首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of glycerophosphate (GP) by brown adipose tissue mitochondria in the presence of antimycin A was found to be accompanied by significant production of hydrogen peroxide. GP-dependent hydrogen peroxide production could be detected by p-hydroxyphenylacetate fluorescence changes or as an antimycin A-insensitive oxygen consumption. One-electron acceptor, potassium ferricyanide, highly stimulated the rate of GP-dependent antimycin A-insensitive oxygen uptake, which was prevented by inhibitors of mitochondrial GP dehydrogenase (mGPDH) or by coenzyme Q(CoQ). GP-dependent ferricyanide-induced peroxide production was also determined luminometrically, using mitochondria or partially purified mGPDH. Ferricyanide-induced peroxide production was negligible, when succinate or NADH was used as a substrate. These results indicate that hydrogen peroxide is produced directly by mGPDH and reflect the differences in the transport of reducing equivalents from mGPDH and succinate dehydrogenase to the CoQ pool. The data suggest that more intensive production of reactive oxygen species may be present in mammalian cells with active mGPDH.  相似文献   

2.
The involvement of mitochondrial glycerophosphate dehydrogenase (mGPDH) has previously been established in the production of ROS in prostate cancer cell lines (LNCaP, DU145, PC3 and CL1). The current study demonstrates that the mRNA level of mGPDH in prostate cancer cells is 3.3-8.9-fold higher compared to the normal prostate epithelial cell line, PNT1A. This is consistent with the enzymatic activity and protein level of mGPDH. However, cytochrome c oxidase (COX) activity is 2.9-3.2-fold down-regulated in androgen-independent prostate cancer cell lines. The level of antioxidant enzymes, catalase, MnSOD and CuZnSOD are up-regulated in prostate cancer cell lines. Furthermore, it was observed that the activity of mGPDH is significantly higher in liver tissues from all mice with cancer compared to liver tissues from control mice. These data suggest that the up-regulation of mGPDH, due to a highly glycolytic environment, contributes to the overall increase in ROS generation and may result in the progression of the cancer.  相似文献   

3.
The involvement of mitochondrial glycerophosphate dehydrogenase (mGPDH) has previously been established in the production of ROS in prostate cancer cell lines (LNCaP, DU145, PC3 and CL1). The current study demonstrates that the mRNA level of mGPDH in prostate cancer cells is 3.3–8.9-fold higher compared to the normal prostate epithelial cell line, PNT1A. This is consistent with the enzymatic activity and protein level of mGPDH. However, cytochrome c oxidase (COX) activity is 2.9–3.2-fold down-regulated in androgen-independent prostate cancer cell lines. The level of antioxidant enzymes, catalase, MnSOD and CuZnSOD are up-regulated in prostate cancer cell lines. Furthermore, it was observed that the activity of mGPDH is significantly higher in liver tissues from all mice with cancer compared to liver tissues from control mice. These data suggest that the up-regulation of mGPDH, due to a highly glycolytic environment, contributes to the overall increase in ROS generation and may result in the progression of the cancer.  相似文献   

4.
Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.  相似文献   

5.
Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.  相似文献   

6.
We investigated hydrogen peroxide production in mitochondria with low (liver, heart, brain) and high (brown adipose tissue, BAT) content of glycerophosphate dehydrogenase (mGPDH). ROS production at state 4 due to electron backflow from mGPDH was low, but after inhibition of electron transport with antimycin A high rates of mGPDH-dependent ROS production were observed in liver, heart and brain mitochondria. When this ROS production was related to activity of mGPDH, many-fold higher ROS production was found in contrast to succinate- (39-, 28-, 3-fold) or pyruvate plus malate-dependent ROS production (32-, 96-, 5-fold). This specific rate of mGPDH-dependent ROS production was also exceedingly higher (28-, 66-, 22-fold) compared to that in BAT. mGPDH-dependent ROS production was localized to the dehydrogenase + CoQ and complex III, the latter being the highest in all mitochondria but BAT. Our results demonstrate high efficiency of mGPDH-dependent ROS production in mammalian mitochondria with a low content of mGPDH and suggest its endogenous inhibition in BAT.  相似文献   

7.
Characterization and function of mitochondrial nitric-oxide synthase   总被引:9,自引:0,他引:9  
The mitochondrial production of nitric oxide is catalyzed by a nitric-oxide synthase. This enzyme has the same cofactor and substrate requirements as other constitutive nitric-oxide synthases. Its occurrence was demonstrated in various mitochondrial preparations (intact, purified mitochondria, permeabilized mitochondria, mitoplasts, submitochondrial particles) from different organs (liver, heart) and species (rat, pig). Endogenous nitric oxide reversibly inhibits oxygen consumption and ATP synthesis by competitive inhibition of cytochrome oxidase. The increased K(m) of cytochrome oxidase for oxygen and the steady-state reduction of the electron chain carriers provided experimental evidence for the direct interaction of this oxidase with endogenous nitric oxide. The increase in hydrogen peroxide production by nitric oxide-producing mitochondria not accompanied by the full reduction of the respiratory chain components indicated that cytochrome c oxidase utilizes nitric oxide as an alternative substrate. Finally, effectors or modulators of cytochrome oxidase (the irreversible step in oxidative phosphorylation) had been proposed during the last 40 years. Nitric oxide is the first molecule that fulfills this role (it is a competitive inhibitor, produced at a fair rate near the target site) extending the oxygen gradient to tissues.  相似文献   

8.
1. Paraquat and diquat produce only a slight increase in the oxygen uptake of rat liver mitochondria, and it is likely that they do not penetrate the mitochondrial membrane. 2. In mitochondrial fragments inhibited by antimycin A or by Amytal, both substances stimulate oxygen uptake with NADH or beta-hydroxybutyrate as substrate but not with succinate. The NADH dehydrogenase of the respiratory chain appears to be involved, at a site only partially inhibited by Amytal. 3. An NADPH oxidase activity is stimulated in rat liver microsomes by diquat, and to a smaller extent by paraquat; diquat also causes an NADH oxidase activity to develop. The effect is not inhibited by carbon monoxide or p-chloromercuribenzoate, and it is probable that a flavoprotein is involved by a mechanism not requiring thiol groups. 4. One molecule of oxygen can oxidize two molecules of NADPH in the stimulated microsomal system, the hydrogen peroxide produced being broken down by a catalase activity in the microsomes. 5. Diquat can stimulate NADH oxidase and NADPH oxidase activity in the postmicrosomal soluble fraction; the enzyme involved may be DT-diaphorase. 6. The mechanism of these reactions and their significance in relation to the toxicity of the dipyridilium compounds are discussed.  相似文献   

9.
The mitochondrial production of hydrogen peroxide, in the presence of different respiratory substrates (succinate, glutamate, malate and isocitrate), is stimulated by submicromolar concentrations of auranofin, a highly specific inhibitor of thioredoxin reductase. This effect is particularly evident in the presence of antimycin. Auranofin was also able to unmask the production of hydrogen peroxide occurring in the presence of rotenone. However, at variance with whole mitochondria, auranofin does not stimulate hydrogen peroxide production in submitochondrial particles indicating that it does not alter the formation of hydrogen peroxide by the respiratory chain but prevents its removal. As the mitochondrial metabolism of hydrogen peroxide proceeds through the peroxidases linked to glutathione or thioredoxin, the relative efficiency of the two systems and the effects of auranofin were tested. In conclusion, the inhibition of thioredoxin reductase determines an increase of the basal flow of hydrogen peroxide leading to a more oxidized condition that alters the mitochondrial functions.  相似文献   

10.
Data presented in this paper show that the size of the endogenous coenzyme Q (CoQ) pool is not a limiting factor in the activation of mitochondrial glycerophosphate-dependent respiration by exogenous CoQ(3), since successive additions of succinate and NADH to brown adipose tissue mitochondria further increase the rate of oxygen uptake. Because the inhibition of glycerophosphate-dependent respiration by oleate was eliminated by added CoQ(3), our data indicate that the activating effect of CoQ(3) is related to the release of the inhibitory effect of endogenous free fatty acids (FFA). Both the inhibitory effect of FFA and the activating effect of CoQ(3) could be demonstrated only for glycerophosphate-dependent respiration, while succinate- or NADH-dependent respiration was not affected. The presented data suggest differences between mitochondrial glycerophosphate dehydrogenase and succinate or NADH dehydrogenases in the transfer of reducing equivalents to the CoQ pool.  相似文献   

11.
The mitochondrial production of hydrogen peroxide, in the presence of different respiratory substrates (succinate, glutamate, malate and isocitrate), is stimulated by submicromolar concentrations of auranofin, a highly specific inhibitor of thioredoxin reductase. This effect is particularly evident in the presence of antimycin. Auranofin was also able to unmask the production of hydrogen peroxide occurring in the presence of rotenone. However, at variance with whole mitochondria, auranofin does not stimulate hydrogen peroxide production in submitochondrial particles indicating that it does not alter the formation of hydrogen peroxide by the respiratory chain but prevents its removal. As the mitochondrial metabolism of hydrogen peroxide proceeds through the peroxidases linked to glutathione or thioredoxin, the relative efficiency of the two systems and the effects of auranofin were tested. In conclusion, the inhibition of thioredoxin reductase determines an increase of the basal flow of hydrogen peroxide leading to a more oxidized condition that alters the mitochondrial functions.  相似文献   

12.
Evidence is presented that the nitroxide free radical, TEMPO, at concentrations commonly used to prevent oxidative damage, increases the intracellular hydrogen peroxide concentration. To investigate the origin of this increased hydrogen peroxide concentration, we have incubated various human tumor cell lines with compounds interfering with the generation of active oxygen metabolites. Sodium azide, inhibitor of the respiratory chain, the iron-chelating agent desferrioxamine, superoxide dismutase and catalase had no effect on the hydrogen peroxide concentration. Metyrapone, inhibitor of the cytochrome P450 system, was demonstrated to decrease, but not completely prevent, the hydrogen peroxide production. N-ethylmaleimide, a sulphydryl-bond alkylating agent, was able to completely prevent the increased hydrogen peroxide production. We conclude that, by increasing the cellular hydrogen peroxide concentration, TEMPO exerts a pro-oxidant effect. This increase in hydrogen peroxide production seems to be mediated by the induction of oxidase activity in the cytochrome P450 system, but other cellular systems involved in electron transport may also play a role.  相似文献   

13.
The fumigant insecticide phosphine (PH3) is known to inhibit cytochrome c oxidase in vitro. Inhibition of the respiratory chain at this site has been shown to stimulate the generation of superoxide radicals (O2-), which dismutate to form hydrogen peroxide (H2O2). This study was performed in order to investigate the production of H2O2 by mitochondria isolated from granary weevil (Sitophilus granarius) and mouse liver on exposure to PH3. Other respiratory inhibitors, antimycin, myxothiazol, and rotenone were used with insect mitochondria. Hydrogen peroxide was measured spectrophotometrically using yeast cytochrome c peroxidase as an indicator. Insect and mouse liver mitochondria, utilizing endogenous substrate, both produced H2O2 after inhibition by PH3. Insect organelles released threefold more H2O2 than did mouse organelles, when exposed to PH3. Production of H2O2 by PH3-treated insect mitochondria was increased significantly on addition of the substrate alpha-glycerophosphate. Succinate did not enhance H2O2 production, however, indicating that the H2O2 did not result from the autoxidation of ubiquinone. NAD(+)-linked substrates, malate and pyruvate also had no effect on H2O2 production, suggesting that NADH-dehydrogenase was not the source of H2O2. Data obtained using antimycin and myxothiazol, both of which stimulated the release of H2O2 from insect mitochondria, lead to the conclusion that glycerophosphate dehydrogenase is a source of H2O2. The effect of combining PH3, antimycin, and myxothiazol on cytochrome spectra in insect mitochondria was also recorded. It was observed that PH3 reduces cytochrome c oxidase but none of the other cytochromes in the electron transport chain. There was no movement of electrons to cytochrome b when insect mitochondria are inhibited with PH3. The spectral data show that the inhibitors interact with the respiratory chain in a way that would allow the production of H2O2 from the sites proposed previously.  相似文献   

14.
Thyroid hormones are important regulators of mitochondrial metabolism. Due to their complex mechanism of action, the timescale of different responses varies from minutes to days. In this work, we studied selective T3 induction of the inner mitochondrial membrane enzyme-glycerophosphate dehydrogenase (mGPDH) in liver of euthyroid rats. We correlated the kinetics of the T3 level in blood, the mRNA level in liver, the activity and amount of mGPDH in liver mitochondria after a single dose of T3. The T3 level reached maximum after 1 h (80 nmol/l) and subsequently rapidly decreased. mGPDH mRNA increased also relatively fast, reaching a maximum after 12 h and fell to the control level after 72 h. An increase of mGPDH activity could be already found after 6 h and reached a maximum after 24 h in accordance with the increase in mGPDH content (2.4-fold vs. 2.7-fold induction). After 72 h, the mGPDH activity showed a significant 30% decrease. When the rats received three subsequent doses of T3, the increase of mGPDH activity was 2-fold higher than after a single T3 dose. The results demonstrate that mGPDH displays rapid induction as well as decay upon disappearance of a hormonal stimulus, indicating a rather short half-life of this inner mitochondrial membrane enzyme.  相似文献   

15.
Previous work has shown that injury of neoplastic cells by cytotoxic macrophages (CM) in cell culture is accompanied by inhibition of mitochondrial respiration. We have investigated the nature of this inhibition by studying mitochondrial respiration in CM-injured leukemia L1210 cells permeabilized with digitonin. CM-induced injury affects the mitochondrial respiratory chain proper. Complex I (NADH-coenzyme Q reductase) and complex II (succinate-coenzyme Q reductase) are markedly inhibited. In addition a minor inhibition of cytochrome oxidase was found. Electron transport from alpha-glycerophosphate through the respiratory chain to oxygen is unaffected and permeabilized CM-injured L1210 cells oxidizing this substrate exhibit acceptor control. However, glycerophosphate shuttle activity was found not to occur within CM- injured or uninjured L1210 cells in culture hence, alpha- glycerophosphate is apparently unavailable for mitochondrial oxidation in the intact cell. It is concluded that the failure of respiration of intact neoplastic cells injured by CM is caused by the nearly complete inhibition of complexes I and II of the mitochondrial electron transport chain. The time courses of CM-induced electron transport inhibition and arrest of L1210 cell division are examined and the possible relationship between these phenomena is discussed.  相似文献   

16.
The effects of tetrandrine (6,6', 7,12-tetramethoxy-2, 2'-dimethyl-berbaman) on the mitochondrial function were assessed on oxidative stress, mitochondrial permeability transition (MPT), and bioenergetics of rat liver mitochondria. At concentrations lower than 100nmol/mg protein, tetrandrine decreased the hydrogen peroxide formation, the extent of lipid peroxidation, the susceptibility to Ca(2+)-induced opening of MPT pore, and inhibited the inner membrane anion channel activity, not significantly affecting the mitochondrial bioenergetics. High tetrandrine concentrations (100-300nmol/mg protein) stimulated succinate-dependent state 4 respiration, while some inhibition was observed for state 3 and p-trifluoromethoxyphenylhydrazone-uncoupled respirations. The respiratory control ratio and the transmembrane potential were depressed but the adenosine diphosphate to oxygen (ADP/O) ratio was less affected. A slight increase of the inner mitochondrial membrane permeability to H(+) and K(+) by tetrandrine was also observed. It was concluded that low concentrations of tetrandrine afford protection against liver mitochondria injury promoted by oxidative-stress events, such as hydrogen peroxide production, lipid peroxidation, and induction of MPT. Conversely, high tetrandrine concentrations revealed toxicological effects expressed by interference with mitochondrial bioenergetics, as a consequence of some inner membrane permeability to H(+) and K(+) and inhibition of the electron flux in the respiratory chain. The direct immediate protective role of tetrandrine against mitochondrial oxidative stress may be relevant to clarify the mechanisms responsible for its multiple pharmacological actions.  相似文献   

17.
1. The primary intermediate of catalase and hydrogen peroxide was identified and investigated in peroxisome-rich mitochondrial fractions of rat liver. On the basis of kinetic constants determined in vitro, it is possible to calculate with reasonable precision the molecular statistics of catalase action in the peroxisomes. 2. The endogenous hydrogen peroxide generation is adequate to sustain a concentration of the catalase intermediate (p(m)/e) of 60-70% of the hydrogen peroxide saturation value. Total amount of catalase corresponds to 0.12-0.15nmol of haem iron/mg of protein. In State 1 the rate of hydrogen peroxide generation corresponds to 0.9nmol/min per mg of protein or 5% of the mitochondrial respiratory rate in State 4. 3. Partial saturation of the catalase intermediate with hydrogen peroxide (p(m)/e) in the mitochondrial fraction suggests its significant peroxidatic activity towards its endogenous hydrogen donor. A variation of this value (p(m)/e) from 0.3 in State 4 to 0 under anaerobic conditions is observed. 4. For a particular preparation the hydrogen peroxide generation rate in the substrate-supplemented State 4 corresponds to 0.17s(-1) (eqn. 6), the hydrogen peroxide concentration to 2.5nm and the hydrogen-donor concentration (in terms of ethanol) to 0.12mm. The reaction is 70% peroxidatic and 30% catalatic. 5. A co-ordinated production of both oxidizing and reducing substrates for catalase in the mitochondrial fraction is suggested by a 2.2-fold increase of hydrogen peroxide generation and a threefold increase in hydrogen-donor generation in the State 1 to State 4 transition. 6. Additional hydrogen peroxide generation provided by the urate oxidase system of peroxisomes (8-12nmol of uric acid oxidized/min per mg of protein) permits saturation of the catalase with hydrogen peroxide to haem occupancy of 40% compared with values of 36% for a purified rat liver catalase ofk(1)=1.7x10(7)m(-1).s(-1) and k'(4)=2.6x10(7)m(-1). s(-1)(Chance, Greenstein & Roughton, 1952). 7. The turnover of the catalase ethyl hydrogen peroxide intermediate (k'(3)) in the peroxisomes is initially very rapid since endogenous hydrogen peroxide acts as a hydrogen donor. k'(3) decreases fivefold in the uncoupled state of the mitochondria.  相似文献   

18.
The present study shows that deprenyl, a known inhibitor of monoamine oxidase B (MAO B), may generate changes in mitochondrial function. Brain submitochondrial membranes (SMP), synaptosomes and cytosolic fractions were incubated with different deprenyl concentrations and nitric oxide synthase (NOS) activity was measured. The effect of deprenyl on oxygen consumption, calcium-induced permeability transition and hydrogen peroxide (H(2)O(2)) production rates was studied in intact mitochondria. Respiratory complexes and monoamine oxidase activities were also measured in submitochondrial membranes. Incubation of brain submitochondrial membranes with deprenyl 10, 25 and 50 microM inhibited nitric oxide synthase activity in a concentration-dependent manner. The same effect was observed in cytosolic fractions and synaptosomes. Monoamine oxidase activity was inhibited at lower deprenyl concentrations (from 0.5 microM). Cytochrome oxidase (complex IV) activity was found 42% increased in the presence of 25 microM deprenyl in a condition of maximal nitric oxide synthase activity. Incubation of brain mitochondria with deprenyl 25 microM produced a 60% increase in oxygen uptake in state 3, but no significant changes were observed in state 4. Pre-incubation of brain mitochondria with deprenyl 0.5 and 1 microM inhibited calcium-induced mitochondrial permeability transition and decreased hydrogen peroxide production rates. Our results suggest that in vitro effects of deprenyl on mitochondrial function can occur through two different mechanisms, involving nitric oxide synthase inhibition and decreased hydrogen peroxide production.  相似文献   

19.
Copper containing amine oxidases (Cu-AO) represent a heterogeneous class of enzymes classified as EC 1.4.3.6. The present study reports preliminary results on the presence of a novel amine oxidase activity in rat liver mitochondria lysates. Such enzymatic activity was found in the soluble mitochondrial fraction, obtained by simple osmotic shock. The mitochondrial amine oxidase was isolated by affinity chromatography on a newly synthesised spermine-Sepharose. SDS-PAGE showed a single band at about 60 kDa. Upon chromatographic purification, the enzymatic activity was very labile. The crude enzyme activity was tested by spectrophotometric measurements, determining hydrogen peroxide production following oxidative deamination of different substrates, such as polyamines (spermine, spermidine, putrescine and cadaverine) and monoamines (dopamine and benzylamine). The activity, observed on polyamines and not on monoamines, was inhibited by semicarbazide and azide, but not by pargyline, clorgyline and l-deprenil. Enzyme specificity was tested on several diamines characterized by different carbon atom chain length in the range 2-6 carbon atoms. The highest activity was found with 1,2-diamino-ethane and the highest affinity with 1,5-diamino-pentane. The above reported results suggest the presence of a novel copper-dependent amine oxidase in liver mitochondria matrix.  相似文献   

20.
Glycerophosphate (GP)-dependent, ferricyanide-induced hydrogen peroxide production was studied in brown adipose tissue mitochondria from newborn rats. Relations between the rate of hydrogen peroxide production and total amount of hydrogen peroxide produced at different GP and ferricyanide concentrations were determined. It was found that the rate of hydrogen peroxide production increases with increasing GP concentration and decreases with increasing ferricyanide concentration. Total amount of hydrogen peroxide produced increases with increasing ferricyanide concentration, however, not proportionally, and the efficiency of this process (oxygen/ferricyanide ratio) strongly declines. Data presented provide further information on the character and kinetics of hydrogen peroxide production by mammalian mitochondrial glycerophosphate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号