首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D R Dorris  F L Erickson    E M Hannig 《The EMBO journal》1995,14(10):2239-2249
Translation initiation factor 2 (eIF-2) in eukaryotic organisms is composed of three non-identical subunits, alpha, beta and gamma. In a previous report, we identified GCD11 as an essential gene encoding the gamma subunit of eIF-2 in the yeast Saccharomyces cerevisiae. The predicted amino acid sequence of yeast eIF-2 gamma displays remarkable similarity to bacterial elongation factor Tu, including the presence of sequence elements conserved in all known guanine nucleotide binding proteins. We have identified the molecular defects present in seven unique alleles of GCD11 characterized by a partial loss of function. Three of these mutations result in amino acid substitutions within the putative GTP binding domain of eIF-2 gamma. We show that the gcd11 mutations specifically alter regulation of GCN4 expression at the translational level, without altering the scanning mechanism for protein synthesis initiation. Six of the mutant alleles presumably alter the function of eIF-2 gamma, rather than its abundance. A single allele, gcd11-R510H, suppresses a mutant his4 allele that lacks a functional AUG start codon. The latter result indicates that the gamma subunit of eIF-2 participates in recognition of the start site for protein synthesis, a role previously demonstrated in yeast for eIF-2 alpha and eIF-2 beta.  相似文献   

2.
cDNA clones for three distinct types of rat brain calmodulin-dependent protein kinase II have been isolated. Two of them were identified as cDNA clones for the alpha and beta subunits of this kinase. The other showed a nucleotide sequence similar but, not identical, to that encoding either the alpha or beta subunit. The cDNA sequence encoded a polypeptide, designated gamma, consisting of 527 amino acid residues with a molecular weight of 59,038. The deduced amino acid sequence of gamma was 84 and 87% homologous to those of alpha and beta, respectively. Higher homologies of the sequences were found in the amino-terminal halves of the three species, alpha, beta, and gamma. RNA blot analysis revealed that the mRNAs for alpha, beta, and gamma were expressed in rat brain with different regional specificities.  相似文献   

3.
4.
Y C Huang  R F Colman 《Biochemistry》1990,29(36):8266-8273
Pig heart NAD-dependent isocitrate dehydrogenase has a subunit structure consisting of alpha 2 beta gamma, with the alpha subunit exhibiting a molecular weight of 39,000 and the beta and gamma each having molecular weights of 41,000. The amino-terminal sequences (33-35 residues) and the cysteinyl peptide sequences have now been determined by using subunits separated by chromatofocusing or isoelectric focusing and electroblotting. Displacement of the N-terminal sequence of the alpha subunit by 11-12 amino acids relative to that of the larger beta and gamma subunits reveals a 17 amino acid region of great similarity in which 10 residues are identical in all three subunits. The complete enzyme has 6.0 free SH groups per average subunit of 40,000 daltons, but yields 15 distinguishable cysteines in isolated tryptic peptides. Six distinct cysteines in sequenced peptides have been located in the alpha subunit. The beta and gamma subunits contain seven and five cysteines, respectively, with tryptic peptides containing three cysteines being common to the beta and gamma subunits. The three subunits appear to be closely related, but beta and gamma are more similar to each other than either is to the alpha subunit. The NAD-specific isocitrate dehydrogenase from pig heart has been shown to have 2 binding sites/enzyme tetramer for isocitrate, manganous ion, NAD+, and the allosteric activator ADP [Colman, R. F. (1983) Pept. Protein Rev. 1, 41-69]. It is proposed that the catalytically active tetrameric enzyme is organized as a dimer of dimers in which the alpha beta and alpha gamma dimers are nonidentical but functionally similar.  相似文献   

5.
Characterization of the bilin attachment sites in R-phycoerythrin   总被引:9,自引:0,他引:9  
The amino acid sequence around the sites of attachment of all the bilin prosthetic groups of Gastroclonium coulteri R-phycoerythrin, (alpha beta)6 gamma, have been determined. The sequences of tryptic peptides derived from the alpha and beta subunits are (Formula: see text) where the designations alpha and beta refer to the subunits from which the peptides derived. Cysteinyl residues involved in bilin attachment are indicated with an asterisk. Each peptide carries a single bilin, either phycoerythrobilin (PEB) or phycourobilin (PUB). Spectroscopic studies on the gamma subunit indicate the presence of one PEB and three PUB groups. However, five unique tryptic peptides, gamma-A through gamma-E, were characterized, indicating that Gastroclonium R-phycoerythrin is a mixture of at least two species, (alpha beta)6 gamma and (alpha beta)6 gamma', with gamma subunits differing in amino acid sequence. The sequences of the gamma subunit bilin peptides (see below) were not homologous to those from alpha and beta subunits of any biliprotein. (Formula: see text) The bilins in all these peptides are attached through single linkages to a cysteinyl residue, except for the phycourobilin on peptide beta-3 which is attached through two thioether linkages to cysteinyl residues 10 amino acids apart. The availability of small bilin peptides was exploited to obtain more accurate molar extinction coefficients for peptide-linked PEB and PUB groups. Application of these extinction coefficients in the calculation of the bilin content of R-, B-, and C-phycoerythrins shows that there are 5 bilins/alpha beta in each of these three biliprotein types.  相似文献   

6.
J H Collins  J Leszyk 《Biochemistry》1987,26(26):8665-8668
The "gamma subunit", or "proteolipid", of Na,K-ATPase is a small, membrane-bound protein that copurifies with the alpha and beta subunits of this enzyme. The importance of gamma in the function of Na,K-ATPase remains to be established, but some evidence indicates that it may be involved in forming a receptor site for cardiac glycosides. We have previously communicated [Reeves, A. S., Collins, J. H., & Schwartz, A. (1980) Biochem. Biophys. Res. Commun. 95, 1591-1598] the purification and amino acid composition of sheep kidney gamma, and in this paper we present the first available sequence information on this protein. Although the amino terminus of gamma seems to be blocked and it is resistant to proteolytic cleavage, we have determined approximately half of its amino acid sequence. Our results indicate that gamma contains a total of 68 amino acid residues, with a calculated Mr of 7675. The sequenced portion appears to be at the carboxyl terminus of the polypeptide chain. The gamma sequence is unique, providing strong evidence for its homogeneity and establishing for the first time that it is not a breakdown product of the alpha or beta subunits. gamma is not a true proteolipid, but rather it is an amphiphilic protein with two distinct structural domains. The amino-terminal domain (residues 1-49) is very hydrophilic, with many charged amino acid side chains, and must be extracellular. This domain includes a concentrated segment of four aromatic residues which may be involved in glycoside binding. The carboxyl-terminal domain (residues 50-68) is hydrophobic and probably spans the cell membrane.  相似文献   

7.
The nucleotide sequence coding for the fourth component of mouse complement (C4) has been determined from a cloned genomic DNA fragment and a cloned cDNA fragment. The amino acid sequence of the protein was deduced. The single chain precursor protein (pro-C4) consists of 1719 amino acid residues. The mature beta, alpha, and gamma subunits contain 654, 766, and 291 amino acids, respectively. One potential carbohydrate attachment site is predicted for the beta chain, three for the alpha chain, and none for the gamma chain. From a comparison with human C4 cDNA sequence an extensive overall sequence homology, 79% in nucleotides and 76% in amino acids, is observed. There is conservation in both the position and number of cysteine residues in human and mouse C4. We compared the mouse C4 amino acid sequences with those of mouse C3 and human alpha 2-macroglobulin and the evolutionary relationship among these three proteins is discussed.  相似文献   

8.
By affinity labelling using two different GTP photoaffinity analogues we previously demonstrated that both the beta- and gamma-subunits of eukaryotic initiation factor eIF-2 are involved in GTP binding (Bommer, U.-A. and Kurzchalia, T.V. (1989) FEBS Lett. 244, 323-327). We have now applied the same method in combination with CNBr cleavage and microsequence analysis in order investigate which part of the polypeptide chain of eIF-2 beta is in close contact to the bound GTP. From the three main CNBr fragments of eIF-2 beta, the C-terminal one was found to be labelled by the applied GTP photoaffinity analogue, Guo(2',3'-TDBH)ppp. Because the cDNA sequence of the gamma-subunit of eIF-2 has not yet been published and because cDNA sequence analysis of eIF-2 beta revealed only two out of three consensus sequence elements of a GTP-binding domain, we also sequenced the CNBr fragments of eIF-2 gamma. In this way, sequences containing about 50 amino acid residues were obtained. Taken together with the recently published N-terminal sequences of tryptic peptides of eIF-2 gamma from pig liver (Suzuki et al. 1990, J. Biochem. 108, 635-641), about 30% of the total sequence is now known. One of the CNBr fragments from rabbit eIF-2 gamma contains a sequence (AXXAXXGK) which in several respects resembles that of the consensus sequence element absent from the beta-subunit.  相似文献   

9.
Gamma-aminobutyric acid, type A (GABA(A)) receptors are ligand-gated chloride channels and are the major inhibitory transmitter receptors in the central nervous system. The majority of these receptors is composed of two alpha, two beta, and one gamma subunits. To identify sequences important for subunit assembly, we generated C-terminally truncated and chimeric gamma(3) constructs. From their ability to associate with full-length alpha(1) and beta(3) subunits, we concluded that amino acid sequence gamma(3)(70-84) either directly interacts with alpha(1) or beta(3) subunits or stabilizes a contact site elsewhere in the protein. The observation that this sequence contains amino acid residues homologous to gamma(2) residues contributing to the benzodiazepine-binding site at the alpha(1)/gamma(2) interface suggested that in alpha(1)beta(3)gamma(3) receptors the sequence gamma(3)(70-84) is located at the alpha(1)/gamma(3) interface. In the absence of alpha(1) subunits this sequence might allow assembly of beta(3) with gamma(3) subunits. Other experiments indicated that sequences gamma(3)(86-95) and gamma(3)(94-107), which are homologous to previously identified sequences important for assembly of gamma(2) subunits, are also important for assembly of gamma(3) subunits. This indicates that during assembly of the GABA(A) receptor, more than one N-terminal sequence is important for binding to the same neighboring subunit. Whether the three sequences investigated are involved in direct interaction or stabilize other regions involved in intersubunit contacts has to be further studied.  相似文献   

10.
As part of an attempt to understand the specific function and role of each subunit in multisubunit protein synthesis factors, we have attempted to identify the nucleotide binding peptides of eukaryotic initiation factor 2 (eIF-2). To ensure that the interactions were of a specific nature, two general controls were used: first, other protein factors with characterized GTP binding activity were tested; second, all affinity labeling was checked for nucleotide specificity by protection with the authentic nucleotide at a 10-fold molar excess over the affinity reagent. Results with a number of GTP modifying reagents ([alpha-32P]GTP, [alpha-32P]GDP, oxidized [alpha-32P]GTP, 3'-p-azidobenzoyl-[alpha-32P]GTP, 3'-p-azidobenzoyl-[alpha-32P]GDP, and 5'-p-[8-3H]fluorosulfonylbenzoyl guanosine) indicate that appropriate conditions for both nucleotide and subunit specific labeling have been achieved. Under these conditions all reagents modified the beta subunit of eIF-2. Complementary studies with subunit-deficient forms of eIF-2 also suggest that the beta subunit of eIF-2 is involved with GTP binding. Coupled with other data suggesting that the gamma subunit of eIF-2 might be involved in GTP binding and amino acid sequence data of eIF-2 gamma from which a part of a GTP binding consensus sequence can be localized, support is provided for the concept of alternate GTP binding domains or a GTP binding domain shared between different subunits of eIF-2.  相似文献   

11.
The activity of eukaryotic initiation factor eIF-2 as to the formation of the ternary complex, eIF-2 GTP Met-tRNA(f), is inhibited by N-ethylmaleimide. Our preparation of pig liver eIF-2 contained alpha and gamma subunits and was inhibited by more than 90% by N-ethylmaleimide. Using our eIF-2, we determined the sequences around the N-ethylmaleimide-reactive sulfhydryl groups, studied the effect of GDP on the sulfhydryl modification and that of NEM on the [3H]GDP binding, and examined the protective effect of GTP against the inhibition of ternary complex formation by N-ethylmaleimide. Both subunits of native eIF-2 contained [14C]N-ethylmaleimide-reactive sulfhydryl groups. One N-ethylmaleimide-reactive sulfhydryl group was in the alpha subunit and 4 were in the gamma subunit. The sequence of the peptide of the alpha subunit was determined to be: Ala-Gly-Leu-Asn-Cys-Ser-Thr-Glu-Thr-Met-Pro-Ile. Two of the four [14C]N-ethylmaleimide-reactive sulfhydryl groups in the gamma subunit were highly reactive, their sequences being: Ile-Val-Leu-Thr-Asn-Pro-Val-Cys-Thr-Glu-Val-Gly-Glu-Lys (gamma 1); Ser-Cys-Gly-Ser-Ser-Thr-Pro-Asp-Glu-Phe-Pro-Thr-Asp-Ile-Pro-Gly-Thr-Lys (gamma 3a). Peptide gamma 3a contained the consensus sequence element (AspXaaXaaGly) of GTP-binding proteins. With preincubation of eIF-2 with GDP, the incorporation of [14C]N-ethylmaleimide into the gamma subunit was reduced to 40% of the control level, but the 14C-incorporation into the alpha subunit did not change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
GABA(A) receptors are chloride ion channels that can be opened by GABA, the most important inhibitory transmitter in the CNS. In the mammalian brain the majority of these pentameric receptors is composed of two alpha, two beta and one gamma subunit. To achieve the correct order of subunits around the pore, each subunit must form specific contacts via its plus (+) and minus (-) side. To identify a sequence on the beta3 subunit important for assembly, we generated various full-length or truncated chimeric beta3 constructs and investigated their ability to assemble with alpha1 and gamma2 subunits. It was demonstrated that replacement of the sequence beta3(76-89) by the homologous alpha1 sequence impaired assembly with alpha1 but not with gamma2 subunits in alpha1beta3gamma2-GABA(A) receptors. Other experiments indicated that assembly was impaired via the beta3(-) side of the chimeric subunit. Within the sequence beta3(76-89) the sequence beta3(85-89) seemed to be of primary importance for assembly with alpha1 subunits. A comparison with the structure of the acetylcholine-binding protein supports the conclusion that the sequence beta3(85-89) is located at the beta3(-) side and indicates that it contains amino acid residues that might directly interact with the (+) side of the neighbouring alpha1 subunit.  相似文献   

13.
R C Roberts  R S Ranu 《FEBS letters》1986,209(2):162-164
The specificity of the heme-regulated protein kinase (HRI) was investigated further by utilizing the isolated 38,000 Da subunit (alpha subunit) polypeptide of eIF-2 as the substrate. For this purpose, the three subunit polypeptides of eIF-2 (38,000 Da, alpha; 50,000 Da, beta; and 52,000 Da, gamma) were resolved by reversed-phase high performance liquid chromatography (HPLC). Results show that HRI is incapable of phosphorylating the 38,000 Da subunit separated from the other two eIF-2 polypeptides. Data suggest that the substrate specificity of HRI is determined by the quaternary structure assumed by the alpha subunit in association with the other two subunits in the eIF-2 holoprotein.  相似文献   

14.
We have cloned and sequenced the Saccharomyces cerevisiae gene for S-adenosylmethionine decarboxylase. This enzyme contains covalently bound pyruvate which is essential for enzymatic activity. We have shown that this enzyme is synthesized as a Mr 46,000 proenzyme which is then cleaved post-translationally to form two polypeptide chains: a beta subunit (Mr 10,000) from the amino-terminal portion and an alpha subunit (Mr 36,000) from the carboxyl-terminal portion. The protein was overexpressed in Escherichia coli and purified to homogeneity. The purified enzyme contains both the alpha and beta subunits. About half of the alpha subunits have pyruvate blocking the amino-terminal end; the remaining alpha subunits have alanine in this position. From a comparison of the amino acid sequence deduced from the nucleotide sequence with the amino acid sequence of the amino-terminal portion of each subunit (determined by Edman degradation), we have identified the cleavage site of the proenzyme as the peptide bond between glutamic acid 87 and serine 88. The pyruvate moiety, which is essential for activity, is generated from serine 88 during the cleavage. The amino acid sequence of the yeast enzyme has essentially no homology with S-adenosylmethionine decarboxylase of E. coli (Tabor, C. W., and Tabor, H. (1987) J. Biol. Chem. 262, 16037-16040) and only a moderate degree of homology with the human and rat enzymes (Pajunen, A., Crozat, A., J?nne, O. A., Ihalainen, R., Laitinen, P. H., Stanley, B., Madhubala, R., and Pegg, A. E. (1988) J. Biol. Chem. 263, 17040-17049); all of these enzymes are pyruvoyl-containing proteins. Despite this limited overall homology the cleavage site of the yeast proenzyme is identical to the cleavage sites in the human and rat proenzymes, and seven of the eight amino acids adjacent to the cleavage site are identical in the three eukaryote enzymes.  相似文献   

15.
Clones carrying cDNA sequences for the delta subunit precursor of the acetylcholine receptor from calf skeletal muscle have been isolated. Nucleotide sequence analysis of the cloned cDNA has indicated that this polypeptide consists of 516 amino acids including a hydrophobic prepeptide of 21 amino acids. The delta subunit of the calf muscle acetylcholine receptor, like the alpha, beta and gamma subunits of the same receptor as well as the alpha and gamma subunits of its human counterpart, exhibits structural features common to all four subunits of the Torpedo electroplax receptor, apparently being oriented across the membrane in the same manner as proposed for the fish receptor subunits. The degree of amino acid sequence homology between the calf and Torpedo delta subunits (60%) is comparable to that between the beta subunits (59%) and to that between the gamma subunits (56%), but is lower than that between the alpha subunits of the two species (81%). This suggests that the alpha subunit evolved more slowly than the three other subunits. A dendrogram representing the sequence relatedness among the four subunit precursors of the mammalian and fish acetylcholine receptors has been constructed. Some regions of the delta subunit molecule, including the region containing the putative disulphide bridge and that encompassing the clustered putative transmembrane segments M1, M2 and M3, are relatively well conserved between calf and Torpedo. The relative pattern of regional homology is similar for all four subunit precursors.  相似文献   

16.
Heterotrimeric guanine-nucleotide-binding regulatory proteins (G proteins) have been classified into several subtypes on the basis of the properties of their alpha subunits, though a notable multiplicity of gamma subunits has also been demonstrated. To investigate whether each subtype of alpha subunit is associated with a particular gamma subunit, various oligomeric G proteins, purified from bovine tissues, were subjected to gel electrophoresis in a Tricine buffer system. All G proteins examined were shown to have more than two kinds of gamma subunit. Of the brain G proteins, GoA, GoB, and Gi1 contain the same set of three gamma subunits, but Gi2 contains only two of these subunits. Lung Gi1 and Gi2 and spleen Gi2 and Gi3 had similar sets of two gamma subunits, one of which was distinct from the gamma subunits of brain G proteins. These observations indicate that each subtype of alpha subunit is associated with a variety of beta gamma subunits, and that the combinations differ among cells. For analyses of the structural diversity of the gamma subunits, beta gamma subunits were purified from the total G proteins of each tissue and subjected to reverse-phase HPLC under denaturing conditions, where none of the beta subunits were eluted from the column. Three distinct gamma subunits were isolated in this way from brain beta gamma subunits. In contrast, lung and spleen beta gamma subunits contained at least five gamma subunits, the elution positions and electrophoretic mobilities of which were indistinguishable between the two tissues. Among several gamma subunits, two subspecies appeared to be common to the three tissues. In fact, in each case, the partial amino acid sequence of the most abundant gamma subunit in each tissue was identical, and the sequences coincided exactly with that of 'gamma 6' [Robishaw, J. D., Kalman, V. K., Moomaw, C. R. & Slaughter, C. A. (1989) J. Biol. Chem. 264, 15758-15761]. Fast-atom-bombardment mass spectrometry analysis indicated that this abundant gamma subunit in lung and spleen was geranylgeranylated and carboxymethylated at the C-terminus, as was 'gamma 6' from brain. In addition to abundant gamma subunits, other tissue-specific gamma subunits were also shown to be geranylgeranylated by gas-chromatography-coupled mass spectrometry analysis of Raney nickel-treated gamma subunits. These results suggest that most gamma subunits associated with many different subtypes of alpha subunit are geranylgeranylated in a variety of tissues, with the single exception being the retina where the G protein transducin has a farnesylated gamma subunit.  相似文献   

17.
We report characterization of the component proteins and molecular cloning of the genes encoding the two subunits of the carboxyltransferase component of the Escherichia coli acetyl-CoA carboxylase. Peptide mapping of the purified enzyme component indicates that the carboxyltransferase component is a complex of two nonidentical subunits, a 35-kDa alpha subunit and a 33-kDa beta subunit. The alpha subunit gene encodes a protein of 319 residues and is located immediately downstream of the polC gene (min 4.3 of the E. coli genetic map). The deduced amino acid composition, molecular mass, and amino acid sequence match those determined for the purified alpha subunit. Six sequenced internal peptides also match the deduced sequence. The amino-terminal sequence of the beta subunit was found within a previously identified open reading frame of unknown function called dedB and usg (min 50 of the E. coli genetic map) which encodes a protein of 304 residues. Comparative peptide mapping also indicates that the dedB/usg gene encodes the beta subunit. Moreover, the deduced molecular mass and amino acid composition of the dedB/usg-encoded protein closely match those determined for the beta subunit. The deduced amino acid sequences of alpha and beta subunits show marked sequence similarities to the COOH-terminal half and the NH2-terminal halves, respectively, of the rat propionyl-CoA carboxylase, a biotin-dependent carboxylase that catalyzes a similar carboxyltransferase reaction reaction. Several conserved regions which may function as CoA-binding sites are noted.  相似文献   

18.
Existence of two gamma subunits of the G proteins in brain   总被引:15,自引:0,他引:15  
Although amino acid sequences have been determined for the alpha and beta subunits of Gs, Gi, and Go, sequences have not been reported for the gamma subunits of these G proteins. In the present paper, we determined the sequences of peptides prepared by partial proteolysis of two different forms of the gamma subunit of Gs, Gi, and Go from bovine brain. Using oligonucleotide probes based on the sequences of two of these peptides, a cDNA clone was isolated from a bovine adrenal cDNA library. This clone contained a 0.9-kilobase cDNA insert that included an open reading frame of 213 bases encoding a 71-amino acid polypeptide with an estimated Mr of 7850. The amino acid sequence predicted for the adrenal cDNA clone was identical to that determined for one form of the gamma subunit from brain. In addition, an antibody to a peptide based on the predicted amino acid sequence of this cDNA clone reacted specifically with one of the brain gamma subunits, indicating the adrenal cDNA clone encodes a gamma subunit present in both adrenal gland and brain. Also, evidence is presented, demonstrating the existence of a second, structurally distinct, form of the gamma subunit of Gs, Gi, and Go in brain.  相似文献   

19.
The alpha subunit of human liver alcohol dehydrogenase has been submitted to structural analysis. Together with earlier work on the beta and gamma subunits, the results allow conclusions on the relationship of all known forms of the class I type of the enzyme. Two segments of the alpha subunit were determined; one was also reinvestigated in the beta and gamma subunits. The results establish 11 residue replacements among class I subunits in the segments analyzed and show that the alpha, beta, and gamma protein chains each are structurally distinct in the active site regions, where replacements affect positions influencing coenzyme binding (position 47; Gly in alpha, Arg in beta and gamma) and substrate specificity (position 48; Thr in alpha and beta, Ser in gamma). Residue 128, previously not detected in beta and gamma subunits, corresponds to a position of another isozyme difference (Arg in beta and gamma, Ser in alpha). The many amino acid replacements in alcohol dehydrogenases even at their active sites illustrate that in judgements of enzyme functions absolute importance of single residues should not be overemphasized. Available data suggest that alpha and gamma are the more dissimilar forms within the family of the three class I subunits that have resulted from two gene duplications. The class distinction of alcohol dehydrogenases previously suggested from enzymatic, electrophoretic, and immunological properties therefore also holds true in relation to their structures.  相似文献   

20.
The alpha and beta subunits of carp gonadotropin (cGTH) were isolated by high performance liquid chromatography. They were identified to be the subunits of cGTH by bioassay and by partial N-terminal amino acid sequence analysis. To elucidate the complete primary structures of the alpha and beta subunits of cGTH, cDNA cloning technique was employed. The alpha and beta subunits consist of 95 and 115 amino acid residues, respectively. Homology of the alpha subunit of cGTH to those of mammalian GTH is around 70%. In comparison, the extent of homology of the beta subunit between carp and salmon GTH (75%) is higher than that between fish and mammalian GTH (39-47%). Such comparative data suggest that the alpha subunit is highly conserved while the beta subunit is diversified during the molecular evolution of vertebrate GTH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号