首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
5-Ethylphenazine-poly(ethylene glycol)-NAD+ conjugate (EP+-PEG-NAD+) was prepared by linking 1-(3-carboxypropyloxy)-5-ethylphenazine (I) to poly(ethylene glycol)-bound NAD+ (PEG-NAD+) and its kinetic properties were studied. As a reference compound, poly(ethylene glycol)-bound 5-ethylphenazine derivative (III) was also prepared and the effects of poly(ethylene glycol) on the reaction rate of the 5-ethylphenazine moiety with NADH was investigated. The second-order rate constant, k1, of the reaction of III with NADH is 2.78 mM-1 s-1 and is about 1.7 times that of 1-(3-ethoxycarbonylpropyloxy)-5-ethylphenazine (II) with NADH. A similar effect of the attached poly(ethylene glycol) was observed for the reaction of PEG-NADH with I or II. The second-order rate constants, k2 and k3, of the reactions of the reduced form of III with oxygen and with 3-(4',5'-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium ion, respectively, were k2 = 1.22 mM-1 s-1 and k3 = 32 mM-1 s-1; the k2 value is not changed but the k3 value is decreased by the attachment of the polymer. EP+-PEG-NAD+ works as a unique catalyst having an intramolecular reaction step within its turnover cycle in a coupled multi-step reaction system containing malate dehydrogenase, malate, EP+-PEG-NAD+, a tetrazolium salt and oxygen. The first-order rate constant, k4, of the intramolecular reaction was 1.1 s-1. The effects of the covalent linking of the 5-ethylphenazine and the NAD+ moieties were estimated by comparing the value of k4 with that of k1 for the reaction of III with NADH; the effective concentration of the NADH moiety for the 5-ethylphenazine moiety on the same EP+-PEG-NADH molecule (or vice versa) was calculated to be 0.40 mM from the ratio of k4/k1. The values of the rate constants in the coupled multi-step reaction system enable us to understand the dynamic features of the system and the characteristics of EP+-PEG-NAD+ as a catalyst are discussed.  相似文献   

2.
The effects of redox potential and electric charge on the rate of electron-transfer reaction by a two-electron process were investigated. For electron donors, beta-NADH, beta-NADPH and alpha-NADH were used; they have similar structures but different charges and different redox potentials. For electron acceptors, the following 5-ethylphenazine derivatives were used: 1-(3-carboxypropyloxy)-5-ethylphenazine, 1-(3-ethoxycarbonylpropyloxy)-5-ethylphenazine, and 1-[N-(2-aminoethyl)carbamoylpropyloxy]-5-ethylphenazine. They have similar structures and different charges. Using these donors and acceptors, the potential and the charge effects were estimated separately. In the potential effect, a linear free energy relationship was observed for the change in the redox potential of the donor with a Br?nsted slope of about unity. On the other hand, the slope for the change in the potential of the acceptor was about 0.5. These results show that the potential effect due to electron donors is different from that due to electron acceptors. A linear relationship was also observed between activation free energy and electrostatic force (or potential). The redox potential effect and the electrostatic effect are independent and additive. New theory for the mechanism of electron-transfer reactions is needed to explain these results.  相似文献   

3.
Single-chain urokinase-type plasminogen activator (scu-PA) is converted to urokinase by hydrolysis of the Lys158-Ile159 peptide bond. Site-directed mutagenesis of Lys158 to Gly or Glu yields plasmin-resistant mutants with a 10-20-fold reduced catalytic efficiency for the activation of plasminogen [Nelles et al. (1987) J. Biol. Chem. 262, 5682-5689]. In the present study, we have further evaluated the enzymatic properties of derivatives of recombinant scu-PA (rscu-PA), produced by site-directed mutagenesis of Lys158, Ile159 or Ile160, in order to obtain additional information on the structure/function relations underlying the enzymatic properties of the single- and two-chain u-PA moieties. [Arg158]rscu-PA (rscu-PA with Lys158 substituted with Arg) appeared to be indistinguishable from wild-type rscu-PA with respect to plasminogen-activating potential (catalytic efficiency k2/Km = 0.21 mM-1 s-1 versus 0.64 mM-1 s-1), conversion to active two-chain urokinase by plasmin (k2/Km = 0.13 microM-1 s-1 versus 0.28 microM-1 s-1), as well as its specific activity (48,000 IU/mg as compared to 60,000 IU/mg) and its fibrinolytic potential in a plasma medium (50% lysis in 2 h with 2.8 micrograms/ml versus 2.1 micrograms/ml). [Pro159]rscu-PA (Ile159 substituted with Pro) and [Gly159]rscu-PA (Ile159 converted to Gly) are virtually inactive towards plasminogen (k2/Km less than 0.004 mM-1 s-1). They are however converted to inactive two-chain derivatives by plasmin following cleavage of the Arg156-Phe157 peptide bond in [Pro159]rscu-PA and of the Lys158-Gly159 peptide bond in [Gly159]rscu-PA. [Gly158,Lys160]rscu-PA (with Lys158 converted to Gly and Ile160 to Lys) has a low catalytic efficiency towards plasminogen both as a single-chain form (k2/Km = 0.012 mM-1 s-1) and as the two-chain derivative (k2/Km = 0.13 mM-1 s-1) generated by cleavage of both the Arg156-Phe157 and/or the Lys160-Gly161 peptide bonds by plasmin. These findings suggest that the enzymatic properties of rscu-PA are critically dependent on the amino acids in position 158 (requirement for Arg or Lys) and position 159 (requirement for Ile). Conversion of the basic amino acid in position 158 results in a 10-20-fold reduction of the catalytic efficiency of the single-chain molecule but yields a fully active two-chain derivative. The presence of Ile in position 159 is not only a primary determinant for the activity of the two-chain derivative, but also of the single-chain precursor. Cleavage of the Arg156-Phe157 or the Lys160-Gly161 peptide bonds by plasmin yields inactive two-chain derivatives.  相似文献   

4.
G Wang  M Kawai 《Biophysical journal》1996,71(3):1450-1461
The elementary steps surrounding the nucleotide binding step in the cross-bridge cycle were investigated with sinusoidal analysis in rabbit soleus slow-twitch muscle fibers. The single-fiber preparations were activated at pCa 4.40, ionic strength 180 mM, 20 degrees C, and the effects of MgATP (S) and MgADP (D) concentrations on three exponential processes B, C, and D were studied. Our results demonstrate that all apparent (measured) rate constants increased and saturated hyperbolically as the MgATP concentration was increased. These results are consistent with the following cross-bridge scheme: [cross-bridge scheme: see text] where A = actin, M = myosin, S = MgATP, and D = MgADP. AM+S is a collision complex, and AM*S is its isomerized form. From our studies, we obtained K0 = 18 +/- 4 mM-1 (MgADP association constant, N = 7, average +/- sem), K1a = 1.2 +/- 0.3 mM-1 (MgATP association constant, N = 8 hereafter), k1b = 90 +/- 20 s-1 (rate constant of ATP isomerization), k-1b = 100 +/- 9 s-1 (rate constant of reverse isomerization), K1b = 1.0 +/- 0.2 (equilibrium constant of isomerization), k2 = 21 +/- 3 s-1 (rate constant of cross-bridge detachment), k-2 = 14.1 +/- 1.0 s-1 (rate constant of reversal of detachment), and K2 = 1.6 +/- 0.3 (equilibrium constant of detachment). K0 is 8 times and K1a is 2.2 times those in rabbit psoas, indicating that nucleotides bind to cross-bridges more tightly in soleus slow-twitch muscle fibers than in psoas fast-twitch muscle fibers. These results indicate that cross-bridges of slow-twitch fibers are more resistant to ATP depletion than those of fast-twitch fibers. The rate constants of ATP isomerization and cross-bridge detachment steps are, in general, one-tenth to one-thirtieth of those in psoas.  相似文献   

5.
B Durham  L P Pan  J E Long  F Millett 《Biochemistry》1989,28(21):8659-8665
Cytochrome c derivatives labeled at specific lysine amino groups with ruthenium bis(bipyridine) dicarboxybipyridine [RuII(bpy)2(dcbpy)] were prepared by using the procedure described previously [Pan, L. P., Durham, B., Wolinska, J., & Millett, F. (1988) Biochemistry 27, 7180-7184]. Four additional singly labeled derivatives were purified, bringing the total number to 10. These derivatives have a strong luminescence emission centered at 662 nm arising from the excited state, RuII*. Transient absorption spectroscopy was used to directly measure the rate constants for the photoinduced electron-transfer reaction from RuII* to the ferric heme group (k1) and for the thermal back-reaction from the ferrous heme group to RuIII (k2). The rate constants were found to be k1 = 14 X 10(6) s-1 and k2 = 24 X 10(6) s-1 for the derivative modified at lysine 72, which has a distance of 8-16 A between the ruthenium and heme groups. Similar rate constants were found for the derivatives modified at lysines 13 and 27, which have distances of 6-12 A separating the ruthenium and heme groups. The rate constants were significantly slower for the derivatives modified at lysine 25 (k1 = 1 X 10(6) s-1, k2 = 1.5 X 10(6) s-1) and lysine 7 (k1 = 0.3 X 10(6) s-1, k2 = 0.5 X 10(6) s-1), which have distances of 9-16 A. Transients due to photoinduced electron transfer could not be detected for the remaining derivatives, which have larger distances between the ruthenium and heme groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The mechanism of kinesin ATPase has been investigated by transient state kinetic analysis. The results satisfy the scheme [formula: see text] where T, D, and P(i) refer to nucleotide tri- and diphosphate and inorganic phosphate, respectively. The nucleotide-binding steps were measured by the fluorescence enhancement of mant (2'-(3')-O-(N-methylanthraniloyl)-ATP and mant-ADP. The initial rapid equilibrium binding steps (1) and (6) are followed by isomerizations (k2 = 170 +/- 30 s-1 at 20 degrees C, k-5 greater than 100 s-1). The increase in fluorescence is 20-25% larger for K.T** than K.D*. The rate constant of the hydrolysis step k3 is 6-7 s-1. The fluorescence decreases after formation of K.T** at a rate of 7-10 s-1. This change could occur in step 3 or in step 4 if k4 much greater than k3. The value of k4 is larger than 0.1 s-1. The steady state rate is 0.003 s-1 which agrees with the rate of ADP dissociation (k5). Step 5 is rate limiting in the scheme in agreement with the conclusion of Hackney (Hackney, D. D. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 6314-6318) that ADP dissociation is the rate-limiting step.  相似文献   

7.
The force-generation and phosphate-release steps of the cross-bridge cycle in rabbit soleus slow-twitch muscle fibers (STF) were investigated using sinusoidal analysis, and the results were compared with those of rabbit psoas fast-twitch fibers (FTF). Single fiber preparations were activated at pCa 4.40 and ionic strength 180 mM at 20 degrees C. The effects of inorganic phosphate (Pi) concentrations on three exponential processes, B, C, and D, were studied. Results are consistent with the following cross-bridge scheme: [formula: see text] where A is actin, M is myosin, D is MgADP, and P is inorganic phosphate. The values determined are k4 = 5.7 +/- 0.5 s-1 (rate constant of isomerization step, N = 9, mean +/- SE), k-4 = 4.5 +/- 0.5 s-1 (rate constant of reverse isomerization), K4 = 1.37 +/- 0.13 (equilibrium constant of the isomerization), and K5 = 0.18 +/- 0.01 mM-1 (Pi association constant). The isomerization step (k4) in soleus STF is 20 times slower, and its reversal (k-4) is 20 times slower than psoas fibers. Consequently, the equilibrium constant of the isomerization step (K4) is the same in these two types of fibers. The Pi association constant (K5) is slightly higher in STF than in FTF, indicating that Pi binds to cross-bridges slightly more tightly in STF than FTF. By correlating the cross-bridge distribution with isometric tension, it was confirmed that force is generated during the isomerization (step 4) of the AMDP state and before Pi release in soleus STF.  相似文献   

8.
M R Rejante  I J Byeon  M Llinás 《Biochemistry》1991,30(46):11081-11092
The ligand specificity of the human plasminogen kringle 4 was characterized in terms of ligand size, aromatic/aliphatic character, and ionic charge distribution. The binding of the following ligands was investigated via 1H NMR spectroscopy, and their equilibrium association constants (Ka) were determined: (1) p-aminomethylbenzoic acid (Ka approximately 4.8 mM-1), (2) benzylamine (Ka approximately 0.2 mM-1), (3) l-aminohexane (Ka approximately 0.07 mM-1), (4) 7-aminoheptanoic acid (Ka approximately 6.6 mM-1), (5) 5-aminopentanoic acid (Ka approximately 16 mM-1), (6) N alpha-acetyl-L-arginine (Ka approximately 0.3 mM-1), and (7) N alpha-acetyl-L-arginine methyl ester (Ka approximately 0.08 mM-1). Benzamidine and L-arginine do not bind measurably to kringle 4. We have also established that 1-hexanoic acid and 4-methylbenzoic acid do not interact significantly with kringle 4 (Ka less than 0.05 mM-1). The Trp62 resonances were found to be quite sensitive to aromatic ligands as well as to aliphatic ligand length. Phe64 is similarly sensitive to the ligand aromatic/aliphatic character and chain length and to the identity of the ligand anionic group. His31 and His33 do not respond significantly to variations in ligand structure, although they are perturbed by aromatic and aliphatic effectors. The perturbations induced by the arginine derivatives on these residues show that these compounds interact with the lysine-binding site (LBS) of kringle 4. The LBS was further characterized using 2D NMR studies of a kringle 4/trans-(aminomethyl)cyclohexanecarboxylic acid (AMCHA) complex. A complete assignment of the AMCHA spectrum in the bound state was achieved. This enabled the unambiguous identification of intermolecular contact points between the central AMCHA protons and Trp62 and Trp72. A model based on the X-ray crystallographic structure of kringle 4, incorporating these constraints, has been derived.  相似文献   

9.
A Gengenbach  S Syn  X Wang  Y Lu 《Biochemistry》1999,38(35):11425-11432
Trp191Phe and Trp51Phe mutations have been introduced into an engineered cytochrome c peroxidase (CcP) containing a Mn(II)-binding site reported previously (MnCcP; see Yeung, B. K.-S., et al. (1997) Chem. Biol. 5, 215-221). The goal of the present study is to elucidate the role of tryptophans in peroxidase activity since CcP contains both Trp51 and Trp191 while manganese peroxidase (MnP) contains phenylalanine residues at the corresponding positions. The presence of Trp191 in CcP allows formation of a unique high-valent intermediate containing a ferryl oxo and tryptophan radical called compound I'. The absence of a tryptophan residue at this position in MnP is the main reason for the formation of an intermediate called compound I which contains a ferryl oxo and porphyrin pi-cation radical. In this study, we showed that introduction of the Trp191Phe mutation to MnCcP did not improve MnP activity (specific activity: MnCcP, 0.750 micromol min-1 mg-1; MnCcP(W191F), 0.560 micromol min-1 mg-1. k(cat)/K(m): MnCcP, 0.0517 s-1 mM-1; MnCcP(W191F), 0.0568 s-1 mM-1) despite the fact that introduction of the same mutation to WTCcP caused the formation of a transient compound I (decay rate, 60 s-1). However, introducing both the Trp191Phe and Trp51Phe mutations not only resulted in a longer lived compound I in WTCcP (decay rate, 18 s-1), but also significantly improved MnP activity in MnCcP (MnCcP(W51F, W191F): specific activity, 8.0 micromol min-1 mg-1; k(cat)/K(m), 0. 599 s-1 mM-1). The increase in activity can be attributed to the Trp51Phe mutation since MnCcP(W51F) showed significantly increased MnP activity relative to MnCcP (specific activity, 3.2 micromol min-1 mg-1; k(cat)/K(m), 0.325 s-1 mM-1). As with MnP, the activity of MnCcP(W51F, W191F) was found to increase with decreasing pH. Our results demonstrate that, while the Trp191Phe and Trp51Phe mutations both play important roles in stabilizing compound I, only the Trp51Phe mutation contributes significantly to increasing the MnP activity because this mutation increases the reactivity of compound II, whose oxidation of Mn(II) is the rate-determining step in the reaction mechanism.  相似文献   

10.
C Carles  B Ribadeau-Dumas 《Biochemistry》1984,23(26):6839-6843
The first steps of proteolysis of bovine beta-casein by chymosin were studied quantitatively by using reverse-phase high-performance liquid chromatography (RP-HPLC). Although chymosin has a broad specificity, it has been possible to selectively study the hydrolysis of two bonds (Ala-189-Phe-190 and Leu-192-Tyr-193) by choosing appropriate conditions. The disappearance of the substrate and the appearance of the reaction products as a function of time were followed at 220 nm by RP-HPLC. For concentrations where beta-casein was in a micellar form, the Michaelian parameters corresponding to the cleavage of bond 192-193 were determined by measuring initial rates of reaction at different substrate concentrations in a time period for which splitting of bond 189-190 was negligible. The following results were obtained; k1cat = 1.54 s-1, K1m = 0.075 mM, and k1cat/K1m = 20.6 mM-1 s-1. Under conditions where the protein was in a monomeric state, the following parameters were determined for the splitting of bond 192-193 by integrating the Michaelis equation: k2cat = 0.056 s-1, K2m = 0.007 mM, and k2cat/K2m = 79.7 mM-1 s-1. Under the latter conditions the four enzymic reactions involved in the cleavage of bonds 189-190 and 192-193 were first-order reactions. The four corresponding apparent rate constants were calculated by using a computer program. Excellent agreement was obtained between concentrations of four molecular species measured during the reaction period and those calculated by using the four apparent rate constants.  相似文献   

11.
The active site structures of human Q31 granzyme A, murine granzymes (A, B, C, D, E, and F), and human granzymes (A, B, and 3) isolated from cytotoxic T lymphocytes (CTL) were studied with peptide thioester substrates, peptide chloromethyl ketone, and isocoumarin inhibitors. Human Q31, murine, and human granzyme A hydrolyzed Arg- or Lys-containing thioesters very efficiently with kcat/KM of 10(4)-10(5) M-1 s-1. Murine granzyme B was found to have Asp-ase activity and hydrolyzed Boc-Ala-Ala-Asp-SBzl with a kcat/KM value of 2.3 X 10(5) M-1 s-1. The rate was accelerated 1.4-fold when the 0.05 M NaCl in the assay was replaced with CaCl2. The preparation of granzyme B also had significant activity toward Boc-Ala-Ala-AA-SBzl substrates, where AA was Asn, Met, or Ser [kcat/KM = (4-5) X 10(4) M-1 s-1]. Murine granzymes C, D, and E did not hydrolyze any thioester substrate but contained minor contaminating activity toward Arg- or Lys-containing thioesters. Murine granzyme F had small activity toward Suc-Phe-Leu-Phe-SBzl, along with some contaminating trypsin-like activity. Human Q31 granzyme A, murine, and human granzyme A were inhibited quite efficiently by mechanism-based isocoumarin inhibitors substituted with basic groups (guanidino or isothiureidopropoxy). Although the general serine protease inhibitor 3,4-dichloroisocoumarin (DCI) inactivated these tryptases poorly, it was the best isocoumarin inhibitor for murine granzyme B (kobs/[I] = 3700-4200 M-1 s-1). Murine and human granzyme B were also inhibited by Boc-Ala-Ala-Asp-CH2Cl; however, the inhibition was less potent than that with DCI. DCI, 3-(3-amino-propoxy)-4-chloroisocoumarin, 4-chloro-3-(3-isothiureidopropoxy)isocoumarin, and 7-amino-4-chloro-3-(3-isothiureidopropoxy)isocoumarin inhibited Q31 cytotoxic T lymphocyte mediated lysis of human JY lymphoblasts (ED50 = 0.5-5.0 microM).  相似文献   

12.
U B Goli  R E Galardy 《Biochemistry》1986,25(22):7136-7142
Five phosphorus-containing inhibitors of angiotensin converting enzyme were found to exhibit slow, tight-binding kinetics by using furanacryloyl-L-phenylalanylglycylglycine as substrate at pH 7.50 and T = 25 degrees C. Two of the inhibitors, (O-ethylphospho)-Ala-Pro (2) and (O-isopropylphospho)-Ala-Pro (3), are found to follow at minimum a two-step mechanism of binding (mechanism B) to the enzyme. This mechanism consists of an initial fast formation of a weaker enzyme-inhibitor complex (Ki = 130 nM for 2 and 180 nM for 3) followed by a slow reversible isomerization to a tighter complex with measurable forward (K3) and reverse (k4) rate constants (k3 = 4.5 X 10(-2) s-1 for 2 and 5.4 X 10(-2) s-1 for 3; k4 = 9.2 X 10(-3) s-1 for 2 and 3.5 X 10(-3) s-1 for 3). For the remaining three inhibitors, phospho-Ala-Pro (1), (O-benzyl-phospho)-Ala-Pro (4), and (P-phenethylphosphono)-Ala-Pro (5), a one-step binding mechanism (mechanism A) is observed under the conditions of the experiment. The second-order rate constants k1 (M-1 s-1) for the binding of these inhibitors to converting enzyme are found to have values more than 3 orders of magnitude lower than the diffusion-controlled limit for a bimolecular reaction involving the enzyme, viz., 3.9 X 10(5) for 1, 2.2 X 10(5) for 4, and 4.8 X 10(5) for 5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Pseudomonas putida strain G7 cis-1,2-dihydro-1, 2-dihydroxynaphthalene dehydrogenase (NahB) and Comamonas testosteroni strain B-356 cis-2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) were found to be catalytically active towards cis-2,3-dihydro-2,3-dihydroxybiphenyl (specificity factors of 501 and 5850 s-1 mM-1 respectively), cis-1,2-dihydro-1, 2-dihydroxynaphthalene (specificity factors of 204 and 193 s-1 mM-1 respectively) and 3,4-dihydro-3,4-dihydroxy-2,2',5, 5'-tetrachlorobiphenyl (specificity factors of 1.6 and 4.9 s-1 mM-1 respectively). A key finding in this work is the capacity of strain B-356 BphB as well as Burkholderia cepacia strain LB400 BphB to catalyze dehydrogenation of 3,4-dihydro-3,4-dihydroxy-2,2',5, 5'-tetrachlorobiphenyl which is the metabolite resulting from the catalytic meta-para hydroxylation of 2,2',5,5'-tetrachlorobiphenyl by LB400 biphenyl dioxygenase.  相似文献   

14.
The elementary steps of contraction in rabbit fast twitch muscle fibers were investigated with particular emphasis on the mechanism of phosphate (Pi) binding/release, the mechanism of force generation, and the relation between them. We monitor the rate constant 2 pi b of a macroscopic exponential process (B) by imposing sinusoidal length oscillations. We find that the plot of 2 pi b vs. Pi concentration is curved. From this observation we infer that Pi released is a two step phenomenon: an isomerization followed by the actual Pi release. Our results fit well to the kinetic scheme: [formula: see text] where A = actin, M = myosin, S = MgATP (substrate), D = MgADP, P = phosphate, and Det is a composite of all the detached and weakly attached states. For our data to be consistent with this scheme, it is also necessary that step 4 (isomerization) is observed in process (B). By fitting this scheme to our data, we obtained the following kinetic constants: k4 = 56 s-1, k-4 = 129 s-1, and K5 = 0.069 mM-1, assuming that K2 = 4.9. Experiments were performed at pCa 4.82, pH 7.00, MgATP 5 mM, free ATP 5 mM, ionic strength 200 mM in K propionate medium, and at 20 degrees C. Based on these kinetic constants, we calculated the probability of each cross-bridge state as a function of Pi, and correlated this with the isometric tension. Our results indicate that all attached cross-bridges support equal amount of tension. From this, we infer that the force is generated at step 4. Detailed balance indicates that 50-65% of the free energy available from ATP hydrolysis is transformed to work at this step. For our data to be consistent with the above scheme, step 6 must be the slowest step of the cross-bridge cycle (the rate limiting step). Further, AM*D is a distinctly different state from the AMD state that is formed by adding D to the bathing solution. From our earlier ATP hydrolysis data, we estimated k6 to be 9 s-1.  相似文献   

15.
Four new bromoacetamido pyrimidine nucleosides have been synthesized and are affinity labels for the active site of bovine pancreatic ribonuclease A (RNase A). All bind reversibly to the enzyme and react covalently with it, resulting in inactivation. The binding constants Kb and the first-order decomposition rate constants k3 have been determined for each derivative. They are the following: 3'-(bromoacetamido)-3'-deoxyuridine, Kb = 0.062 M, k3 = 3.3 X 10(-4) s-1; 2'-(bromoacetamido)-2'-deoxyxylofuranosyluracil, Kb = 0.18 M, k3 = 1700 X 10(-4) s-1; 3'-(bromoacetamido)-3'-deoxyarabinofuranosyluracil, Kb = 0.038 M, k3 = 6.6 X 10(-4) s-1; and 3'-(bromoacetamido)-3'-deoxythymidine, Kb = 0.094 M, k3 = 2.7 X 10(-4) s-1. 3'-(Bromoacetamido)-3'-deoxyuridine reacts exclusively with the histidine-119 residue, giving 70% of a monoalkylated product substituted at N-1, 14% of a monoalkylated derivative substituted at N-3, and 16% of a dialkylated species substituted at both N-1 and N-3. Both 2'-(bromoacetamido)-2'-deoxyxylofuranosyluracil and 3'-(bromoacetamido)-3'-deoxyarabinofuranosyluracil react with absolute specificity at N-3 of the histidine-12 residue. 3'-(Bromoacetamido)-3'-deoxythymidine alkylates histidines-12 and -119. The major product formed in 57% yield is substituted at N-3 of histidine-12. A monoalkylated derivative, 8% yield, is substituted at N-1 of histidine-119. A disubstituted species is formed in 14% yield and is alkylated at both N-3 of histidine-12 and N-1 of histidine-119. A specific interaction of the "down" 2'-OH group, unique to 3'-(bromoacetamido)-3'-deoxyuridine, serves to orient the 3'-bromoacetamido residue close to the imidazole ring of histidine-119. The 2'-OH group of 3',5'-dinucleoside phosphate substrates may serve a similar role in the catalytic mechanism, allowing histidine-119 to protonate the leaving group in the transphosphorylation step. (Bromoacetamido)nucleosides are bound in the active site of RNase A in a variety of distinct conformations which are responsible for the different specificities and alkylation rates.  相似文献   

16.
E P Lennette  B V Plapp 《Biochemistry》1979,18(18):3933-3938
The reaction of the imidazole group of histidine hydantoin with bromoacetate was studied as a model for carboxymethylation of histidine residues in proteins. pK values of 6.4 and 9.1 (25 degrees C) and apparent heats of ionization of 7.8 and 8.7 kcal/mol were determined for the imidazole and hydantoin rings, respectively. At pH values corresponding to the isoelectric points for histidine hydantoin, the rates of carboxymethylation at 12, 25, 37, and 50 degrees C were determined; the modified hydantoins were hydrolyzed to the corresponding histidine derivatives for quantitative amino acid analysis. At pH 7.72 and 25 degrees C, the imidazole tele-N was alkylated (k = 3.9 X 10(-5) M-1 s-1) twice as fast as the pros-N. The monocarboxymethyl derivatives were carboxymethylated at the same rate at the pros-N (k = 2.1 X 10(-5) M-1 s-1) but 3 times faster at the tele-N (k = 11 X 10(-5) M-1 s-1). The enthalpies of activation determined for carboxymethylation of the imidazole ring and its monocarboxymethyl derivatives were similar (15.9 +/- 0.7 kcal/mol). delta S for the four carboxymethylations was -25 +/- 2 eu. The electrostatic component of delta S (delta S es) was calculated from the influence of the dielectric constant on the reaction rate at 25 degrees C. delta S es was slightly negative (-4 +/- 1 eu) for mono- or dicarboxymethylations, indicating some charge separation in the transition state. The nonelectrostatic entropy of activation was -21 +/- 2 eu for all four carboxymethylations.  相似文献   

17.
RT Williams  Y Wang 《Biochemistry》2012,51(32):6458-6462
B3LYP/6-311+G(2d,p)//B3LYP/6-31+G(d) density functional theory calculations were employed to explore the kinetics and thermodynamics of gas-phase N-glycosidic bond cleavage induced by nucleophilic attack of C1' with a hydroxide ion in 5-substituted 2'-deoxycytidines. The results showed that, among the 5-substituted 2'-deoxycytidine derivatives examined [XdC, where X = H (dC), CH(3) (medC), CH(2)OH (hmdC), CHO (fmdC), COOH (cadC), F (FdC), or Br (BrdC)], fmdC and cadC exhibited the lowest energy barrier and largest exothermicity for N-glycosidic bond cleavage. These results paralleled previously reported nucleobase excision activities of human thymine DNA glycosylase (hTDG) toward duplex DNA substrates harboring a thymine and 5-substituted cytosine derivatives when paired with a guanine. Our study suggests that the inherent chemistry associated with the nucleophilic cleavage of N-glycosidic bond constitutes a major factor contributing to the selectivity of hTDG toward 5-substituted dC derivatives. These findings provided novel insights into the role of TDG in active cytosine demethylation.  相似文献   

18.
3,4-Dihydroxyphenylalanine (DOPA) is not a preferred substrate of Rhus vernicifera laccase, as rate constants for the anaerobic reduction of the type 1 cupric atom by L-DOPA (6.3 X 10(1) M-1 s-1), D-DOPA (2.6 X 10(1) M-1 s-1), and L-DOPA methyl ester (2.6 X 10(1) M-1 s-1) are considerably smaller than k1 (catechol) (7 X 10(2) M-1 s-1) and rate constants characteristic of numerous other nonphysiological organic substrates (25 degrees C, pH 7.0, I = 0.5 M). The reactions of DOPA derivatives with laccase are unique, however, in that a two-term rate law pertains: kobsd = k0 + k1[phenol]; k0(L-DOPA) = 7 X 10(-2) s-1. The reactivities of other catechol derivatives (pyrogallol, gallic acid, and methyl gallate) with laccase type 1 copper were also examined.  相似文献   

19.
T Fox  E de Miguel  J S Mort  A C Storer 《Biochemistry》1992,31(50):12571-12576
A peptide (PCB1) corresponding to the proregion of the rat cysteine protease cathepsin B was synthesized and its ability to inhibit cathepsin B activity investigated. PCB1 was found to be a potent inhibitor of mature cathepsin B at pH 6.0, yielding a Ki = 0.4 nM. This inhibition obeyed slow-binding kinetics and occurred as a one-step process with a k1 = 5.2 x 10(5) M-1 s-1 and a k2 = 2.2 x 10(-4) s-1. On dropping from pH 6.0 to 4.7, Ki increased markedly, and whereas k1 remained essentially unchanged, k2 increased to 4.5 x 10(-3) s-1. Thus, the increase in Ki at lower pH is due primarily to an increased dissociation rate for the cathepsin B/PCB1 complex. At pH 4.0, the inhibition was 160-fold weaker (Ki = 64 nM) than at pH 6.0, and the propeptide appeared to behave as a classical competitive inhibitor rather than a slow-binding inhibitor. Incubation of cathepsin B with a 10-fold excess of PCB1 overnight at pH 4.0 resulted in extensive cleavage of the propetide whereas no cleavage occurred at pH 6.0, consistent with the formation of a tight complex between cathepsin B and PCB1 at the higher pH. The synthetic propeptide of cathepsin B was found to be a much weaker inhibitor of papain, a structurally similar cysteine protease, and no pH dependence was observed. Inhibition constants of 2.8 and 5.6 microM were obtained for papain inhibition by PCB1 at pH 4.0 and 6.0, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
alpha 2-Macroglobulin and the complement components C3 and C4 each contain a metastable binding site that is essential for covalent attachment. Two cyclic peptides are useful models of these unusual protein sites. Five-membered lactam 1 (CH3CO-Gly-Cys-Gly-Glu-Glp-Asn-NH2) contains an internal residue of pyroglutamic acid (Glp). Fifteen-membered thiolactone 2 (CH3CO-Gly-Cys-Gly-Glu-Glu-Asn-NH2 15-thiolactone) contains a thiol ester bond between Cys-2 and Glu-5. These isomeric hexapeptides are spontaneously interconverted in water. Competing with the two isomerization reactions are three reactions involving hydrolysis of 1 and 2. These five processes were found to occur simultaneously under physiologic conditions (phosphate-buffered saline, pH 7.3, 37 degrees C). Best estimates of the five rate constants for these apparent first-order reactions were obtained by comparing the observed molar percentages of peptides 1-4 with those calculated from a set of exponential equations. Both isomerization reactions (ring expansion of 1 to 2, k1 = 6.4 X 10(-5) s-1; ring contraction of 2 to 1, k-1 = 69 X 10(-5) s-1) proceeded faster than any of the hydrolysis reactions: alpha-cleavage of 1 with fragmentation to form dipeptide 3 (k2 = 3.3 X 10(-5) s-1), gamma-cleavage of 1 with ring opening to yield mercapto acid 4 (k3 = 0.35 X 10(-5) s-1), and hydrolysis of 2 with ring opening to give 4 (k4 = 1.9 X 10(-5) s-1). The isomerization rate ratio (k1/k-1 = 10.9) agreed with the isomer ratio at equilibrium (1:2 = 11 starting from 1 and 10 starting from 2). The alpha/gamma regioselectivity ratio (k2/k3 = 9.7) for hydrolysis of the internal Glp residue of 1 was consistent with results for model tripeptides. Part of the chemistry of the protein metastable binding sites can be explained by similar isomerization and hydrolysis reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号