

20.
Lignin biodegradation in a variety of natural materials was examined using specifically labeled synthetic 14C-lignins. Natural materials included soils, sediments, silage, steer bedding, and rumen contents. Both aerobic and anaerobic incubations were used. No 14C-labeled lignin biodegradation to labeled gaseous products under anaerobic conditions was observed. Aerobic 14C-labeled lignin mineralization varied with respect to type of natural material used, site, soil type and horizon, and temperature. The greatest observed degradation occurred in a soil from Yellowstone National Park and amounted to over 42% conversion of total radioactivity to 14CO2 during 78 days of incubation. Amounts of 14C-labeled lignin mineralization in Wisconsin soils and sediments were significantly correlated with organic carbon, organic nitrogen, nitrate nitrogen, exchangeable calcium, and exchangeable potassium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号