首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phorbol 12,13-dibutyrate (PDBu) increased the production of 3,4-dihydroxyphenylalanine (DOPA) in the superior cervical ganglion of the rat. This effect occurred without a detectable lag and persisted for at least 90 min of incubation. The action of PDBu was half-maximal at a concentration of approximately 0.1 microM; at high concentrations, PDBu produced about a twofold increase in DOPA accumulation. PDBu increased DOPA production in decentralized ganglia and in ganglia incubated in a Ca2+-free medium. The action of PDBu was additive with the actions of dimethylphenylpiperazinium, muscarine, and 8-Br-cyclic AMP, all of which also increase DOPA accumulation, and was not inhibited by the cholinergic antagonists hexamethonium (3 mM) and atropine (6 microM). Finally, PDBu did not increase the content of cyclic AMP in the ganglion. Thus, the action of PDBu does not appear to be mediated by the release of neurotransmitters from preganglionic nerve terminals, by the stimulation of cholinergic receptors in the ganglion, or by an increase in ganglionic cyclic AMP. PDBu also increased the incorporation of 32Pi into tyrosine hydroxylase. PDBu activates protein kinase C, which in turn may phosphorylate tyrosine hydroxylase and increase the rate of DOPA synthesis in the ganglion.  相似文献   

2.
Abstract: The systems responsible for phosphorylating tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosynthesis, were investigated in situ in adrenal medullary cells made permeable to solutes of up to 1,000 dalton by exposure to brief intense electric fields. Two different phosphorylation systems were found. One is dependent on Ca2+, the other on cyclic AMP. The Ca2+-dependent system is half-maximally activated by 1-2 μ M Ca2+ and 0.5 m M ATP, and follows a time course similar to that of secretion of catecholamines. Trifluoperazine (0.1 m M ) does not inhibit significantly Ca2+-dependent phosphorylation of tyrosine hydroxylase in situ. The cyclic AMP-dependent system is half-maximally activated by addition of 0.5 μ M cyclic AMP and about 0.3 m M ATP. Ca2+-dependent and cyclic AMP-dependent phosphorylations of tyrosine hydroxylase have roughly the same time course and are additive under conditions where one system is already saturated. Peptide maps of immunoprecipitated tyrosine hydroxylase, after in situ phosphorylation of the enzyme either in the presence of 10−8 M Ca2+ plus 2 × 10−5 M cyclic AMP or of 10−5 M Ca2+, show a marked difference indicating that the enzyme contains several phosphorylation sites. At least one of these sites is phosphorylated only by the Ca2+-dependent system, whereas the other site(s) are phosphorylated by both the Ca2+- and cyclic AMP-dependent systems. The effect of in situ phosphorylation of tyrosine hydroxylase on its enzymatic activity was also investigated.  相似文献   

3.
Abstract: Tyrosine hydroxylase (TOH), the rate-limiting enzyme in catecholamine biosynthesis, is regulated by phosphorylation. Activation of histaminergic H1 receptors on cultured bovine adrenal chromaffin cells stimulated a rapid increase in TOH phosphorylation (within 5 s) that was sustained for at least 5 min. The initial increase in TOH phosphorylation (up to 1 min) was essentially unchanged by the removal of extracellular Ca2+. In contrast, the H1-mediated response was abolished by preloading the cells with BAPTA acetoxymethyl ester (50 µ M ) and significantly reduced by prior exposure to caffeine (10 m M for 10 min) to deplete intracellular Ca2+. Trypticphosphopeptide analysis by HPLC revealed that the H1 response in the presence or absence of extracellular Ca2+ resulted in a major increase in the phosphorylation of Ser19 with smaller increases in that of Ser40 and Ser31. In contrast, although a brief stimulation with nicotine (30 µ M for 60 s) also resulted in a major increase in Ser19 phosphorylation, this response was abolished in the absence of extracellular Ca2+. These data indicate that the mobilization of intracellular Ca2+ plays a crucial role in supporting H1-mediated TOH phosphorylation and may thus have a potentially important role in regulating catecholamine synthesis.  相似文献   

4.
Both dimethylphenylpiperazinium (DMPP), a nicotinic agonist, and bethanechol, a muscarinic agonist, increase 3,4-dihydroxyphenylalanine (DOPA) synthesis in the superior cervical ganglion of the rat. DMPP causes approximately a fivefold increase in DOPA accumulation in intact ganglia whereas bethanechol causes about a two-fold increase in DOPA accumulation. These effects are additive with each other and with the increase in DOPA accumulation produced by 8-bromo cyclic AMP. The action of DMPP is dependent on extracellular Ca2+ while the actions of bethanechol and 8-bromo cyclic AMP are not dependent on extracellular Ca2+. Cholinergic agonists and cyclic nucleotides produce a stable activation of tyrosine hydroxylase (TH) in the ganglion. The activation of TH by nicotinic and muscarinic agonists can be detected after 5 min of incubation of the ganglia with these agents. The nicotinic response disappears after 30 min of incubation, whereas the muscarinic response persists for at least 30 min. The Ca2+ dependence of the TH activation produced by these agents is similar to the Ca2+ dependence of their effects on DOPA accumulation in intact ganglia. These data are consistent with the hypothesis that nicotinic agonists, muscarinic agonists, and cyclic AMP analogues increase TH activity by three distinct mechanisms. The activation of TH presumably underlies the increase in DOPA synthesis produced by these agents.  相似文献   

5.
The phosphorylation of tyrosine hydroxylase, purified from rat striatum, was investigated using purified Ca2+/calmodulin (CaM)-dependent protein kinase II. This kinase catalyzed the Ca2+-dependent incorporation of up to 0.8 mol 32PO4/mol tyrosine hydroxylase subunit (62 kilodaltons). Reverse-phase high-performance liquid chromatography mapping of tryptic 32P-peptides established that the Ca2+/CaM-dependent protein kinase II phosphorylated a different serine residue than was phosphorylated by the cyclic AMP-dependent protein kinase. Limited proteolysis sequentially reduced the subunit Mr from 62 to 59 kilodaltons and finally to 57 kilodaltons, resulting in loss of the site phosphorylated by the Ca2+/CaM-dependent protein kinase II, but not the site phosphorylated by the cyclic AMP-dependent protein kinase. Phosphorylation by the Ca2+/CaM-dependent protein kinase II had little direct effect on the kinetic properties of tyrosine hydroxylase, but did convert it to a form that could be activated twofold by addition of an activator protein. This heat-labile activator protein increased the Vmax without affecting the Km for the pterin cofactor. This effect was specific in that the activator protein was without effect on nonphosphorylated tyrosine hydroxylase or on tyrosine hydroxylase phosphorylated by the cyclic AMP-dependent protein kinase. These results are consistent with the hypothesis that the "Vmax-type" activation of tyrosine hydroxylase observed upon depolarization of neural and adrenal tissues may be mediated by the Ca2+/CaM-dependent protein kinase II.  相似文献   

6.
The mechanisms of tyrosine hydroxylase (TH) activation by depolarization or exposure of dopaminergic terminals to cyclic AMP have been compared using rat striatal slices. Tissues were incubated with veratridine or 60 mM K+ (depolarizing conditions), on the one hand, and forskolin or dibutyryl cyclic AMP, on the other. K+-(or veratridine-)induced depolarization triggered an activation of TH (+75%) that persisted in soluble extracts of incubated tissues. This effect disappeared when drugs (EGTA, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, Gallopamil) preventing Ca2+- and calmodulin-dependent processes were included in the incubating medium. In contrast, prior in vivo reserpine treatment or in vitro addition of benztropine did not affect the depolarization-induced activation of TH. In vitro studies of soluble TH extracted from depolarized tissues indicated that activation was associated with a marked increase in the enzyme Vmax but with no change in its apparent affinity for the pteridin cofactor 6-methyl-5,6,7,8-tetrahydropterin (6-MPH4) or tyrosine. Furthermore, the activated enzyme from depolarized tissues exhibited the same optimal pH (5.8) as native TH extracted from control striatal slices. In contrast, TH activation resulting from tissue incubation in the presence of forskolin or dibutyryl cyclic AMP was associated with a selective increase in the apparent affinity for 6-MPH4 and a shift in the optimal pH from 5.8 to 7.0-7.2. Clear distinction between the two activating processes was further confirmed by the facts that heparin- and cyclic AMP-dependent phosphorylation stimulated TH activity from K+-exposed (and control) tissues but not that from striatal slices incubated with forskolin (or dibutyryl cyclic AMP). In contrast, the latter enzyme but not that from depolarized tissues could be activated by Ca2+-dependent phosphorylation. These data strongly support the concept that Ca2+- but not cyclic AMP-dependent phosphorylation is responsible for TH activation in depolarized dopaminergic terminals.  相似文献   

7.
Abstract: Rat tyrosine hydroxylase was expressed in Escherichia coli . High-level expression was obtained after incubation at 27°C for 18 h. The smallest fragment of tyrosine hydroxylase that gave a soluble active molecule was from Leu188 to Phe456. This fragment corresponds directly to the section of phenylalanine hydroxylase that had previously been shown to be this enzyme's catalytic core region. It has been shown that Glu286 plays a critical role in pterin function in phenylalanine hydroxylase. The corresponding residue in tyrosine hydroxylase (Glu332) has no significant role in pterin function. Substitution of a leucine for a proline at position 327 in tyrosine hydroxylase produces a molecule with a K m for tetrahydrobiopterin 20-fold higher than that of the wild-type molecule, whereas the same substitution at the corresponding residue in phenylalanine hydroxylase (Pro281) has no effect on the kinetic constant for the cofactor. This suggests that corresponding residues in phenylalanine hydroxylase and tyrosine hydroxylase can have different roles in pterin function. Substitution of a leucine for a proline at position 281 in phenylalanine hydroxylase increases the K m for phenylalanine >20-fold over that of the wild-type. Substitution of leucine or alanine for Pro327 or a glutamic acid for Gln313 in tyrosine hydroxylase eliminates the substrate inhibition shown by wild-type tyrosine hydroxylase.  相似文献   

8.
The hypothesis that dopamine (DA) autoreceptors modulate the phosphorylation of tyrosine hydroxylase (TH; EC 1.14.16.2) was investigated in rat striatal slices. Tissue was prelabeled with 32P inorganic phosphate, and TH recovered by immunoprecipitation with anti-TH rabbit serum. The TH monomer was resolved on sodium dodecyl sulfate polyacrylamide gels, and the extent of phosphorylation was determined by scanning densitometry of autoradiographs. Depolarization of striatal slices with 55 mM K+ markedly increased the incorporation of 32P into several proteins, including the TH monomer (Mr = 60,000). A similar increase in TH phosphorylation occurred in response to the adenylate cyclase activator forskolin and the cyclic AMP analog dibutyryl cyclic AMP. An increase in TH phosphorylation was not observed in response to the D1-selective agonist SKF 38393. The D2-selective DA autoreceptor agonist pergolide decreased the phosphorylation of TH below basal levels and blocked the increase in phosphorylation elicited by 55 mM K+. The inhibitory effect of pergolide was antagonized by the D2-selective antagonist eticlopride. Changes observed in the phosphorylation of TH were mirrored by changes in tyrosine hydroxylation in situ. These observations support the hypothesis that a reduction in TH phosphorylation is the mechanism by which DA autoreceptors modulate tyrosine hydroxylation in nigrostriatal nerve terminals.  相似文献   

9.
Tryptophan hydroxylase is activated in a crude extract by addition of ATP and Mg2+. This activation is reversible and requires in addition both Ca2+ and calmodulin. Thus, phosphorylation by an endogenous calmodulin-dependent protein kinase has long been suspected. Now that we have prepared a specific polyclonal antibody to rat brain tryptophan hydroxylase, we have been able to prove that this hypothesis is correct. After incubation of purified tryptophan hydroxylase with Ca2+/calmodulin-dependent protein kinase together with [gamma-32P]ATP, Mg2+, Ca2+, and calmodulin, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotting of the enzymes onto nitrocellulose sheets, we could label the band of tryptophan hydroxylase by the antiserum and the peroxidase technique and show by autoradiography that 32P was incorporated into this band. By measuring the radioactivity, we calculated that about 1 mol of phosphate was incorporated per 8 mol of subunits of the enzyme (2 mol of native enzyme). Because the concentration of ATP which we employed (50 microM) gives about half-maximal activation in crude extract compared to saturating ATP conditions (about 1 mM), this result indicates that the incorporation of at least 1 mol of phosphate/mol of tetramer of native tryptophan hydroxylase is required for maximal activation.  相似文献   

10.
Incubation of rat pheochromocytoma PC12 cells with dibutyryl cyclic AMP or 56 mM K+ is associated with increased activity and enhanced phosphorylation of tyrosine hydroxylase in situ. Following incubation of the PC12 cells with 32Pi, rapid isolation of the tyrosine hydroxylase, and tryptic digestion of the enzyme, two distinct 32P-peptides can be identified after paper electrophoresis. 56 mM K+ increases 32Pi incorporation into both of these peptides, whereas dibutyryl cyclic AMP increases 32Pi incorporation into only one of these peptides. The rate of increase in the incorporation of 32Pi into these two peptides in cells treated with 56 mM K+ is similar. The phosphorylation of tyrosine hydroxylase in PC12 cells occurs exclusively on serine residues. These results suggest that tyrosine hydroxylase in PC12 cells is phosphorylated on serine residues at two or more distinct sites after 56 mM K+ -induced depolarization. Since only one of these sites is phosphorylated by cyclic AMP-dependent protein kinase, activation of tyrosine hydroxylase by 56 mM K+ may involve phosphorylation by multiple protein kinases in rat pheochromocytoma PC12 cells.  相似文献   

11.
Abstract: Hypoxia (5% O2) enhanced catecholamine release in cultured rat adrenal chromaffin cells. Also, the intracellular free Ca2+ concentration ([Ca2+]i) increased within 3 min in ∼50% of the chromaffin cells under hypoxic stimulation. The increase depended on the presence of extracellular Ca2+. Nifedipine and ω-conotoxin decreased the population of the cells that showed the hypoxia-induced [Ca2+]i increase, showing that the Ca2+ influx was attributable to L- and N-type voltage-dependent Ca2+ channels. The membrane potential was depolarized during the perfusion with the hypoxic solution and returned to the basal level following the change to the normoxic solution (20% O2). Membrane resistance increased twofold under the hypoxic condition. The current-voltage relationship showed a hypoxia-induced decrease in the outward K+ current. Among the K+ channel openers tested, cromakalim and levcromakalim, both of which interact with ATP-sensitive K+ channels, inhibited the hypoxia-induced [Ca2+]i increase and catecholamine release. The inhibitory effects of cromakalim and levcromakalim were reversed by glibenclamide and tolbutamide, potent blockers of ATP-sensitive K+ channels. These results suggest that some fractions of adrenal chromaffin cells are reactive to hypoxia and that K+ channels sensitive to cromakalim and glibenclamide might have a crucial role in hypoxia-induced responses. Adrenal chromaffin cells could thus be a useful model for the study of oxygen-sensing mechanisms.  相似文献   

12.
Abstract: The protein kinases and protein phosphatases that act on tyrosine hydroxylase in vivo have not been established. Bovine adrenal chromaffin cells were permeabilized with digitonin and incubated with [γ-32P]ATP, in the presence or absence of 10 µ M Ca2+, 1 µ M cyclic AMP, 1 µ M phorbol dibutyrate, or various kinase or phosphatase inhibitors. Ca2+ increased the phosphorylation of Ser19 and Ser40. Cyclic AMP, and phorbol dibutyrate in the presence of Ca2+, increased the phosphorylation of only Ser40. Ser31 and Ser8 were not phosphorylated. The Ca2+-stimulated phosphorylation of Ser19 was incompletely reduced by inhibitors of calcium/calmodulin-stimulated protein kinase II (46% with KN93 and 68% with CaM-PKII 273–302), suggesting that another protein kinase(s) was contributing to the phosphorylation of this site. The Ca2+-stimulated phosphorylation of Ser40 was reduced by specific inhibitors of protein kinase A (56% with H89 and 38% with PKAi 5–22 amide) and protein kinase C (70% with Ro 31-8220 and 54% with PKCi 19–31), suggesting that protein kinases A and C contributed to most of the phosphorylation of this site. Results with okadaic acid and microcystin suggested that Ser19 and Ser40 were dephosphorylated by PP2A.  相似文献   

13.
Abstract: The acute effects of serum on sodium-potassium (Na+-K+) pump activity and glucose uptake in cultured rat skeletal muscle were studied. Addition of serum to myo-tubes in phosphate-buffered saline caused Na+-K+ pump activity (as measured by changes in the ouabain-sensitive component of both membrane potential and 86Rb uptake) to increase, with peak effects obtained after 30 min. The effect was blocked completely by treatment with amiloride, but not by tetrodotoxin, which blocks voltage-dependent Na+ channels. On transfer of myotubes to Na+-free, choline buffer, resting Na+-K+ pump activity decreased to about 10% of that in phosphate-buffered saline. Addition of regular serum, but not Na+-free serum, caused Na+-K+ pump activity to increase slightly. Similar results were obtained with serum on glucose uptake, the peak effect being reached within 15 min. Stimulation of glucose uptake by serum was partially reduced by amiloride and was not altered by tetrodotoxin. Removal of external Na+ also eliminated serum effects on glucose uptake. The results demonstrate that there are similar signals involving Na+-H+ exchange for serum-induced increases in Na+-K+ pump activity and glucose transport. The lack of complete blockade of serum-induced elevation of glucose transport suggests an additional, as yet undefined, intracellular signal for stimulation of this transport system.  相似文献   

14.
Abstract: The effects of catechol estrogens on tyrosine hydroxylase activity in hypothalamic and corpus striatal extracts were evaluated. When assayed in the presence of subsaturating concentrations of pterin cofactor, tyrosine hydroxylase activity was depressed by 2-hydroxyestrone, 2-hydroxyestradiol, Lnorepinephrine, or dopamine. However, estrone, 17β-estradiol, 2- methoxyestrone, or 2-methoxyestradiol had no consistent inhibitory effect on tyrosine hydroxylase activity under in vitro conditions. Moreover, a decrease in pterin binding affinity (elevated Km) in the presence of either catecholamines or 2-hydroxyestrogens was found. These findings were suggestive of a competitive interaction between catechols and pterin. Catechol estrogens and catecholamines were shown to inhibit both membrane-bound and soluble forms of tyrosine hydroxylase. The membrane-bound form of tyrosine hydroxylase, however, was found to have a greater binding affinity (lower Kl) for 2hydroxyestradiol and norepinephrine than did the soluble form. The results of the present study are suggestive of a cytoplasmic effect of estrogen that may be mediated by 2-hydroxyestrogen and terminated by O-methylation.  相似文献   

15.
Abstract: The role of the Na+/Ca2+ exchanger and intracellular nonmitochondrial Ca2+ pool in the regulation of cytosolic free calcium concentration ([Ca2+]i) during catecholamine secretion was investigated. Catecholamine secretion and [Ca2+]i were simultaneously monitored in a single chromaffin cell. After high-K+ stimulation, control cells and cells in which the Na+/Ca2+ exchange activity was inhibited showed similar rates of [Ca2+]i elevation. However, the recovery of [Ca2+]i to resting levels was slower in the inhibited cells. Inhibition of the exchanger increased the total catecholamine secretion by prolonging the secretion. Inhibition of the Ca2+ pump of the intracellular Ca2+ pool with thapsigargin caused a significant delay in the recovery of [Ca2+]i and greatly enhanced the secretory events. These data suggest that both the Na+/Ca2+ exchanger and the thapsigargin-sensitive Ca2+ pool are important in the regulation of [Ca2+]i and, by modulating the time course of secretion, are important in determining the extent of secretion.  相似文献   

16.
Abstract: We investigated the modulation of (±)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced increases in intracellular free Ca2+ ([Ca2+]i) and intracellular free Mg2+ ([Mg2+]i) by cyclothiazide and GYKI 52466 using microspectrofluorimetry in single cultured rat brain neurons. AMPA-induced changes in [Ca2+]i were increased by 0.3–100 µ M cyclothiazide, with an EC50 value of 2.40 µ M and a maximum potentiation of 428% of control values. [Ca2+]i responses to glutamate in the presence of N -methyl- d -aspartate (NMDA) receptor antagonists were also potentiated by 10 µ M cyclothiazide. The response to NMDA was not affected, demonstrating specificity of cyclothiazide for non-NMDA receptors. Almost all neurons responded with an increase in [Ca2+]i to both kainate and AMPA in the absence of extracellular Na+, and these Na+-free responses were also potentiated by cyclothiazide. GYKI 52466 inhibited responses to AMPA with an IC50 value of 12.0 µ M . Ten micromolar cyclothiazide significantly decreased the potency of GYKI 52466. However, the magnitude of this decrease in potency was not consistent with a competitive interaction between the two ligands. Cyclothiazide also potentiated AMPA- and glutamate-induced increases in [Mg2+]i. These results are consistent with the ability of cyclothiazide to decrease desensitization of non-NMDA glutamate receptors and may provide the basis for the increase in non-NMDA receptor-mediated excitotoxicity produced by cyclothiazide.  相似文献   

17.
Cocaine is an inhibitor of dopamine and serotonin reuptake by synaptic terminals and has potent reinforcing effects that lead to its abuse. Tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) catalyze the rate-limiting steps in dopamine and serotonin biosynthesis, respectively, and are the subject of dynamic regulatory mechanisms that could be sensitive to the actions of cocaine. This study assessed the effects of chronic cocaine on brain TH and TPH activities. Cocaine was administered (0.33 mg/infusion, i.v.) to rats for 7 days every 8 min for 6 h per day. This administration schedule is similar to patterns of self-administration by rats when given ad libitum access to this dose. This chronic, response-independent administration increased TH enzyme activity in the substantia nigra (30%) and ventral tegmental area (43%). Moreover, TH mRNA levels were also increased (45 and 50%, respectively). In contrast to the enzymatic and molecular biological changes in the cell bodies, TH activity was unchanged in the terminal fields (corpus striaturn and nucleus accumbens). Similarly, TPH activity was increased by 50% in the raphe nucleus (serotonergic cell bodies). In summary, the chronic response-independent administration of cocaine produces increases in the expression of TH mRNA and activity in both the cell bodies of motor (nigrostriatal) and reinforcement (mesolimbic) dopamine pathways. These increases are not manifested in the terminal fields of these pathways.  相似文献   

18.
Neurochemical and morphological changes in the carotid body are induced by chronic hypoxia, leading to regulation of ventilation. In this study, we examined the time courses of changes in immunohistochemical intensity for tyrosine hydroxylase (TH) and cellular volume of glomus cells in rats exposed to hypoxia (10% O2) for up to 24 hr. Grayscale intensity for TH immunofluorescence was significantly increased in rats exposed to hypoxia for 12, 18, and 24 hr compared with control rats (p<0.05). The transectional area of glomus cells was not significantly different between experimental groups. The TH fluorescence intensity of the glomus cells exhibited a strong negative correlation with the transectional area in control rats (Spearman''s ρ = −0.70). This correlation coefficient decreased with exposure time, and it was lowest for the rats exposed to hypoxia for 18 hr (ρ = −0.18). The histogram of TH fluorescence intensity showed a single peak in control rats. The peaks were gradually shifted to the right and became less pronounced in hypoxia-exposed rats, suggesting that a hypoxia-induced increase in TH immunoreactivity occurred uniformly in glomus cells. In conclusion, this study demonstrates that short-term hypoxia induces an increase in TH protein expression in rat carotid body glomus cells. (J Histochem Cytochem 58:839–846, 2010)  相似文献   

19.
Abstract: Membranes of the secretory vesicles from bovine adrenal medulla were investigated for the presence of the endogenous protein phosphorylation activity. Seven phosphoprotein bands in the molecular weight range of 250,000 to 30,000 were observed by means of the sodium dodecyl sulphate electrophoresis and autoradiography. On the basis of the criteria of molecular weight, selective stimulation of the phosphorylation by cyclic AMP (as compared with cyclic GMP) and immunoprecipitation by specific antibodies, band 5 (molecular weight 60,300) was found to represent the phosphorylated form of the secretory vesicle-bound tyrosine hydroxylase. The electrophoretic mobility, the stimulatory and inhibitory effects of cyclic AMP in presence of Mg2+ and Zn,2+ respectively, and immunoreactivity toward antibodies showed band 6 to contain two forms of the regulatory subunits of the type II cyclic AMP-dependent protein kinase, distinguishable by their molecular weights (56,000 and 52,000, respectively). Phosphorylation of band 7 (molecular weight 29,800) was stimulated about 2 to 3 times by Ca2+ and calmodulin in the concentration range of both agents believed to occur in the secretory tissues under physiological conditions.  相似文献   

20.
Many biochemical effects of local anesthetics are expressed in Ca2+-dependent processes [Volpi M., Sha'afi R.I., Epstein P.M., Andrenyak P.M., and Feinstein M.B. (1981) Proc. Natl. Acad. Sci. USA 78, 795-799]. In this communication we report that local anesthetics (dibucaine, tetracaine, lidocaine, and procaine and the analogue quinacrine) inhibit the Ca2+-dependent and the Mg2+-dependent ATPase activity of rat brain synaptosomes and of membrane vesicles derived from them by osmotic shock. This inhibition is induced by concentrations of these drugs close to their pharmacological doses, and a good correlation between K0.5 of inhibition and their relative anesthetic potency is found. The Ca2+-dependent ATPase is more selectively inhibited at lower drug concentrations. The physiological relevance of these findings is discussed briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号