首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluated the impact of inoculum preparation and storage conditions on the response of Escherichia coli O157:H7 exposed to consumer-induced stresses simulating undercooking and digestion. Lean beef tissue samples were inoculated with E. coli O157:H7 cultures prepared in tryptic soy broth or meat decontamination runoff fluids (WASH) or detached from moist biofilms or dried biofilms formed on stainless steel coupons immersed in inoculated WASH. After inoculation, the samples were left untreated or dipped for 30 s each in hot (75 degrees C) water followed by lactic acid (2%, 55 degrees C), vacuum packaged, stored at 4 (28 days) or 12 degrees C (16 days), and periodically transferred to aerobic storage (7 degrees C for 5 days). During storage, samples were exposed to sequential heat (55 degrees C; 20 min) and simulated gastric fluid (adjusted to pH 1.0 with HCl; 90 min) stresses simulating consumption of undercooked beef. Under the conditions of this study, cells originating from inocula of planktonic cells were, in general, more resistant to heat and acid than cells from cultures grown as biofilms and detached prior to meat inoculation. Heat and acid tolerance of cells on meat stored at 4 degrees C was lower than that of cells on nondecontaminated meat stored at 12 degrees C, where growth occurred during storage. Decontamination of fresh beef resulted in injury that inhibited subsequent growth of surviving cells at 12 degrees C, as well as in decreases in resistance to subsequent heat and acid stresses. The shift of pathogen cells on beef stored under vacuum at 4 degrees C to aerobic storage did not affect cell populations or subsequent survival after sequential exposure to heat and simulated gastric fluid. However, the transfer of meat stored under vacuum at 12 degrees C to aerobic storage resulted in reduction in pathogen counts during aerobic storage and sensitization of survivors to the effects of sequential heat and acid exposure.  相似文献   

2.
A potential may exist for survival of and resistance development by Escherichia coli O157:H7 in environmental niches of meat plants applying carcass decontamination interventions. This study evaluated (i) survival or growth of acid-adapted and nonadapted E. coli O157:H7 strain ATCC 43895 in acetic acid (pH 3.6 ± 0.1) or in water (pH 7.2 ± 0.2) fresh beef decontamination runoff fluids (washings) stored at 4, 10, 15, or 25°C and (ii) resistance of cells recovered from the washings after 2 or 7 days of storage to a subsequent lactic acid (pH 3.5) stress. Corresponding cultures in sterile saline or in heat-sterilized water washings were used as controls. In acetic acid washings, acid-adapted cultures survived better than nonadapted cultures, with survival being greatest at 4°C and lowest at 25°C. The pathogen survived without growth in water washings at 4 and 10°C, while it grew by 0.8 to 2.7 log cycles at 15 and 25°C, and more in the absence of natural flora. E. coli O157:H7 cells habituated without growth in water washings at 4 or 10°C were the most sensitive to pH 3.5, while cells grown in water washings at 15 or 25°C were relatively the most resistant, irrespective of previous acid adaptation. Resistance to pH 3.5 of E. coli O157:H7 cells habituated in acetic acid washings for 7 days increased in the order 15°C > 10°C > 4°C, while at 25°C cells died off. These results indicate that growth inhibition by storage at low temperatures may be more important than competition by natural flora in inducing acid sensitization of E. coli O157:H7 in fresh meat environments. At ambient temperatures in meat plants, E. coli O157:H7 may grow to restore acid resistance, unless acid interventions are applied to inhibit growth and minimize survival of the pathogen. Acid-habituated E. coli O157:H7 at 10 to 15°C may maintain a higher acid resistance than when acid habituated at 4°C. These responses should be evaluated with fresh meat and may be useful for the optimization of decontamination programs and postdecontamination conditions of meat handling.  相似文献   

3.
Radiation Resistance and Injury of Yersinia enterocolitica   总被引:5,自引:5,他引:0       下载免费PDF全文
The D values of Yersinia enterocolitica strains IP134, IP107, and WA, irradiated at 25°C in Trypticase soy broth, ranged from 9.7 to 11.8 krad. When irradiated in ground beef at 25 and −30°C, the D value of strain IP107 was 19.5 and 38.8 krad, respectively. Cells suspended in Trypticase soy broth were more sensitive to storage at −20°C than those mixed in ground beef. The percentages of inactivation and of injury (inability to form colonies in the presence of 3.0% NaCl) of cells stored in ground beef for 10 days at −20°C were 70 and 23%, respectively. Prior irradiation did not alter the cell's sensitivity to storage at −20°C, nor did storage at −20°C alter the cell's resistance to irradiation at 25°C. Added NaCl concentrations of up to 4.0% in Trypticase soy agar (TSA) (which contains 0.5% NaCl) had little effect on colony formation at 36°C of unirradiated Y. enterocolitica. With added 4.0% NaCl, 79% of the cells formed colonies at 36°C; with 5.0% NaCl added, no colonies were formed. Although 2.5% NaCl added to ground beef did not sensitize Y. enterocolitica cells to irradiation, when added to TSA it reduced the number of apparent radiation survivors. Cells uninjured by irradiation formed colonies on TSA when incubated at either 36 or 5°C. More survivors of an exposure to 60 krad were capable of recovery and forming colonies on TSA when incubated at 36°C for 1 day than at 5°C for 14 days. This difference in count was considered a manifestation of injury to certain survivors of irradiation.  相似文献   

4.
Depending on its composition and metabolic activity, the natural flora that may be established in a meat plant environment can affect the survival, growth, and acid tolerance response (ATR) of bacterial pathogens present in the same niche. To investigate this hypothesis, changes in populations and ATR of inoculated (105 CFU/ml) Listeria monocytogenes were evaluated at 35°C in water (10 or 85°C) or acidic (2% lactic or acetic acid) washings of beef with or without prior filter sterilization. The model experiments were performed at 35°C rather than lower (≤15°C) temperatures to maximize the response of inoculated L. monocytogenes in the washings with or without competitive flora. Acid solution washings were free (<1.0 log CFU/ml) of natural flora before inoculation (day 0), and no microbial growth occurred during storage (35°C, 8 days). Inoculated L. monocytogenes died off (negative enrichment) in acid washings within 24 h. In nonacid (water) washings, the pathogen increased (approximately 1.0 to 2.0 log CFU/ml), irrespective of natural flora, which, when present, predominated (>8.0 log CFU/ml) by day 1. The pH of inoculated water washings decreased or increased depending on absence or presence of natural flora, respectively. These microbial and pH changes modulated the ATR of L. monocytogenes at 35°C. In filter-sterilized water washings, inoculated L. monocytogenes increased its ATR by at least 1.0 log CFU/ml from days 1 to 8, while in unfiltered water washings the pathogen was acid tolerant at day 1 (0.3 to 1.4 log CFU/ml reduction) and became acid sensitive (3.0 to >5.0 log CFU/ml reduction) at day 8. These results suggest that the predominant gram-negative flora of an aerobic fresh meat plant environment may sensitize bacterial pathogens to acid.  相似文献   

5.
The changes in microbial flora and sensory characteristics of fresh ground meat (beef and pork) with pH values ranging from 5.34 to 6.13 were monitored at different isothermal storage temperatures (0 to 20°C) under aerobic conditions. At all conditions tested, pseudomonads were the predominant bacteria, followed by Brochothrix thermosphacta, while the other members of the microbial association (e.g., lactic acid bacteria and Enterobacteriaceae) remained at lower levels. The results from microbiological and sensory analysis showed that changes in pseudomonad populations followed closely sensory changes during storage and could be used as a good index for spoilage of aerobically stored ground meat. The kinetic parameters (maximum specific growth rate [μmax] and the duration of lag phase [λ]) of the spoilage bacteria were modeled by using a modified Arrhenius equation for the combined effect of temperature and pH. Meat pH affected growth of all spoilage bacteria except that of lactic acid bacteria. The “adaptation work,” characterized by the product of μmax and λ(μmax × λ) was found to be unaffected by temperature for all tested bacteria but was affected by pH for pseudomonads and B. thermosphacta. For the latter bacteria, a negative linear correlation between ln(μmax × λ) and meat pH was observed. The developed models were further validated under dynamic temperature conditions using different fluctuating temperatures. Graphical comparison between predicted and observed growth and the examination of the relative errors of predictions showed that the model predicted satisfactorily growth under dynamic conditions. Predicted shelf life based on pseudomonads growth was slightly shorter than shelf life observed by sensory analysis with a mean difference of 13.1%. The present study provides a “ready-to-use,” well-validated model for predicting spoilage of aerobically stored ground meat. The use of the model by the meat industry can lead to effective management systems for the optimization of meat quality.  相似文献   

6.
Microbial growth on meat to unacceptable levels contributes significantly to change meat structure, color and flavor and to cause meat spoilage. The types of microorganisms initially present in meat depend on several factors and multiple sources of contamination can be identified. The aims of this study were to evaluate the microbial diversity in beefsteaks before and after aerobic storage at 4°C and to investigate the sources of microbial contamination by examining the microbiota of carcasses wherefrom the steaks originated and of the processing environment where the beef was handled. Carcass, environmental (processing plant) and meat samples were analyzed by culture-independent high-throughput sequencing of 16S rRNA gene amplicons. The microbiota of carcass swabs was very complex, including more than 600 operational taxonomic units (OTUs) belonging to 15 different phyla. A significant association was found between beef microbiota and specific beef cuts (P<0.01) indicating that different cuts of the same carcass can influence the microbial contamination of beef. Despite the initially high complexity of the carcass microbiota, the steaks after aerobic storage at 4°C showed a dramatic decrease in microbial complexity. Pseudomonas sp. and Brochothrix thermosphacta were the main contaminants, and Acinetobacter, Psychrobacter and Enterobacteriaceae were also found. Comparing the relative abundance of OTUs in the different samples it was shown that abundant OTUs in beefsteaks after storage occurred in the corresponding carcass. However, the abundance of these same OTUs clearly increased in environmental samples taken in the processing plant suggesting that spoilage-associated microbial species originate from carcasses, they are carried to the processing environment where the meat is handled and there they become a resident microbiota. Such microbiota is then further spread on meat when it is handled and it represents the starting microbial association wherefrom the most efficiently growing microbial species take over during storage and can cause spoilage.  相似文献   

7.
The relationships of potato (Solanum tuberosum L.) tuber membrane permeability and membrane lipid composition to sugar accumulation were examined. Tubers from four potato cultivars were stored for 40 weeks at 3°C and 9°C. Rates of tuber membrane electrolyte leakage, total fatty acid composition, free fatty acid composition, and sugar content were measured throughout the storage period. Storage of tubers at 3°C caused dramatic increases in total fatty acid unsaturation, membrane permeability, and sugar content compared to tubers stored at 9°C. Cultivars with higher levels of fatty acid unsaturation had lower rates of membrane electrolyte leakage and lower sugar contents. We propose that high initial levels or high induced levels of membrane lipid unsaturation mitigate increases in tuber membrane permeability during storage, thus positively influencing the processing quality of stored potato tubers.  相似文献   

8.
Flow cytometry has been used as a routine method to count somatic cells in milk, and to ascertain udder health and milk quality. However, few studies investigate the viability of somatic cells and even fewer at a subpopulation level to follow up how the cells can resist to various stresses that can be encountered during technological processes. To address this issue, a flow cytometry approach was used to simultaneously identify cell types of bovine milk using cell-specific antibodies and to measure the cell viability among the identified subpopulations by using a live/dead cell viability kit. Confirmation of the cell viability was performed by using conventional microscopy. Different physico-chemical treatments were carried out on standardized cell samples, such as heat treatment, various centrifugation rates and storage in milk or in PBS pH 7.4 for three days. Cytometry gating strategy was developed by using blood cell samples stored at 4°C in PBS and milk cell samples heat-treated at 80°C for 30 min as a control for the maximum (95.9%) and minimum (0.7%) values of cell viability respectively. Cell viability in the initial samples was 39.5% for all cells and varied for each cell population from 26.7% for PMNs, to 32.6% for macrophages, and 58.3% for lymphocytes. Regarding the physico-chemical treatments applied, somatic cells did not sustain heat treatment at 60°C and 80°C in contrast to changes in centrifugation rates, for which only the higher level, i.e. 5000×g led to a cell viability decrease, down to 9.4%, but no significant changes within the cell subpopulation distribution were observed. Finally, the somatic cells were better preserved in milk after 72h storage, in particular PMNs, that maintained a viability of 34.0 ± 2.9% compared to 4.9±1.9% in PBS, while there was almost no changes for macrophages (41.7 ± 5.7% in milk vs 31.2 ± 2.4% in PBS) and lymphocytes (25.3 ± 3.0% in milk vs 11.4 ± 3.1% in PBS). This study provides a new array to better understand milk cell biology and to establish the relationship between the cell viability and the release of their endogenous enzymes in dairy matrix.  相似文献   

9.
Fifty strains representing 38 species of the genus Legionella were examined for biofilm formation on glass, polystyrene, and polypropylene surfaces in static cultures at 25°C, 37°C, and 42°C. Strains of Legionella pneumophila, the most common causative agent of Legionnaires' disease, were found to have the highest ability to form biofilms among the test strains. The quantity, rate of formation, and adherence stability of L. pneumophila biofilms showed considerable dependence on both temperature and surface material. Glass and polystyrene surfaces gave between two- to sevenfold-higher yields of biofilms at 37°C or 42°C than at 25°C; conversely, polypropylene surface had between 2 to 16 times higher yields at 25°C than at 37°C or 42°C. On glass surfaces, the biofilms were formed faster but attached less stably at 37°C or 42°C than at 25°C. Both scanning electron microscopy and confocal laser scanning microscopy revealed that biofilms formed at 37°C or 42°C were mycelial mat like and were composed of filamentous cells, while at 25°C, cells were rod shaped. Planktonic cells outside of biofilms or in shaken liquid cultures were rod shaped. Notably, the filamentous cells were found to be multinucleate and lacking septa, but a recA null mutant of L. pneumophila was unaffected in its temperature-regulated filamentation within biofilms. Our data also showed that filamentous cells were able to rapidly give rise to a large number of short rods in a fresh liquid culture at 37°C. The possibility of this biofilm to represent a novel strategy by L. pneumophila to compete for proliferation among the environmental microbiota is discussed.  相似文献   

10.
The Feulgen-DNA content of sperm cells from 5 bulls was studied by means of microspectrophotometry after storage at 5°C for 2, 3, 5, and 10 days in a yolk-citrate diluent permitting slow aerobic metabolism. A subsample of sperm cells from each bull was subjected to the Feulgen technique on each of the storage days selected. The cells sampled on each of these days received a standard 12 minute, 60°C hydrolysis. Absorption measurements at 546 mµof the individual cells indicated a marked progressive decrease in the Feulgen-DNA content of the stored spermatozoa. The loss of 30 per cent of the initial DNA at the end of 5 days' storage was highly significant statistically. This decrease approximately parallels the known decrease in fertility of stored sperm cells, as well as the increase in apparent embryonic mortality resulting from the use of similarly aged spermatozoa for artificial insemination.  相似文献   

11.
BackgroundThe complete blood count (CBC) with differential leukocyte count (DLC) is one of the most common tests requested by physicians. The results of this test are affected by storage temperature and time of incubation. This study was designed to evaluate the stability of hematologic parameters in blood specimens stored for 48 h at three temperatures.MethodsK2-EDTA - blood was collected from 22 healthy adults. The CBC was performed using a hematology analyser immediately; 0 time point and at 4, 8, 12, 16, 20, 24, and 48 h after storage at 4 °C, 10 °C or 23 °C. Changes in values of CBC parameters from the 0 time point were determined and reported as % of the initial value.ResultsRed blood cells, platelet, hemoglobin, and mean corpuscular hemoglobin were found stable during 48 h storage at 4 °C, 10 °C or 23 °C. Hematocrite and mean corpuscular volume increased, while white blood cells decreased at 48 h when stored at 23 °C. Lymphocytes, neutrophils, eosinophils, and basophils showed significant differences after 12 h of storage at 23 °C.ConclusionsRed blood cells, platelet, hemoglobin, and mean corpuscular hemoglobin are the only suitable parameters without refrigeration during 24 h storage. When CBC and DLC are performed, 4 °C can be recommended as the most suitable storage temperature for 12 h storage.  相似文献   

12.
Cultured epidermal cell sheets (CECS) are used in regenerative medicine in patients with burns, and have potential to treat limbal stem cell deficiency (LSCD), as demonstrated in animal models. Despite widespread use, short-term storage options for CECS are limited. Advantages of storage include: flexibility in scheduling surgery, reserve sheets for repeat operations, more opportunity for quality control, and improved transportation to allow wider distribution. Studies on storage of CECS have thus far focused on cryopreservation, whereas refrigeration is a convenient method commonly used for whole skin graft storage in burns clinics. It has been shown that preservation of viable cells using these methods is variable. This study evaluated the effect of different temperatures spanning 4°C to 37°C, on the cell viability, morphology, proliferation and metabolic status of CECS stored over a two week period in a xenobiotic–free system. Compared to non-stored control, best cell viability was obtained at 24°C (95.2±9.9%); reduced cell viability, at approximately 60%, was demonstrated at several of the temperatures (12°C, 28°C, 32°C and 37°C). Metabolic activity was significantly higher between 24°C and 37°C, where glucose, lactate, lactate/glucose ratios, and oxygen tension indicated increased activation of the glycolytic pathway under aerobic conditions. Preservation of morphology as shown by phase contrast and scanning electron micrographs was best at 12°C and 16°C. PCNA immunocytochemistry indicated that only 12°C and 20°C allowed maintenance of proliferative function at a similar level to non-stored control. In conclusion, results indicate that 12°C and 24°C merit further investigation as the prospective optimum temperature for short-term storage of cultured epidermal cell sheets.  相似文献   

13.

Purpose

Storage of cultured human oral keratinocytes (HOK) allows for transportation of cultured transplants to eye clinics worldwide. In a previous study, one-week storage of cultured HOK was found to be superior with regard to viability and morphology at 12°C compared to 4°C and 37°C. To understand more of how storage temperature affects cell phenotype, gene expression of HOK before and after storage at 4°C, 12°C, and 37°C was assessed.

Materials and Methods

Cultured HOK were stored in HEPES- and sodium bicarbonate-buffered Minimum Essential Medium at 4°C, 12°C, and 37°C for one week. Total RNA was isolated and the gene expression profile was determined using DNA microarrays and analyzed with Partek Genomics Suite software and Ingenuity Pathway Analysis. Differentially expressed genes (fold change > 1.5 and P < 0.05) were identified by one-way ANOVA. Key genes were validated using qPCR.

Results

Gene expression of cultures stored at 4°C and 12°C clustered close to the unstored control cultures. Cultures stored at 37°C displayed substantial change in gene expression compared to the other groups. In comparison with 12°C, 2,981 genes were differentially expressed at 37°C. In contrast, only 67 genes were differentially expressed between the unstored control and the cells stored at 12°C. The 12°C and 37°C culture groups differed most significantly with regard to the expression of differentiation markers. The Hedgehog signaling pathway was significantly downregulated at 37°C compared to 12°C.

Conclusion

HOK cultures stored at 37°C showed considerably larger changes in gene expression compared to unstored cells than cultured HOK stored at 4°C and 12°C. The changes observed at 37°C consisted of differentiation of the cells towards a squamous epithelium-specific phenotype. Storing cultured ocular surface transplants at 37°C is therefore not recommended. This is particularly interesting as 37°C is the standard incubation temperature used for cell culture.  相似文献   

14.
A strain of Listeria monocytogenes isolated from a drain in a food-processing plant was demonstrated, by determination of D values, to be more resistant to the lethal effect of heat at 56 or 59°C following incubation for 45 min in tryptose phosphate broth (TPB) at pH 12.0 than to that of incubation for the same time in TPB at pH 7.3. Cells survived for at least 6 days when they were suspended in TPB at pHs 9.0, 10.0, and 11.0 and stored at 4 or 21°C. Cells of L. monocytogenes incubated at 37°C for 45 min and then stored for 48 or 144 h in TPB at pH 10.0 were more resistant to heat treatment at 56°C than were cells stored in TPB at pH 7.3. The alkaline-stress response in L. monocytogenes may induce resistance to otherwise lethal thermal-processing conditions. Treatment of cells in 0.05 M potassium phosphate buffer (pH 7.00 ± 0.05) containing 2.0 or 2.4 mg of free chlorine per liter reduced populations by as much as 1.3 log10 CFU/ml, while treatment with 6.0 mg of free chlorine per liter reduced populations by as much as 4.02 log10 CFU/ml. Remaining subpopulations of chlorine-treated cells exhibited some injury, and cells treated with chlorine for 10 min were more sensitive to heating at 56°C than cells treated for 5 min. Contamination of foods by L. monocytogenes cells that have survived exposure to processing environments ineffectively cleaned or sanitized with alkaline detergents or disinfectants may have more severe implications than previously recognized. Alkaline-pH-induced cross-protection of L. monocytogenes against heat has the potential to enhance survival in minimally processed as well as in heat-and-serve foods and in foods on holding tables, in food service facilities, and in the home. Cells surviving exposure to chlorine, in contrast, are more sensitive to heat; thus, the effectiveness of thermal processing in achieving desired log10-unit reductions is not compromised in these cells.  相似文献   

15.
The evolution of the microbial spoilage population for air- and vacuum-packaged meat (beef and pork) stored at 4°C was investigated over 11 days. We monitored the viable counts (mesophilic total aerobic bacteria, Pseudomonas spp., Enterobacteriaceae, lactic acid bacteria, and Enterococcus spp.) by the microbiological standard technique and by measuring the emission of volatile organic compounds (VOCs) with the recently developed proton transfer reaction mass spectrometry system. Storage time, packaging type, and meat type had statistically significant (P < 0.05) effects on the development of the bacterial numbers. The concentrations of many of the measured VOCs, e.g., sulfur compounds, largely increased over the storage time. We also observed a large difference in the emissions between vacuum- and air-packaged meat. We found statistically significant strong correlations (up to 99%) between some of the VOCs and the bacterial contamination. The concentrations of these VOCs increased linearly with the bacterial numbers. This study is a first step toward replacing the time-consuming plate counting by fast headspace air measurements, where the bacterial spoilage can be determined within minutes instead of days.  相似文献   

16.
Although beef has been implicated in the largest outbreaks of Escherichia coli O157:H7 infection in the United States, studies on the fate of this pathogen have been limited. Problems in such studies are associated with detection of the pathogen at levels considerably lower than the levels of the competing microorganisms. In the present study, a green fluorescent protein-expressing E. coli O157:H7 strain was used, and the stable marker allowed us to monitor the behavior of the pathogen in ground beef stored aerobically from freshness to spoilage at 2 and 10°C. In addition, the effects of sodium salts of lactate (SL) (0.9 and 1.8%), diacetate (SDA) (0.1 and 0.2%), and buffered citrate (SC) (1 and 2%) and combinations of SL and SDA were evaluated. SC had negligible antimicrobial activity, and SL delayed microbial growth, while SDA and SL plus SDA were most inhibitory to the total-aerobe population in the meat. At 2°C, the initial numbers of E. coli O157:H7 (3 and 5 log10 CFU/g) decreased by ~1 log10 CFU/g when spoilage was manifest (>7 log10 CFU of total aerobes/g), irrespective of the treatment. There was no decline in the numbers of the pathogen during storage at 10°C. Our results showed that the pathogen was resistant to the salts tested and confirmed that refrigerated meat contaminated with the pathogen remains hazardous.  相似文献   

17.
Aims: To investigate the influence of aerobic or vacuum pack storage of beef trimmings on the microbiology, colour and odour of subsequently produced mince. Methods and Results: Trimmings stored aerobically for 7 or 10 days and in vacuum packs for 7, 10, 14 or 22 days at 0 or 5°C were minced, stored aerobically at 0 or 5°C for up to 7 days and examined daily to determine Total viable, Pseudomonas, Lactic acid bacteria, Brochothrix thermosphacta, and Enterobacteriaceae counts, colour and odour. Mincing reduced counts, particularly of Pseudomonas, B. thermosphacta and Enterobacteriaceae, probably because of the action free radicals released from muscle and bacterial cells. Storage of vacuum‐packed trimmings for 22 days resulted in improved mince colour and inhibition of the growth of Pseudomonas. Conclusions: The shelf life of mince from trimmings is directly influenced by the trimmings storage conditions, and longer‐term vacuum storage of trimmings produced improvements in mince quality. Significance and Impact of the Study: There appears to be no scientific rationale for limiting the storage of vacuum packaging beef trimmings to 15 days, prior to mince production, as stated in EU 835/2004. This study identifies advantages in storing trimmings in vacuum packs for at least 21 days prior to mincing, in terms of improved mince quality.  相似文献   

18.
Enterobacter sakazakii has been reported to form biofilms, but environmental conditions affecting attachment to and biofilm formation on abiotic surfaces have not been described. We did a study to determine the effects of temperature and nutrient availability on attachment and biofilm formation by E. sakazakii on stainless steel and enteral feeding tubes. Five strains grown to stationary phase in tryptic soy broth (TSB), infant formula broth (IFB), or lettuce juice broth (LJB) at 12 and 25°C were examined for the extent to which they attach to these materials. Higher populations attached at 25°C than at 12°C. Stainless steel coupons and enteral feeding tubes were immersed for 24 h at 4°C in phosphate-buffered saline suspensions (7 log CFU/ml) to facilitate the attachment of 5.33 to 5.51 and 5.03 to 5.12 log CFU/cm2, respectively, before they were immersed in TSB, IFB, or LJB, followed by incubation at 12 or 25°C for up to 10 days. Biofilms were not produced at 12°C. The number of cells of test strains increased by 1.42 to 1.67 log CFU/cm2 and 1.16 to 1.31 log CFU/cm2 in biofilms formed on stainless steel and feeding tubes, respectively, immersed in IFB at 25°C; biofilms were not formed on TSB and LJB at 25°C, indicating that nutrient availability plays a major role in processes leading to biofilm formation on the surfaces of these inert materials. These observations emphasize the importance of temperature control in reconstituted infant formula preparation and storage areas in preventing attachment and biofilm formation by E. sakazakii.  相似文献   

19.
Bacillus subtilis 5230 spores were lyophilized in 0.067 M phosphate buffer and stored at 2 to 8°C for 9 to 27 months. The lyophilized spores were reconstituted with buffer or 0.9% saline, and the heat resistance was determined in a thermoresistometer. Lyophilization had no effect on the heat resistance of the spores but did result in a slight decrease in population (≤0.3-logarithm reduction). The lyophilized spores maintained heat resistance and population levels over the test periods. The D-values ranged from 0.44 to 0.54 min at 121.1°C, and the z-values ranged from 6.1 to 6.6°C. Lyophilization was concluded to be an acceptable alternative for storage of bacterial spores that are to be used as biological indicators in sterilization processes.  相似文献   

20.
Activated oxygen or oxygen free radical mediated damage to plants has been established or implicated in many plant stress situations. The extent of activated oxygen damage to potato (Solanum tuberosum L.) tubers during low temperature storage and long-term storage is not known. Quantitation of oxygen free radical mediated damage in plant tissues is difficult. However, it is comparatively easy to quantitate endogenous antioxidants, which detoxify potentially damaging forms of activated oxygen. Three tuber antioxidants, superoxide dismutase, catalase, and α-tocopherol were assayed from four potato cultivars stored at 3°C and 9°C for 40 weeks. Tubers stored at 3°C demonstrated increased superoxide dismutase activities (up to 72%) compared to tubers stored at 9°C. Time dependent increases in the levels of superoxide dismutase, catalase, and α-tocopherol occurred during the course of the 40 week storage. The possible relationship between these increases in antioxidants and the rate of activated oxygen production in the tubers is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号