首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Summary Parthenogenetic seed induction was performed on one clone of Solanum tuberosum subspecies andigena (2n=4x=48) using S. phureja (2n=2x=24) marker inducer clones. The parthenogenetic population when grown was found to contain both diploid and tetraploid individuals presumably arising from reduced and unreduced gametes, respectively. Variation patterns in the diploid and tetraploid sub-populations, as well as a population obtained by selfing the parental clone, were compared to try and elucidate the origin of the tetraploid parthenotes. From the results of this one generation it appeared that the tetraploid parthenogenetic plants had been produced by a mechanism equivalent to second division restitution (SDR).  相似文献   

2.
Summary Triticales (XTriticosecale Wittmack) at three ploidy levels (8x, 6x, 4x, x=7) were crossed with diploid rye (Secale cereale L.) to produce a solitary hypopentaploid hybrid (2n=32), and a number of tetraploid (2n=4x=28) and triploid (2n=3x=21) hybrids. The hybrids exhibited a morphology which was intermediate between the parents. The number of bivalents ranged from 1–7 (4.65 per cell) in hypopentaploid, from 2–12 (7.13 per cell) in tetraploid and from 4–9 (6.84 per cell) in triploid hybrids. In 4x and 3x hybrids, trivalents and quadrivalents were also observed at low frequencies (range 0–1; mean 0.01–0.03 per cell). Chiasmata frequency was highest in triploid hybrids (12.44 per cell), lowest in hypopentaploid (5.37 per cell) and intermediate in tetraploids (10.54 per cell). More than 711 were found in 39.7% pollen mother cells (PMC's) in the 4x hybrids and in 5.0% PMCs in 3x hybrids. It is concluded that an increase in the relative proportion of wheat chromosomes in the hybrids had a slight suppression effect on homologous as well as homoeologous pairing of rye chromosomes. Contrary to this, the relative increase in rye complement promoted homoeologous pairing between wheat chromosomes. In triploid hybrids, the chiasmata frequency as well as the c value were the highest, suggesting that in tetraploid hybrids rye chromosomes had a reduced pairing (low frequency of ring bivalents).  相似文献   

3.
Abstract Plants of Allium monanthum Maxim., whose gender expression are usually dioecious, but rarely hermaphrodite or gynomonoecious, proved to constitute a polyploid complex, consisting of diploid, triploid, and tetraploid individuals. The basic chromosome complement of this species consists of seven metacentric or submetacentric chromosomes and one acrocentric, the latter possessing a satellite on the short arm. Thus, the karyotype formula is expressed as 7V+11 (x=8). The diploid plants (2n = 16) were confined to central Honshu, Japan. Typical female plants possessed the standard karyotype, whereas male plants were heterozygous for two kinds of translocations. The 3x plants (2n=24) are somewhat widely distributed in the areas from the Kanto to Hokuriku district in Honshu. All female triploid plants possessed the standard karyotype. The geographical distribution of 4x plants (2n=32) which express mostly a female phenotype occurred nearly throughout the whole areas investigated; they are geographically isolated from the 2x plants. A majority of 4x plants had the standard karyotype. The remaining tetraploids were of the aberrant type, 4x/51, which has five acrocentric chromosomes, and two aneuploids 4x+1 and 4x-1. Both 3x and 4x forms seem to be of autopolyploid origin. Three kinds of aberrant nucleolar chromosomes with an extra satellite or an inseried secondary constriction were found in the heterozygotes for translocations of 2x plants and also in some plants of the 3x form. These aberrant plants usually form their own homogeneous populations, but were somewhat scattered throughout the range in their distribution. Thus, these individuals are considered to have perpetuated these types of chromosome aberrations which originated in the remote past.  相似文献   

4.
The hybridity of eleven somatic hybrids between a diploidS. tuberosum and a diploidS. phureja clone could be verified because the parent karyotypes differed in their C-banding patterns. The hybrids were hypotetraploid and some carried structurally rearranged chromosomes and/or minute centric fragments. The nucleolar chromosomes ofS. phureja were eliminated preferentially. The function of the remaining nucleolar organizer regions was not suppressed. Nuclear DNA content was correlated with the hypotetraploid chromosome numbers.  相似文献   

5.
Interrelationships between H. vulgare (2x=14) and H. bulbosum (2x=14; 4x=28) were estimated on the basis of the karyotypes and the pairing behaviour of the chromosomes in diploid, triploid and tetraploid hybrids obtained with the aid of embryo culture. — A comparison of the karyotypes of the two species revealed similarities as well as differences. It was concluded that at least 4 or more of the chromosomes were similar in morphology and probably closely related. — Diploid and tetraploid hybrids are rarely obtained and their chromosome numbers tend to be unstable whereas triploid hybrids (1 vulgare + 2 bulbosum genomes) were stable and relatively easy to produce. In the diploid hybrid only 40% of the meiotic cells contained 14 chromosomes while the numbers ranged from 7 to 16 in other cells. All hybrids exhibited pairing between the chromosomes of the two species. Diploid hybrids had a mean of 5.0 and a maximum of 7 bivalents per cell in those cells having 14 chromosomes. Triploid hybrids from crosses between 2x H. vulgare and 4x H. bulbosum exhibited a mean of 1.5 and a maximum of 5 trivalents per cell. In a hexaploid sector found following colchicine treatment of a triploid the mean frequencies of chromosome associations per cell were: 5.5I+8.0II+0.7III+3.7IV+0.3V+0.4VI. One unstable 27 chromosome hybrid obtained from crosses between the autotetraploid forms had a mean of 1.1 and a maximum of 4 quadrivalents per cell. The chromosome associations observed in these hybrids are consistent and are taken as evidence of homoeologous pairing between the chromosomes of the two species. Interspecific hybridization between these two species also reveals that chromosome stable hybrids are only obtained when the genomes are present in a ratio of 1 vulgare2 bulbosum. Based upon the results obtained, the possibility of transferring genetic characters from H. bulbosum into cultivated barley is discussed.  相似文献   

6.
The aim of the study was to characterize genomic relationships among cultivated tomato (Lycopersicon esculentum Mill.) (2n=2x=24) and diploid (2n=2x=24) non-tuberous wild Solanum species (S. etuberosum Lindl.). Using genomic in situ hybridization (GISH) of mitotic and meiotic chromosomes, we analyzed intergeneric somatic hybrids between tomato and S. etuberosum. Of the five somatic hybrids, two plants were amphidiploids (2n=4x=48) mostly forming intragenomic bivalents in their microsporocytes, with a very low frequency of multivalents involving the chromosomes of tomato and S. etuberosum (less than 0.2 per meiocyte). Tomato chromosomes showed preferential elimination during subsequent meiotic divisions of the amphidiploids. Transmission of the parental chromosomes into microspores was also evaluated by GISH analysis of androgenic plants produced by direct embryogenesis from the amphidiploid somatic hybrids. Of the four androgenic regenerants, three were diploids (2n=2x=24 or 2n=2x+1=25) derived from reduced male gametes of the somatic hybrids, and one plant was a hypertetraploid (2n=4x+4=52). GISH revealed that each anther-derived plant had a unique chromosome composition. The prospects for introgression of desirable traits from S. etuberosum into the gene pool of cultivated tomato are discussed. Received: 2 August 2000 / Accepted: 4 December 2000  相似文献   

7.
The chromosome numbers of the 24 species of sect.Pelargonium were determined from field collected and cultivated plants of known localities in S. Africa. Twelve species are diploid (2n = 22), eight tetraploid (2n = 44), one hexaploid (2n = 66), and three octoploid (2n = 88). The chromosome numbers correlate well with the proposed subdivision of sect.Pelargonium. Its chromosomes are relatively small (1.0–1.5 µm) in comparison to most of the other sections, and its diploid karyotype is considered to be primitive. The occurrence of the basic number x = 11 in this section, in other sections of the genus, and in related genera (Monsonia, Sarcocaulon) leads to the conclusion that x = 11 probably is basic for the whole genus. — The pollen meiosis, microsporogenesis and pollen fertility of the diploid species is normal, with the exception of one, possibly young taxon from the Greyton Nature Reserve. The tetraploid species could be of autoploid origin, the higher polyploids exhibit a mixed auto-alloploid nature. — The 20 diploid and tetraploid species have a relatively small distribution range, most of them occur in the SW. Cape Province of South Africa. This area may therefore be considered as the centre of origin of the genus. Three of the four high polyploid species occupy rather large areas.
Untersuchungen zur Karyologie und Mikrosporogenese der GattungPelargonium, 1.  相似文献   

8.
 The line IvP35 of the diploid (2n=2x=24) cultivated potato species Solanum phureja (family Solanaceae) expresses hypersensitive resistance (H) to potato X potexvirus (PVX). In this study, a diploid potato population was produced using IvP35 as the male parent and a diploid line of S. tuberosum (87HW13.7) as the female parent and tested for resistance to PVX. Data indicated that H to PVX in IvP35 is a dominant, monogenically inherited trait controlled by a single gene, named Nx phu , that is in a simplex condition (Nxnx). RFLP analysis carried out on the progeny lines revealed 4 markers (CT220, TG328, CT112 and TG424) from the long arm of chromosome IX that were linked to the hypersensitive phenotype; the closest linkage was observed with the marker TG424. Previous authors have shown that the same region of chromosome IX contains the gene Sw-5 for resistance to tomato spotted wilt tospovirus in Lycopersicon peruvianum (Solanaceae). Received: 18 September 1997 / Accepted: 24 November 1997  相似文献   

9.
Summary Seeds formed in crosses Hordeum lechleri (6x) x H. vulgare (2x and 4x), H. arizonicum (6x) x H. v. (2x), H. parodii (6x) x H. v. (2x), and H. tetraploidum (4x) x H. v. (2x) produced plants at high or rather high frequencies through embryo rescue. Giemsa C-banding patterns were used to analyze chromosomal constitutions and chromosomal locations on the methaphase plate. Among 100 plants obtained from H. vulgare (2x) crosses, 32 plants were aneuploid with 2n=29 (1), 28 (3), 27 (13), 26 (5), 25 (4), 24 (4), or 22 (2); 50 were euploid (12 analyzed), and 18 were polyhaploid (5 analyzed). Four plants had two sectors differing in chromosome number. Two of four hybrids with H. vulgare (4x) were euploid and two were aneuploid. Parental genomes were concentrically arranged with that of H. vulgare always found closest to the metaphase centre. Many plants showed a certain level of intraplant variation in chromosome numbers. Except for one H. vulgare (4x) hybrids, this variation was restricted to peripherally located non-H. vulgare genomes. This may reflect a less firm attachment of the chromosomes from these genomes to the spindle. Interplant variation in chromosome numbers was due to the permanent elimination or, far less common, duplication of the centrally located H. vulgare chromosomes in all 34 aneuploids, and in a few also to loss/gain of non-H, vulgare chromosomes. This selective elimination of chromosomes of the centrally located genome contrasts conditions found in diploid interspecific hybrids, which eliminate the peripherally located genome. The difference is attributed to changed genomic ratios. Derivatives of various H. vulgare lines were differently distributed among euploid hybrids, aneuploids, and polyhaploids. Chromosomal constitutions of hypoploid hybrids revealed a preferential elimination of H. vulgare chromosomes 1, 5, 6, and 7, but did not support the idea that H. vulgare chromosomes should be lost in a specific order. H. vulgare SAT-chromosomes 6 and 7 showed nucleolar dominance. Aneuploidy is ascribed to the same chromosome elimination mechanism that produces haploids in cross-combinations with H. vulgare (2x). The findings have implications for the utilization of interspecific Hordeum hybrids.  相似文献   

10.
The karyotypes of four gerreids of the western Atlantic Ocean are documented. A diploid chromosome complement of 48 telocentric chromosomes was found in the four species (2N=48t, fundamental number FN=48). No differences were detected either in the number of chromosomes of the standard karyotype, in their karyotype size, or between the karyotypes derived from male or female specimens of any of the species. Chromosome length decreased progressively and slightly from pair 1 to pair 24. The Ag–NOR karyotypes of E. argenteus and E. harengulus were characterized by the position of the nucleolar organizer regions next to the centromere in chromosome pair 1, whereas in E. gula and E. plumieri Ag–NORs were detected in pair 4. The other 46 chromosomes showed a light staining of the centromere with no terminal or intermediate heterochromatic blocks. All Eucinostomus species showed Ag–NORs of similar size, while Eugerres plumieri showed Ag–NORs 10–20% larger than Eucinostomus species. A combination of size and position of the Ag–NORs identified E. gula, while size alone identified E. plumieri. However, the ancestral state for size and position of Ag–NORs could not be established. There was no differential staining of the chromosomes by G-banding. The karyotype of the gerreids appears similar to the hypothetical ancestral karyotype of fish. The phylogenetic relationships among these species could not be established because of the lack of chromosome G-bands. Most likely this indicates a homogeneous distribution of GC nucleotides in the chromosomes.  相似文献   

11.
Summary Chromosome pairing and chiasma frequency were studied in bread wheat euhaploids (2n = 3x = 21; ABD genomes) with and without the major pairing regulatorPh1. This constitutes the first report of chromosome pairing relationships among the A, B, and D genomes of wheat without the influence of an alien genome. AllPh1 euhaploids had very little pairing, with 0.62–1.05 rod bivalents per cell; ring bivalents were virtually absent and mean arm-binding frequency (c) values ranged from 0.050 to 0.086. In contrast, theph1b euhaploids had extensive homoeologous pairing, with chiasma frequency 7.5–11.6 times higher than that in thePh1 euhaploids. They had 0.53–1.16 trivalents, 1.53–1.74 ring bivalents, and 2.90–3.57 rod bivalents, withc from 0.580 to 0.629. N-banding of meiotic chromosomes showed strongly preferential pairing between chromosomes of the A and D genomes; 80% of the pairing was between these genomes, especially in the presence of theph1b allele. The application of mathematical models to unmarked chromosomes also supported a 21 genomic structure of theph1b euhaploids. Numerical modeling suggested that about 80% of the metaphase I association was between the two most related genomes in the presence ofph1b, but that pairing under Ph1 was considerably more random. The data demonstrate that the A and D genomes are much more closely related to each other than either is to B. These results may have phylogenetic significance and hence breeding implications.This paper is dedicated to the memory of the late Ernest R. SearsCooperative investigations of the USDA-Agricultural Research Service and the Utah Agricultural Experiment Station, Logan, UT 84322, USA. Approved as Journal Paper No. 3986  相似文献   

12.
Protoplasts from diploid S. tuberosum and diploid S. phureja were electrofused followed by selection of the heterokaryons with a micromanipulator. Visual identification of the heterokaryons was facilitated by fluorescein diacetate staining of the protoplasts from one of the parents, which was grown on herbicide containing medium to induce bleaching of the chlorophyll. In total, 840 heterokaryons showing red (chlorophyll) and yellow-green (fluorescein) fluorescence were selected and cultured at relatively low densities using various feeder systems. Finally, 18 putative hybrid plantlets were obtained and grown to maturity. DNA histograms indicated that the plants were hexaploid, octoploid or mixoploid. With Giemsa C-band pattern analysis of the chromosomes the hybrid character and the combinations of the chromosome sets of all plants investigated could be established.  相似文献   

13.
Summary An in situ hybridization procedure was developed for mitotic potato chromosomes by using a potato 24S rDNA probe. This repetitive sequence hybridized to the nucleolar organizer region (NOR) of chromosome 2 in 95%–100% of the metaphase plates. Another repetitive sequence (P5), isolated from the interdihaploid potato HH578, gave a ladderpattern in genomic Southern's of Solanum tuberosum and Solanum phureja, but not in those of Solanum brevidens and two Nicotiana species. This sequence hybridized predominantly on telomeric and centromeric regions of all chromosomes, although chromosomes 7, 8, 10 and 11 were not always labeled clearly.  相似文献   

14.
Quiros CF 《Genetics》1976,84(1):43-50
Crossing two parental plants carrying two types of extra chromosomes, 2n+2(5L•7S) by 2n+3(2S•2S) permitted effective selection for individuals with up to eight 2S•2S chromosomes in later generations. The crossing of 2n + 3(2S•2S) by 2n+1( 8S•8L) and by the wild tomato relative, diploid L. pimpinellifolium , produced plants with up to four extra chromosomes. The tolerance of 2S•2S chromosomes through both gametophytes is at least four extras. The presence of two to eight extra 2S•2S chromosomes decreased pollen fertility between 82 to 41%. Progeny tests reveal that 2S•2S chromosomes tend to be lost in transmission. Progenies of self-pollinated individuals with 25, 26, 27, 28, 29 and 30 chromosomes averaged 24.3, 25.1, 25.5, 27.1, 28.2 and 27.9 chromosomes respectively. The offspring of crosses between diploid and extrachromosomal plants showed similar tendencies. Evidently tomato 2S•2S chromosomes lack the mechanisms for accumulation characteristic of some plant species with naturally occurring accessory chromosomes.—Extra 2S•2S chromosomes are very stable mitotically and are not eliminated from the somatic tissue of unmodified plants. Severe pruning of certain plants induced loss or gain of these chromosomes.—The importance of accumulating two to 18 nucleolar organizer regions in a cell by addition of 2S•2S chromosomes is discussed.  相似文献   

15.
In vitro anther-derived monoploids (2n=x=12) of Solanum phureja were compared for shoot regeneration from leaf and stem explants under various environmental conditions. Monoploids from the same or different diploid clones varied for frequency and earliness of shoot regeneration and number of shoots formed per explant. Leaf explants regenerated at higher frequencies than stem explants. Explants from stock plantlets subcultured at a 2- or 4-week interval regenerated earlier and at a higher frequency than those from plantlets subcultured at longer intervals. Regeneration frequency and number of shoots per explant were greater when explants were incubated at 20°C compared to 25°C. Explants from stock plantlets maintained under a 16 h as opposed to an 11 h photoperiod exhibited increased shoot regeneration; however, neither photoperiod nor the maintenance temperature of the stock plantlets influenced regeneration frequency. Genotypic differences were observed for the frequency of chromosome doubling among regenerated shoots whereas temperature treatments had no influence on chromosome doubling.Abbreviations BA benzyladenine - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA -naphthale-neacetic acid  相似文献   

16.
The chromosome numbers of seven species ofPelargonium sect.Eumorpha have been determined from material of known wild origin, and karyotypic comparisons have been made. Within the section there is variation in basic chromosome number (x = 4, 8, 9, 11), variation in chromosome size, and two species have polyploid races. The three species with chromosome numbers based on x = 11 have the smallest chromosomes (1.0–1.5 µm); chromosomes are larger (1.0–3.0 µm) in the other species.P. elongatum has the lowest chromosome number in the genus (2n = 8).P. alchemilloides is exceptional in that it has four cytotypes, 2n = 16, 18, 34 and 36, and the form with 2n = 36 has large chromosomes (2.0–5.0 µm). Evidence from a synthesized hybrid suggests thatP. alchemilloides with 2n = 16 may be of polyploid origin. The three species based on x = 11 appear to be more closely related to species from other sections ofPelargonium that have the same basic chromosome number and small chromosome size, rather than to other species of sect.Eumorpha.  相似文献   

17.
In cereals, interspecific and intergeneric hybridizations (wide crosses) which yield karyotypically stable hybrid plants have been used as starting points to widen the genetic base of a crop and to construct stocks for genetic analysis. Also, uniparental genome elimination in karyotypically unstable hybrids has been utilized for cereal haploid production. We have crossed hexaploid oat (2n=6x=42, Avena sativa L.) and maize (2n=2x=20, Zea mays L.) and recovered 90 progenies through embryo rescue. Fifty-two plants (58%) produced from oatxmaize hybridization were oat haploids (2n=3x=21) following maize chromosome elimination. Twenty-eight plants (31%) were found to be stable partial hybrids with 1–4 maize chromosomes in addition to a haploid set of 21 oat chromosomes (2n=21+1 to 2n=21+4). Ten of the ninety plants produced were found to be apparent chromosomal chimeras, where some tissues in a given plant contained maize chromosomes while other tissues did not, or else different tissues contained a different number of maize chromosomes. DNA restriction fragment length polymorphisms (RFLPs) were used to identify the maize chromosome(s) present in the various oat-maize progenies. Maize chromosomes 2, 3, 4, 5, 6, 7, 8, and 9 were detected in partial hybrids and chromosomal chimeras. Maize chromosomes 1 and 10 were not detected in the plants analyzed to-date. Furthermore, partial self-fertility, which is common in oat haploids, was also observed in some oat-maize hybrids. Upon selfing, partial hybrids with one or two maize chromosomes showed nearly complete transmission of the maize chromosome to give self-fertile maize-chromosome-addition oat plants. Fertile lines were recovered that contained an added maize chromosome or chromosome pair representing six of the ten maize chromosomes. Four independently derived disomic maize chromosome addition lines contained chromosome 4, one line carried chromosome 7, two lines had chromosome 9, one had chromosome 2, and one had chromosome 3. One maize chromosome-8 monosomic addition line was also identified. We also identified a double disomic addition line containing both maize chromosomes 4 and 7. This constitutes the first report of the production of karyotypically stable partial hybrids involving highly unrelated species from two subfamilies of the Gramineae (Pooideae — oat, and Panicoideae — maize) and the subsequent recovery of fertile oat-maize chromosome addition lines. These represent novel material for gene/ marker mapping, maize chromosome manipulation, the study of maize gene expression in oat, and the transfer of maize DNA, genes, or active transposons to oat.Joint contribution of the Minnesota Agricultural Experiment Station and USDA-ARS. Scientific journal series paper No. 21 859 of the Minnesota Agricultural Experiment Station. Mention of a trademark or proprietary product does not constitute a guarantee or warranty by the USDA-ARS or the University of Minnesota and does not imply approval over other products that also may be suitable  相似文献   

18.
The chromosome complements of six cyprinid fishes were studied, using the routine air-drying Giemsa staining technique. The diploid chromosome number recorded is 2n = 50 (8m+18sm+14st+10t) with NF = 90 in Aspidoparia morar, 2n = 50 (8m+12sm+12st+18t) with NF = 82 in Crossocheilus latius latius, 2n = 50 (6m+12sm–16st+16t) with NF = 90 in Labeo pangusia, 2n = 70 (16m+6sm+16st–32t) with NF = 108 in Perilampus atpar, 2n = 48 (4m+6st+38t) with NF = 58 in Puntius chrysopterus and 2n = 50 (2m+2sm+4st+42t) with NF = 58 in P. tetrarupagus. Sex chromosomes are not identifiable in any of these species. A pair of marker chromosomes has been observed in all species excepting A. morar.  相似文献   

19.
The cytological possibility of gene transfer from Sinapis pubescens to Brassica napus was investigated. Intergeneric hybrids between Brassica napus (2n = 38) and Sinapis pubescens (2n = 18) were produced through ovary culture. The F1 hybrids were dihaploid and the chromosome configurations were (0–1) III + (2–11) II + (5–24) I . One F2 plant with 38 chromosomes was obtained from open pollination of the F1 hybrid. Thirty-one seeds were obtained from the backcross of the F2 plant with B. napus. Five out of seven plants had 38 chromosomes, and the pollen stainability ranged from 0% to 81.4%. In the B2 plants obtained from the backcross of B1 plants with B. napus, 66.7% of the plants examined had 38 chromosomes. S. pubescens may become a gene source for the improvement of B. napus.  相似文献   

20.
Gynogenetic plants of pot gerbera (Gerbera jamesonii) were successfully produced from cultures of unpollinated ovulesin vitro. Genotypic variations in the number of ovules that formed callus were found among the lines tested. One particularly responsive genotype was found among 17 genotypes tested where the frequency of callus-forming ovules was 17.5%. Four genotypes formed no callus at all. The frequency of shoot formation from the callus varied from 0–19.6% in nine genotypes. Ploidy was determined by flow cytometry, and 37 (80.4%) regenerants were haploid, seven (15.2%) were diploid, and two (4.3%) were mixoploid with both haploid and diploid cells. The doubling of chromosomes was achieved by treatment with 0.05% colchicine for 2–6 din vitro, and 24.2–34.1% of treated haploid plants were found to have been diploidized.Abbreviations BA 6-benzylaminopurine - NAA 1-naphthaleneacetic acid - IAA indole-3-acetic acid - DAPI 4 ,6-diamidino-2-phenylindole dihydrochloride - MS Murashige and Skoog (1962) basal medium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号