首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hindbrain and craniofacial development during early organogenesis was studied in normal and retinoic acid-exposed Macaca fascicularis embryos. 13-cis-retinoic acid impaired hindbrain segmentation as evidenced by compression of rhombomeres 1 to 5. Immunolocalization with the Hoxb-1 gene product along with quantitative measurements demonstrated that rhombomere 4 was particularly vulnerable to size reduction. Accompanying malformations of cranial neural crest cell migration patterns involved reduction and/or delay in pre- and post-otic placode crest cell populations that contribute to the pharyngeal arches and provide the developmental framework for the craniofacial region. The first and second pharyngeal arches were partially fused and the second arch was markedly reduced in size. The otocyst was delayed in development and shifted rostrolaterally relative to the hindbrain. These combined changes in the hindbrain, neural crest, and pharyngeal arches contribute to the craniofacial malformations observed in the retinoic acid malformation syndrome manifested in the macaque fetus.  相似文献   

2.
We report here the development and rescue of the truncated hindbrain of retinoid-deprived quail embryos. The embryo is completely rescued by an injection of retinol into the egg; this confirms retinol, or a related retinoid, as a required molecule in hindbrain development. Staging the retinoid replacement enabled us to determine that the 3-4 somite stage is the period when retinoids are required for normal development. Analysis of the development of the retinoid-deprived hindbrain phenotype through somitogenesis has revealed a pathway of retinoid action in early hindbrain regionalization. The hindbrain of the retinoid-deprived embryo is normal in size, during early somitogenesis, but has a respecified pattern of Krox-20 expression. From the earliest expression of Krox-20, at the 5 somite stage, the rhombomere 3 stripe fills the caudal third of the developing hindbrain to the level of the first somite. Morphologically only 2, instead of the normal 5, rhombomere bulges form. These 2 bulges express genes and, later, develop morphology characteristic of rhombomeres 1 and 2 and rhombomere 3. Posterior hindbrain specific genes, Hoxb-1, Fgf3, MafB, and the rhombomere 5 stripe of Krox-20 are never expressed in the head neuroepithelium of these embryos. From the initial formation of the neural plate, there is no evidence of rhombomere 4-7 specific characteristics. These results indicate the specification of the posterior hindbrain is lost and its cells participate in the formation of an enlarged anterior hindbrain. In our previous study, we reported the absence of the posterior hindbrain in retinoid-deprived quails (Maden, M., Gale, E., Kostetskii, I., Zile, M., 1996. Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr. Biol. 6, 417-426). Here, we show this phenotype to be the result of respecification of the hindbrain cells. This provides evidence for a region specific response to a single stimulus, retinol, which suggests a pre-rhombomeric regionalization of the hindbrain.  相似文献   

3.
Rhombomeres are regarded as the manifestation of innate segmentation within the vertebrate CNS. To investigate developmental changes occurring in the CNS and PNS, a series of chick embryos were immunostained with several monoclonal antibodies. The HNK-1-immunoreactivity (IR) appeared in rhombomeres (r) 3 and r5 around stage 15, when r2 and r4 were not stained. This alternate pattern is similar to the Krox-20 gene expression in the mouse embryo. At levels of r2 and r4, HNK-1+ neural crest cell masses were attached to the CNS forming cranial sensory ganglia. In these rhombomeres, an accumulation of neuroepithelial cells near the cranial nerve root and early development of neuroblasts in the basal plate were observed. The above observations seem to suggest that the alternate HNK-1-IR in rhombomeres might be related to the expression of cell adhesion molecules, and therefore also to the adhesion of the cranial ganglion precursors to the CNS, which takes place every other rhombomere in the preotic region. Thus, the alternate pattern of the HNK-1-IR seems to be related to the morphogenesis of preotic branchial nerves.  相似文献   

4.
Mouse embryos were exposed to maternally administered RA on day 8.0 or day 7 3/4 of development, i.e. at or just before the differentiation of the cranial neural plate, and before the start of segmentation. On day 9.0, the RA-treated embryos had a shorter preotic hindbrain than the controls and clear rhombomeric segmentation was absent. These morphological effects were correlated with alterations in the spatiotemporal distribution patterns of two genes, Hox-2.9 and Krox-20, which are expressed in the otic and preotic hindbrain and in specific neural crest cell populations. Hox-2.9 was expressed throughout the preotic hindbrain region, instead of being confined to rhombomere 4. Krox-20 was not expressed rostral to the Hox-2.9 domain, i.e. its normal rhombomere 3 domain was absent. The Hox-2.9/Krox-20 boundary was ill-defined, with patches of alternating expression of the two genes. In migrating neural crest cells, Hox-2.9 expression was both abnormally extensive and abnormally prolonged. Neural crest cells expressing Krox-20 remained close to the neural tube. Embryos exposed to RA on day 8 1/4 appeared to be morphologically normal. We suggest that early events leading to rhombomeric segmentation and rhombomere-specific gene expression are specifically vulnerable to raised RA levels, and may require RA levels lower than those in the region of somitic segmentation.  相似文献   

5.
6.
7.
Retinoic acid synthesis and hindbrain patterning in the mouse embryo   总被引:13,自引:0,他引:13  
Targeted disruption of the murine retinaldehyde dehydrogenase 2 (Raldh2) gene precludes embryonic retinoic acid (RA) synthesis, leading to midgestational lethality (Niederreither, K., Subbarayan, V., Dolle, P. and Chambon, P. (1999). Nature Genet. 21, 444-448). We describe here the effects of this RA deficiency on the development of the hindbrain and associated neural crest. Morphological segmentation is impaired throughout the hindbrain of Raldh2-/- embryos, but its caudal portion becomes preferentially reduced in size during development. Specification of the midbrain region and of the rostralmost rhombomeres is apparently normal in the absence of RA synthesis. In contrast, marked alterations are seen throughout the caudal hindbrain of mutant embryos. Instead of being expressed in two alternate rhombomeres (r3 and r5), Krox20 is expressed in a single broad domain, correlating with an abnormal expansion of the r2-r3 marker Meis2. Instead of forming a defined r4, Hoxb1- and Wnt8A-expressing cells are scattered throughout the caudal hindbrain, whereas r5/r8 markers such as kreisler or group 3/4 Hox genes are undetectable or markedly downregulated. Lack of alternate Eph receptor gene expression could explain the failure to establish rhombomere boundaries. Increased apoptosis and altered migratory pathways of the posterior rhombencephalic neural crest cells are associated with impaired branchial arch morphogenesis in mutant embryos. We conclude that RA produced by the embryo is required to generate posterior cell fates in the developing mouse hindbrain, its absence leading to an abnormal r3 (and, to a lesser extent, r4) identity of the caudal hindbrain cells.  相似文献   

8.
9.
Segmentation of the vertebrate hindbrain into rhombomeres is essential for the anterior-posterior patterning of cranial motor nuclei and their associated nerves. The vitamin A derivative, retinoic acid (RA), is an early embryonic signal that specifies rhombomeres, but its roles in neuronal differentiation within the hindbrain remain unclear. Here we have analyzed the formation of primary and secondary hindbrain neurons in the zebrafish mutant neckless (nls), which disrupts retinaldehyde dehydrogenase 2 (raldh2), and in embryos treated with retinoid receptor (RAR) antagonists. Mutation of nls disrupts secondary, branchiomotor neurons of the facial and vagal nerves, but not the segmental pattern of primary, reticulospinal neurons, suggesting that RA acts on branchiomotor neurons independent of its role in hindbrain segmentation. Very few vagal motor neurons form in nls mutants and many facial motor neurons do not migrate out of rhombomere 4 into more posterior segments. When embryos are treated with RAR antagonists during gastrulation, we observe more severe patterning defects than seen in nls. These include duplicated reticulospinal neurons and posterior expansions of rhombomere 4, as well as defects in branchiomotor neurons. However, later antagonist treatments after rhombomeres are established still disrupt branchiomotor development, suggesting that requirements for RARs in these neurons occur later and independent of segmental patterning. We also show that RA produced by the paraxial mesoderm controls branchiomotor differentiation, since we can rescue the entire motor innervation pattern by transplanting wild-type cells into the somites of nls mutants. Thus, in addition to its role in determining rhombomere identities, RA plays a more direct role in the differentiation of subsets of branchiomotor neurons within the hindbrain.  相似文献   

10.
The vertebrate peripheral nervous system (PNS) consists of two groups of nerves that have a metamerical series of proximal roots along the body axis: the branchial and spinal nerves. Spinal nerve metamerism is brought about by the presence of somites, while that of the branchial nerves is, in part, intrinsic to rhombomeres, the segmental compartments of the hind-brain. As the distribution pattern of neural crest cells prefigures the morphology of the PNS, we constructed tissue-recombinant chick embryos in order to determine factors that might regulate the crest cell distribution pattern. When the segmental plate was transplanted between the hind-brain and the head mesoderm before crest cell emigration, it developed into ectopic somites that inhibited the dorsolateral migration of crest cells such that formation of the cranial nerve trunks was disturbed. Even so, proximal portions of the nerve roots were intact. An ectopic graft of lateral mesoderm did not inhibit the directional migration of the crest cells, but allowed their ectopic distribution, resulting in the fusion of cranial nerve trunks. When spinal neurectoderm was transplanted into the hind-brain, the graft behaved like an even-numbered rhombomere and caused the fusion of cranial nerve roots. The identity of the spinal neurectoderm was preserved in the ectopic site analyzed by the immunolocalization of Hoxb-5 protein, a spinal cord marker. We conclude that the spatial distribution of cephalic crest cells is regulated by successive processes that act on their proximal and distal distribution. The migratory behavior of crest cells is achieved partly by an embryonic environment that is dependent upon the presence of somitomeres, which do not epithelialize as somites, in the trunk.  相似文献   

11.
Roles of Hoxa1 and Hoxa2 in patterning the early hindbrain of the mouse   总被引:9,自引:0,他引:9  
Early in its development, the vertebrate hindbrain is transiently subdivided into a series of compartments called rhombomeres. Genes have been identified whose expression patterns distinguish these cellular compartments. Two of these genes, Hoxa1 and Hoxa2, have been shown to be required for proper patterning of the early mouse hindbrain and the associated neural crest. To determine the extent to which these two genes function together to pattern the hindbrain, we generated mice simultaneously mutant at both loci. The hindbrain patterning defects were analyzed in embryos individually mutant for Hoxa1 and Hoxa2 in greater detail and extended to embryos mutant for both genes. From these data a model is proposed to describe how Hoxa1, Hoxa2, Hoxb1, Krox20 (Egr2) and kreisler function together to pattern the early mouse hindbrain. Critical to the model is the demonstration that Hoxa1 activity is required to set the anterior limit of Hoxb1 expression at the presumptive r3/4 rhombomere boundary. Failure to express Hoxb1 to this boundary in Hoxa1 mutant embryos initiates a cascade of gene misexpressions that result in misspecification of the hindbrain compartments from r2 through r5. Subsequent to misspecification of the hindbrain compartments, ectopic induction of apoptosis appears to be used to regulate the aberrant size of the misspecified rhombomeres.  相似文献   

12.
Retinoic acid is a very potent teratogen and has also been implicated as an endogenous developmental signalling molecule in vertebrate embryos. One of the regions of the embryo reliably affected by exogenously applied RA is the hindbrain. In this paper, we describe in detail the hindbrain of Xenopus laevis embryos briefly treated with various levels of RA at gastrula stages. Such treatments lead to development of embryos with loss of anterior structures. In addition, RA has a general effect on rhombomere morphology and specific effects on the development of the anterior rhombomeres. This effect is demonstrated using neurofilament antibodies, HRP staining and in situ hybridisation using a probe for expression of the Xenopus Krox-20 gene. Anatomically it is evident that the development of the hindbrain normally anterior to the otocyst (rhombomeres 1-4) is abnormal following RA treatment. Sensory and motor axons of cranial nerves V and VII form a single root and the peripheral paths of V and VII and IX and X are also abnormal, as is the more anterior location of the otocyst. These anatomical changes are accompanied by changes in the pattern of expression for the gene XKrox-20, which normally expresses in rhombomeres 3 and 5, but is found in a single band in the anterior hindbrain of treated embryos which standardly fail to generate the normal external segmental appearance. The results are discussed in terms of both the teratogenic and possible endogenous roles of RA during normal development of the central nervous system. We conclude that low doses of RA applied during gastrulation have specific effects on the anterior Xenopus hindbrain which appear to be evolutionarily conserved in the light of similar recent findings in zebrafish.  相似文献   

13.
The developing nervous system is particularly vulnerable to vitamin A deficiency. Retinoid has been proposed to be a posteriorizing factor during hindbrain development, although direct evidence in the mammalian embryo is lacking. In the present study, pregnant vitamin A-deficient (VAD) rats were fed purified diets containing varying levels of all-trans-retinoic acid (atRA; 0, 0.5, 1.5, 6, 12, 25, 50, 125, or 250 microg/g diet) or were supplemented with retinol. Hindbrain development was studied from embryonic day 10 to 12.5 ( approximately 6 to 40 somites). Normal morphogenesis was observed in all embryos from groups fed 250 microg atRA/g diet or retinol. The most caudal region of the hindbrain was the most sensitive to retinoid insufficiency, as evidenced by a loss of the hypoglossal nerve (cranial nerve XII) in embryos from the 125 microg atRA/g diet group. Further reduction of atRA to 50 microg/g diet led to the loss of cranial nerves IX, X, XI, and XII and associated sensory ganglia IX and X in all embryos as well as the loss of hindbrain segmentation caudal to the rhombomere (r) 3/4 border in a subset of embryos. Dysmorphic orthotopic otic vesicles or immature otic-like vesicles in both orthotopic and caudally ectopic locations were also observed. As the level of atRA was reduced, a loss of caudal hindbrain segmentation was observed in all embryos and the incidence of otic vesicle abnormalities increased. Perturbations in hindbrain segmentation, cranial nerve formation, and otic vesicle development were associated with abnormal patterning of the posterior hindbrain. Embryos from VAD dams fed between 0.5 and 50 microg atRA/g diet exhibited Hoxb-1 protein expression along the entire neural tube caudal to the r3/r4 border at a time when it should be restricted to r4. Krox-20 protein expression was expanded in r3 but absent or reduced in presumptive r5. Hoxd-4 mRNA expression was absent in the posterior hindbrain, and the rostral limit of Hoxb-5 protein expression in the neural tube was anteriorized, suggesting that the most posterior hindbrain region (r7/r8) had been deleted and/or improperly patterned. Thus, when limiting amounts of atRA are provided to VAD dams, the caudal portion of the hindbrain is shortened and possesses r4/r5-like characteristics, with this region finally exhibiting r4-like gene expression when retinoid is restricted even more severely. Thus, regions of the anterior hindbrain (i.e., r3 and r4) appear to be greatly expanded, whereas the posterior hindbrain (r5-r8) is reduced or absent. This work shows that retinoid plays a critical role in patterning, segmentation, and neurogenesis of the caudal hindbrain and serves as an essential posteriorizing signal for this region of the central nervous system in the mammal.  相似文献   

14.
15.
How regional patterning of the neural tube in vertebrate embryos may influence the emergence and the function of neural networks remains elusive. We have begun to address this issue in the embryonic mouse hindbrain by studying rhythmogenic properties of different neural tube segments. We have isolated pre- and post-otic hindbrain segments and spinal segments of the mouse neural tube, when they form at embryonic day (E) 9, and grafted them into the same positions in stage-matched chick hosts. Three days after grafting, in vitro recordings of the activity in the cranial nerves exiting the grafts indicate that a high frequency (HF) rhythm (order: 10 bursts/min) is generated in post-otic segments while more anterior pre-otic and more posterior spinal territories generate a low frequency (LF) rhythm (order: 1 burst/min). Comparison with homo-specific grafting of corresponding chick segments points to conservation in mouse and chick of the link between the patterning of activities and the axial origin of the hindbrain segment. This HF rhythm is reminiscent of the respiratory rhythm known to appear at E15 in mice. We also report on pre-/post-otic interactions. The pre-otic rhombomere 5 prevents the emergence of the HF rhythm at E12. Although the nature of the interaction with r5 remains obscure, we propose that ontogeny of fetal-like respiratory circuits relies on: (i) a selective developmental program enforcing HF rhythm generation, already set at E9 in post-otic segments, and (ii) trans-segmental interactions with pre-otic territories that may control the time when this rhythm appears.  相似文献   

16.
dreher is a spontaneous mouse mutation in which adult animals display a complex phenotype associated with hearing loss, neurological, pigmentation and skeletal abnormalities. During early embryogenesis, the neural tube of dreher mutants is abnormally shaped in the region of the rhomboencephalon, due to problems in the formation of a proper roof plate over the otic hindbrain. We have studied the expression of Hox/lacZ transgenic mouse strains in the dreher background and shown that primary segmentation of the neural tube is not altered in these mutants, although correct morphogenesis is affected resulting in misshapen rhombomeres. Neural crest derivatives from rhombomere 6, such as the glossopharyngeal ganglion, are defective, and the dorsal neural tube marker Wnt1 is absent from this segment. Selected trunk neural crest populations are also altered, as there is a lack of pigmentation in the thoracic region of mutant mice. Skeletal defects include abnormal cranial bones of neural crest origin, and improper fusion of the dorsal aspects of cervical and thoracic vertebrae. Taken together, the gene affected in the dreher mutant is responsible for correct patterning of the dorsal-most cell types of the neural tube, that is, the neural crest and the roof plate, in the hindbrain region. Axial skeletal defects could reflect inductive influence of the dorsal neural tube on proper fusion of the neural arches. It is possible that a common precursor population for both neural crest and roof plate is the cellular target of the dreher mutation.  相似文献   

17.
During animal development, Hox genes are expressed in characteristic, spatially restricted patterns and specify regional identities along the anterior-posterior (A-P) axis. Polycomb group (PcG) proteins in Drosophila repress Hox expression and maintain the expression patterns during development. Mice deficient for homologues of the Drosophila PcG genes, such as M33, bmi1, mel18, rae28 and eed, show altered Hox expression patterns. In this study, we examined the time course of Hoxb3 expression during late gastrulation and early segmentation of rae28-deficient mice. Hoxb3 was expressed ectopically in pharyngeal arch and hindbrain from embryonic day (E) 9.5 and 10.5, respectively. The anterior boundary of ectopic expression in the hindbrain extended gradually in the rostral direction as development proceeded from E10.5 to E12.5. Expression of kreisler and Krox20, which function as positive regulators of Hoxb3 expression, was not affected in rae28-deficient embryos. Analysis of a neural crest marker, p75, in rae28-deficient mice revealed that the neural crest cells begin to ectopically express Hoxb3 after leaving the hindbrain. Our results suggest that rae28 is not required for the establishment but maintenance of Hoxb3 expression.  相似文献   

18.
19.
spiel ohne grenzen/pou2 is required for zebrafish hindbrain segmentation   总被引:2,自引:0,他引:2  
Segmentation of the vertebrate hindbrain leads to the formation of a series of rhombomeres with distinct identities. In mouse, Krox20 and kreisler play important roles in specifying distinct rhombomeres and in controlling segmental identity by directly regulating rhombomere-specific expression of Hox genes. We show that spiel ohne grenzen (spg) zebrafish mutants develop rhombomeric territories that are abnormal in both size and shape. Rhombomere boundaries are malpositioned or absent and the segmental pattern of neuronal differentiation is perturbed. Segment-specific expression of hoxa2, hoxb2 and hoxb3 is severely affected during initial stages of hindbrain development in spg mutants and the establishment of krx20 (Krox20 ortholog) and valentino (val; kreisler ortholog) expression is impaired. spg mutants carry loss-of-function mutations in the pou2 gene. pou2 is expressed at high levels in the hindbrain primordium of wild-type embryos prior to activation of krx20 and val. Widespread overexpression of Pou2 can rescue the segmental krx20 and val domains in spg mutants, but does not induce ectopic expression of these genes. This suggests that spg/pou2 acts in a permissive manner and is essential for normal expression of krx20 and val. We propose that spg/pou2 is an essential component of the regulatory cascade controlling hindbrain segmentation and acts before krx20 and val in the establishment of rhombomere precursor territories.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号