首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundDiabetic cardiomyopathy develops in insulin-dependent diabetic patients who have no hypertension, cardiac hypertrophy or vascular disease. Diabetes increases cardiac fatty acid oxidation, but cardiac hypertrophy limits fatty acid oxidation. Here we examined effects of diabetes on gene expression in rat hearts.MethodsWe used oligonucleotide microarrays to examine effects of insulindependent diabetes in the rat heart. RTQ PCR confirmed results of microarrays. Specific antibodies were used to examine changes in the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2).ResultsA surprising result of diabetes was increased mRNA encoding all enzymes of the ketone body synthesis pathway. Increased mRNA expression for these enzymes was confirmed by RTQ PCR. The mRNA encoding HMGCS2, the rate-controlling enzyme, was 27 times greater in diabetic hearts. Total HMGCS2 protein increased 8-fold in diabetic hearts, but no difference was found in HMGCS2 protein in control vs. diabetic liver.ConclusionsInsulin-dependent diabetes induced the enzymes of ketone body synthesis in the heart, including HMGCS2, as well as increasing enzymes of fatty acid oxidation.General significanceThe mammalian heart does not export ketone bodies to other tissues, but rather is a major consumer of ketone bodies. Induction of HMGCS2, which is normally expressed only in the fetal and newborn heart, may indicate an adaptation by the heart to combat “metabolic inflexibility” by shifting the flux of excess intramitochondrial acetyl-CoA derived from elevated fatty acid oxidation into ketone bodies, liberating free CoA to balance the acetyl-CoA/CoA ratio in favor of increased glucose oxidation through the pyruvate dehydrogenase complex.  相似文献   

2.
Heterozygous, de novo mutations in the glial fibrillary acidic protein (GFAP) gene have recently been reported in 12 patients affected by neuropathologically proved Alexander disease. We searched for GFAP mutations in a series of patients who had heterogeneous clinical symptoms but were candidates for Alexander disease on the basis of suggestive neuroimaging abnormalities. Missense, heterozygous, de novo GFAP mutations were found in exons 1 or 4 for 14 of the 15 patients analyzed, including patients without macrocephaly. Nine patients carried arginine mutations (four had R79H; four had R239C; and one had R239H) that have been described elsewhere, whereas the other five had one of four novel mutations, of which two affect arginine (2R88C and 1R88S) and two affect nonarginine residues (1L76F and 1N77Y). All mutations were located in the rod domain of GFAP, and there is a correlation between clinical severity and the affected amino acid. These results confirm that GFAP mutations are a reliable molecular marker for the diagnosis of infantile Alexander disease, and they also form a basis for the recommendation of GFAP analysis for prenatal diagnosis to detect potential cases of germinal mosaicism.  相似文献   

3.

Background

The Neuronal Ceroid Lipofuscinoses (NCL) comprise at least nine progressive neurodegenerative genetic disorders. Kufs disease, an adult-onset form of NCL may be recessively or dominantly inherited. Our study aimed to identify genetic mutations associated with autosomal dominant Kufs disease (ADKD).

Methodology and Principal Findings

We have studied the family first reported with this phenotype in the 1970s, the Parry family. The proband had progressive psychiatric manifestations, seizures and cognitive decline starting in her mid 20 s. Similarly affected relatives were observed in seven generations. Several of the affected individuals had post-mortem neuropathological brain study confirmatory for NCL disease. We conducted whole exome sequencing of three affected family members and identified a pLeu116del mutation in the gene DNAJC5, which segregated with the disease phenotype. An additional eight unrelated affected individuals with documented autosomal dominant or sporadic inheritance were studied. All had diagnostic confirmation with neuropathological studies of brain tissue. Among them we identified an additional individual with a p.Leu115Arg mutation in DNAJC5. In addition, a pAsn477Ser change in the neighboring gene PRPF6, a gene previously found to be associated with retinitis pigmentosa, segregated with the ADKD phenotype. Interestingly, two individuals of the Parry family did report visual impairment.

Conclusions

Our study confirmed the recently reported association of DNAJC5 mutations with ADKD in two out of nine well-defined families. Sequence changes in PRPF6 have not been identified in other unrelated cases. The association of vision impairment with the expected PRPF6 dysfunction remains possible but would need further clinical studies in order to confirm the co-segregation of the visual impairment with this sequence change.  相似文献   

4.
3-Hydroxy-3-methylglutaryl coenzyme A (CoA) synthase (HMGCS) catalyzes the condensation of acetyl-CoA and acetoacetyl-CoA into 3-hydroxy-3-methylglutaryl CoA. It is ubiquitous across the phylogenetic tree and is broadly classified into three classes. The prokaryotic isoform is essential in Gram-positive bacteria for isoprenoid synthesis via the mevalonate pathway. The eukaryotic cytosolic isoform also participates in the mevalonate pathway but its end product is cholesterol. Mammals also contain a mitochondrial isoform; its deficiency results in an inherited disorder of ketone body formation. Here, we report high-resolution crystal structures of the human cytosolic (hHMGCS1) and mitochondrial (hHMGCS2) isoforms in binary product complexes. Our data represent the first structures solved for human HMGCS and the mitochondrial isoform, allowing for the first time structural comparison among the three isoforms. This serves as a starting point for the development of isoform-specific inhibitors that have potential cholesterol-reducing and antibiotic applications. In addition, missense mutations that cause mitochondrial HMGCS deficiency have been mapped onto the hHMGCS2 structure to rationalize the structural basis for the disease pathology.  相似文献   

5.
Xuan D  Li S  Zhang X  Lin L  Wang C  Zhang J 《Biochemical genetics》2008,46(11-12):702-707
Cleidocranial dysplasia (CCD) is an autosomal-dominant heritable skeletal disease caused by heterozygous mutations in the RUNX2 gene. Here, the RUNX2 gene was analyzed within a CCD family from China, and a novel missense mutation (c. 475G --> C [p.G159R]) was identified. Normal and mutant RUNX2 expression vectors were then constructed and expressed transiently in NIH3T3 cells. Immunofluorescent staining and Western blotting showed that wild-type RUNX2 protein was localized exclusively in the nucleus; however, the mutant protein was found in both the nucleus and the cytoplasm, which demonstrated that transport of the RUNX2 mutant into the nucleus was disturbed by the G159R mutation. Therefore, we suggest that G159 is very important to promote RUNX2 nuclear localization. According to clinical analysis, the patient displays severe dysplasia of bones and relatively low-grade craniofacial abnormality, and we infer that G159 may be vital for normal skeletal development, other than control of tooth number. These findings confirm that mutations in the RUNX2 gene are associated with the pathogenesis of CCD across different ethnic backgrounds.  相似文献   

6.
Autosomal dominant polycystic kidney disease (ADPKD) is a widespread genetic disease that causes renal failure. One of the genes that is responsible for this disease, PKD1, has been identified and characterized. Many mutations of the PKD1 gene have been identified in the Caucasian population. We investigated the occurrence of mutations in this gene in the Japanese population. We analyzed each exon in the 3' single copy region of the gene between exons 35 and 46 in genomic DNA obtained from 69 patients, using a PCR-based direct sequencing method. Four missense mutations (T3509M, G3559R, R3718Q, R3752W), one deletion mutation (11307del61bp) and one polymorphism (L3753L) were identified, and their presence confirmed by allele-specific oligonucleotide (ASO) hybridization. These were novel mutations, except for R3752W, and three of them were identified in more than two families. Mutation analysis of the PKD1 gene in the Japanese population is being reported for the first time.  相似文献   

7.
SHORT syndrome is a rare, multisystem disease characterized by short stature, anterior-chamber eye anomalies, characteristic facial features, lipodystrophy, hernias, hyperextensibility, and delayed dentition. As part of the FORGE (Finding of Rare Disease Genes) Canada Consortium, we studied individuals with clinical features of SHORT syndrome to identify the genetic etiology of this rare disease. Whole-exome sequencing in a family trio of an affected child and unaffected parents identified a de novo frameshift insertion, c.1906_1907insC (p.Asn636Thrfs18), in exon 14 of PIK3R1. Heterozygous mutations in exon 14 of PIK3R1 were subsequently identified by Sanger sequencing in three additional affected individuals and two affected family members. One of these mutations, c.1945C>T (p.Arg649Trp), was confirmed to be a de novo mutation in one affected individual and was also identified and shown to segregate with the phenotype in an unrelated family. The other mutation, a de novo truncating mutation (c.1971T>G [p.Tyr657]), was identified in another affected individual. PIK3R1 is involved in the phosphatidylinositol 3 kinase (PI3K) signaling cascade and, as such, plays an important role in cell growth, proliferation, and survival. Functional studies on lymphoblastoid cells with the PIK3R1 c.1906_1907insC mutation showed decreased phosphorylation of the downstream S6 target of the PI3K-AKT-mTOR pathway. Our findings show that PIK3R1 mutations are the major cause of SHORT syndrome and suggest that the molecular mechanism of disease might involve downregulation of the PI3K-AKT-mTOR pathway.  相似文献   

8.
BACKGROUND: Fabry disease, an X-linked inborn error of glycosphingolipid catabolism, results from mutations in the alpha-galactosidase A (alpha-Gal A) gene located at Xq22.1. To determine the nature and frequency of the molecular lesions causing the classical and milder variant Fabry phenotypes and for precise carrier detection, the alpha-Gal A lesions in 42 unrelated Fabry hemizygotes were determined. MATERIALS AND METHODS: Genomic DNA was isolated from affected probands and their family members. The seven alpha-galactosidase A exons and flanking intronic sequences were PCR amplified and the nucleotide sequence was determined by solid-phase direct sequencing. RESULTS: Two patients with the mild cardiac phenotype had missense mutations, I9IT and F113L, respectively. In 38 classically affected patients, 33 new mutations were identified including 20 missense (MIT, A31V, H46R, Y86C, L89P, D92Y, C94Y, A97V, R100T, Y134S, G138R, A143T, S148R, G163V, D170V, C202Y, Y216D, N263S, W287C, and N298S), two nonsense (Q386X, W399X), one splice site mutation (IVS4 + 2T-->C), and eight small exonic insertions or deletions (304del1, 613del9, 777del1, 1057del2, 1074del2, 1077del1, 1212del3, and 1094ins1), which identified exon 7 as a region prone to gene rearrangements. In addition, two unique complex rearrangements consisting of contiguous small insertions and deletions were found in exons 1 and 2 causing L45R/H46S and L120X, respectively. CONCLUSIONS: These studies further define the heterogeneity of mutations causing Fabry disease, permit precise carrier identification and prenatal diagnosis in these families, and facilitate the identification of candidates for enzyme replacement therapy.  相似文献   

9.
Mammary tumors are the most common tumor type in both human and canine females. Mutations in the breast cancer susceptibility gene, BRCA2, have been found in most cases of inherited human breast cancer. Similarly, the canine BRCA2 gene locus has been associated with mammary tumors in female dogs. However, deleterious mutations in canine BRCA2 have not been reported, thus far. The BRCA2 protein is involved in homologous recombination repair via its interaction with RAD51 recombinase, an interaction mediated by 8 BRC repeats. These repeats are 26-amino acid, conserved motifs in mammalian BRCA2. Previous structural analyses of cancer-associated mutations affecting the BRC repeats have shown that the weakening of RAD51''s affinity for even 1 repeat is sufficient to increase breast cancer susceptibility. In this study, we focused on 2 previously reported canine BRCA2 mutations (T1425P and K1435R) in BRC repeat 3 (BRC3), derived from mammary tumor samples. These mutations affected the interaction of canine BRC3 with RAD51, and were considered deleterious. Two BRC3 mutations (K1440R and K1440E), reported in human breast cancer patients, occur at amino acids corresponding to those of the K1435R mutation in dogs. These mutations affected the interaction of canine BRC3 with RAD51, and may also be considered deleterious. The two BRC3 mutations and a substitution (T1430P), corresponding to T1425P in canine BRCA2, were examined for their effects on human BRC3 function and the results were compared between species. The corresponding mutations and the substitution showed similar results in both human and canine BRC3. Therefore, canine BRCA2 may be a good model for studying human breast cancer caused by BRCA2 mutations.  相似文献   

10.
A molecular approach to dominance in hypophosphatasia   总被引:5,自引:0,他引:5  
Hypophosphatasia is an inherited disorder characterized by defective bone mineralization and a deficiency of tissue-nonspecific alkaline phosphatase (TNSALP) activity. The disease is highly variable in its clinical expression, because of various mutations in the TNSALP gene. In approximately 14% of the patients tested in our laboratory, only one TNSALP gene mutation was found, despite exhaustive sequencing of the gene, suggesting that missing mutations are harbored in intron or regulatory sequences or that the disease is dominantly transmitted. The distinction between these two situations is of importance, especially in terms of genetic counseling, but dominance is sometimes difficult to conclusively determine by using familial analysis since expression of the disease may be highly variable, with parents of even severely affected children showing no or extremely mild symptoms of the disease. We report here the study of eight point mutations (G46 V, A99T, S164L, R167 W, R206 W, G232 V, N461I, I473F) found in patients with no other detectable mutation. Three of these mutations, G46 V, S164L, and I473F, have not previously been described. Pedigree and/or serum alkaline phosphatase data suggested possible dominant transmission in families with A99T, R167 W, and G232 V. By means of site-directed mutagenesis, transfections in COS-1 cells, and three-dimensional (3D) modeling, we evaluated the possible dominant effect of these eight mutations. The results showed that four of these mutations (G46 V, A99T, R167 W, and N461I) exhibited a negative dominant effect by inhibiting the enzymatic activity of the heterodimer, whereas the four others did not show such inhibition. Strong inhibition resulted in severe hypophosphatasia, whereas partial inhibition resulted in milder forms of the disease. Analysis of the 3D model of the enzyme showed that mutations exhibiting a dominant effect were clustered in two regions, viz., the active site and an area probably interacting with a region having a particular biological function such as dimerization, tetramerization, or membrane anchoring.  相似文献   

11.
Osteolysis syndromes are rare hereditary disorders characterized by destruction and resorption of affected bones. The current study adds three new patients from two unrelated consanguineous families with a severe form of inherited osteolysis. Clinical examination, radiological, biochemical, ultrastructural and molecular studies were conducted. Clinical and radiological studies suggested the diagnosis of Torg-Winchester syndrome. The three affected patients were homozygous for novel MMP2 gene mutations which confirmed the diagnosis. Our patients are the first to be reported from Egypt thus, supporting the pan ethnic nature of the disease.  相似文献   

12.
13.
Lafora disease is an autosomal recessive form of progressive myoclonus epilepsy with no effective therapy. Although the outcome is always unfavorable, onset of symptoms and progression of the disease may vary. We aimed to identify modifier genes that may contribute to the clinical course of Lafora disease patients with EPM2A or EPM2B mutations. We established a list of 43 genes coding for proteins related to laforin/malin function and/or glycogen metabolism and tested common polymorphisms for possible associations with phenotypic differences using a collection of Lafora disease families. Genotype and haplotype analysis showed that PPP1R3C may be associated with a slow progression of the disease. The PPP1R3C gene encodes protein targeting to glycogen (PTG). Glycogen targeting subunits play a major role in recruiting type 1 protein phosphatase (PP1) to glycogen-enriched cell compartments and in increasing the specific activity of PP1 toward specific glycogenic substrates (glycogen synthase and glycogen phosphorylase). Here, we report a new mutation (c.746A>G, N249S) in the PPP1R3C gene that results in a decreased capacity to induce glycogen synthesis and a reduced interaction with glycogen phosphorylase and laforin, supporting a key role of this mutation in the glycogenic activity of PTG. This variant was found in one of two affected siblings of a Lafora disease family characterized by a remarkable mild course. Our findings suggest that variations in PTG may condition the course of Lafora disease and establish PTG as a potential target for pharmacogenetic and therapeutic approaches.  相似文献   

14.
Hereditary spherocytosis (HS) is the most common inherited haemolytic anaemia disorder. ANK1 mutations account for most HS cases, but pathogenicity analysis and functional research have not been widely performed for these mutations. In this study, in order to confirm diagnosis, gene mutation was screened in two unrelated Chinese families with HS by a next‐generation sequencing (NGS) panel and then confirmed by Sanger sequencing. Two novel heterozygous mutations (c.C841T, p.R281X and c.T290G, p.L97R) of the ANK1 gene were identified in the two families respectively. Then, the pathogenicity of the two new mutations and two previously reported ANK1 mutations (c.C648G, p.Y216X and c.G424T, p.E142X) were studied by in vitro experiments. The four mutations increased the osmotic fragility of cells, reduced the stabilities of ANK1 proteins and prevented the protein from localizing to the plasma membrane and interacting with SPTB and SLC4A1. We classified these four mutations into disease‐causing mutations for HS. Thus, conducting the same mutation test and providing genetic counselling for the two families were meaningful and significant. Moreover, the identification of two novel mutations enriches the ANK1 mutation database, especially in China.  相似文献   

15.
The heritable form of pulmonary arterial hypertension (PAH) is typically caused by a mutation in bone morphogenic protein receptor type 2 (BMPR2), and mice expressing Bmpr2 mutations develop PAH with features similar to human disease. BMPR2 is known to interact with the cytoskeleton, and human array studies in PAH patients confirm alterations in cytoskeletal pathways. The goal of this study was to evaluate cytoskeletal defects in BMPR2-associated PAH. Expression arrays on our Bmpr2 mutant mouse lungs revealed cytoskeletal defects as a prominent molecular consequence of universal expression of a Bmpr2 mutation (Rosa26-Bmpr2(R899X)). Pulmonary microvascular endothelial cells cultured from these mice have histological and functional cytoskeletal defects. Stable transfection of different BMPR2 mutations into pulmonary microvascular endothelial cells revealed that cytoskeletal defects are common to multiple BMPR2 mutations and are associated with activation of the Rho GTPase, Rac1. Rac1 defects are corrected in cell culture and in vivo through administration of exogenous recombinant human angiotensin-converting enzyme 2 (rhACE2). rhACE2 reverses 77% of gene expression changes in Rosa26-Bmpr2(R899X) transgenic mice, in particular, correcting defects in cytoskeletal function. Administration of rhACE2 to Rosa26-Bmpr2(R899X) mice with established PAH normalizes pulmonary pressures. Together, these findings suggest that cytoskeletal function is central to the development of BMPR2-associated PAH and that intervention against cytoskeletal defects may reverse established disease.  相似文献   

16.
17.
Gout is a common autoinflammatory disease characterized with elevated serum urate and recurrent attacks of intra-articular crystal deposition of monosodium urate. Accumulating evidence has demonstrated that MSU crystal-induced inflammation is a paradigm of innate immunity and the TLRs, NALP3 inflammasome and IL1R pathways are involved in gout development. Innate immunity components containing TLR2, TLR4, CD14, NALP3, ASC, Caspase-1 and CARD-8 are essential in the development of gouty inflammation. Recent studies suggest that innate immunity component gene functional mutations contribute to the development of autoinflammatory diseases including hereditary periodic fever syndrome, arthritis as well as inflammatory bowel disease. Taking into account these genetic findings, we would like to propose a novel hypothesis that the gene functional mutations might make innate immunity components as attractive susceptibility candidates and genetic markers for gout. Further clinical genetic studies need to be performed to confirm the role of innate immunity in the etiology of gout.  相似文献   

18.
19.
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. To date, the molecular mechanisms of DN remain largely unclear. The present study aimed to identify and characterize novel proteins involved in the development of DN by a proteomic approach. Proteomic analysis revealed that 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase 2 (HMGCS2), the key enzyme in ketogenesis, was increased fourfold in the kidneys of type 2 diabetic db/db mice. Consistently, the activity of HMGCS2 in kidneys and 24-h urinary excretion of the ketone body β-hydroxybutyrate (β-HB) were significantly increased in db/db mice. Immunohistochemistry, immunofluorescence, and real-time PCR studies further demonstrated that HMGCS2 was highly expressed in renal glomeruli of db/db mice, with weak expression in the kidneys of control mice. Because filtered ketone bodies are mainly reabsorbed in the proximal tubules, we used RPTC cells, a rat proximal tubule cell line, to examine the effect of the increased level of ketone bodies. Treating cultured RPTC cells with 1 mM β-HB significantly induced transforming growth factor-β1 expression, with a marked increase in collagen I expression. β-HB treatment also resulted in a marked increase in vimentin protein expression and a significant reduction in E-cadherin protein levels, suggesting an enhanced epithelial-to-mesenchymal transition in RPTCs. Collectively, these findings demonstrate that diabetic kidneys exhibit excess ketogenic activity resulting from increased HMGCS2 expression. Enhanced ketone body production in the diabetic kidney may represent a novel mechanism involved in the pathogenesis of DN.  相似文献   

20.
We report the clinical, biochemical, and molecular characterization of a patient with a novel defect of cholesterol biosynthesis. This patient presented with a complex phenotype, including multiple congenital anomalies, mental retardation, and liver disease. In the patient's plasma and cells, we found increased levels of lathosterol. The biosynthesis of cholesterol in the patient's fibroblasts was defective, showing a block in the conversion of lathosterol into 7-dehydrocholesterol. The activity of 3beta-hydroxysteroid-Delta(5)-desaturase (SC5D), the enzyme involved in this reaction, was deficient in the patient's fibroblasts. Sequence analysis of the SC5D gene in the patient's DNA, showing the presence of two missense mutations (R29Q and G211D), confirmed that the patient is affected by a novel defect of cholesterol biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号