首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Of 173 mutants of Saccharomyces cerevisiae resistant to the antimitotic drug benomyl (BenR), six also conferred cold-sensitivity for growth and three others conferred temperature-sensitivity for growth in the absence of benomyl. All of the benR mutations tested, including the nine conditional-lethal mutations, were shown to be in the same gene. This gene, TUB2, has previously been molecularly cloned and identified as the yeast structural gene encoding beta-tubulin. Four of the conditional-lethal alleles of TUB2 were mapped to particular restriction fragments within the gene. One of these mutations was cloned and sequenced, revealing a single amino acid change, from arginine to histidine at amino acid position 241, which is responsible for both the BenR and the cold-sensitive lethal phenotypes. The terminal arrest morphology of conditional-lethal alleles of TUB2 at their restrictive temperature showed a characteristic cell-division-cycle defect, suggesting a requirement for tubulin function primarily in mitosis during the vegetative growth cycle. The TUB2 gene was genetically mapped to the distal left arm of chromosome VI, very near the actin gene, ACT1; no CDC (cell-division-cycle) loci have been mapped previously to this location. TUB2 is thus the first cell-division-cycle gene known to encode a cytoskeletal protein that has been identified in S. cerevisiae.  相似文献   

2.
Genetic analysis of the B2t locus has resulted in the recovery of four recessive mutations in the B2t structural gene and a deficiency that deletes the locus. Two of the mutations were recovered as suppressors of B2tD, a dominant male sterile mutation at the locus, and two were induced on wild-type chromosomes. All four mutant genes encode β2-tubulin subunits that are synthesized at normal rates but do not accumulate. All mutants are completely male sterile as homozygotes.  相似文献   

3.
We have previously shown that the neuronal-associated class III beta-tubulin isotype and the centrosome-associated gamma-tubulin are aberrantly expressed in astrocytic gliomas (Cell Motil Cytoskeleton 2003, 55:77-96; J Neuropathol Exp Neurol 2006, 65:455-467). Here we determined the expression, distribution and interaction of betaIII-tubulin and gamma-tubulin in diffuse-type astrocytic gliomas (grades II-IV) (n = 17) and the human glioblastoma cell line T98G. By immunohistochemistry and immunofluorescence microscopy, betaIII-tubulin and gamma-tubulin were co-distributed in anaplastic astrocytomas and glioblastomas and to a lesser extent, in low-grade diffuse astrocytomas (P < 0.05). In T98G glioblastoma cells betaIII-tubulin was associated with microtubules whereas gamma-tubulin exhibited striking diffuse cytoplasmic staining in addition to its expectant centrosome-associated pericentriolar distribution. Treatment with different anti-microtubule drugs revealed that betaIII-tubulin was not associated with insoluble gamma-tubulin aggregates. On the other hand, immunoprecipitation experiments unveiled that both tubulins formed complexes in soluble cytoplasmic pools, where substantial amounts of these proteins were located. We suggest that aberrant expression and interactions of betaIII-tubulin and gamma-tubulin may be linked to malignant changes in glial cells.  相似文献   

4.
R. N. Beech  R. K. Prichard    M. E. Scott 《Genetics》1994,138(1):103-110
Benzimidazole anthelmintics are the most common chemotherapeutic agents used to remove intestinal helminths from farm animals. The development of drug resistance within helminth populations is wide-spread and can render these drugs essentially useless. The mechanism of benzimidazole resistance appears to be common to many species ranging from fungi to nematodes and involves alterations in the genes encoding β-tubulin. During the selection process resulting in resistance, there must be quantitative changes in the population gene pool. Knowledge of these changes would indicate the mechanisms underlying the spread of resistance in the population, which in turn could be used to design more effective drug administration strategies. To this end we have identified allelic variation at two β-tubulin genes in Haemonchus contortus using restriction map analysis of individual adults. Extremely high levels of variation were identified at both loci within a susceptible strain. In two independently derived benzimidazole resistant strains, allele frequencies at both loci were significantly different from the susceptible strain but not from each other. The same alleles at both loci, in both resistant strains, were favored by selection with benzimidazoles, suggesting that both loci are involved in determining benzimidazole resistance. These data confirm that changes in allele frequency, rather than novel genetic rearrangements induced by exposure to the drug, explain the changes associated with benzimidazole resistance. These results also show that any DNA based test for the development of benzimidazole resistance must take into account the frequency of alleles present in the population and not simply test for the presence or absence of specific allelic types.  相似文献   

5.
Primary cilia have essential roles in transducing signals in eukaryotes. At their core is the ciliary axoneme, a microtubule-based structure that defines cilium morphology and provides a substrate for intraflagellar transport. However, the extent to which axonemal microtubules are specialized for sensory cilium function is unknown. In the nematode Caenorhabditis elegans, primary cilia are present at the dendritic ends of most sensory neurons, where they provide a specialized environment for the transduction of particular stimuli. Here, we find that three tubulin isotypes—the α-tubulins TBA-6 and TBA-9 and the β-tubulin TBB-4—are specifically expressed in overlapping sets of C. elegans sensory neurons and localize to the sensory cilia of these cells. Although cilia still form in mutants lacking tba-6, tba-9, and tbb-4, ciliary function is often compromised: these mutants exhibit a variety of sensory deficits as well as the mislocalization of signaling components. In at least one case, that of the CEM cephalic sensory neurons, cilium architecture is disrupted in mutants lacking specific ciliary tubulins. While there is likely to be some functional redundancy among C. elegans tubulin genes, our results indicate that specific tubulins optimize the functional properties of C. elegans sensory cilia.THE fitness of all organisms depends on an ability to appropriately sense and respond to the environment. At the cellular level, many specific architectures have evolved to optimize these sensory functions. Prominent among these is the sensory cilium, a tubulin-based cytoplasmic extension that interrogates the extracellular environment in many biological contexts (Davenport and Yoder 2005; Berbari et al. 2009). Cilia are important for the transduction of a broad range of visual, auditory, mechanical, thermal, and chemical stimuli. They also function during development to receive a variety of signals, both chemical and mechanical, that regulate proliferation and differentiation (Goetz and Anderson 2010). Indeed, the disruption of cilium assembly and function can give rise to a spectrum of human diseases collectively known as ciliopathies (Berbari et al. 2009; Lancaster and Gleeson 2009). These disorders, which include autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), Bardet–Biedl syndrome, Meckel–Gruber syndrome, and Joubert syndrome, are associated with a variety of pathogenic conditions including polycystic kidneys and neurological impairments.At the core of all cilia and flagella is the microtubule axoneme. This characteristic structural element comprises nine doublet outer microtubules that may surround a central pair, the presence of which often indicates a motile cilium/flagellum. Like all microtubule-based structures, ciliary axonemes are built of heterodimers of α- and β-tubulins, highly conserved small GTP-binding proteins. The recruitment of other cilium components, including signal transduction machinery, requires a conserved assembly and maintenance process called intraflagellar transport (IFT) (Blacque et al. 2008; Pedersen and Rosenbaum 2008). IFT employs two major complexes that transport ciliary cargo bidirectionally by traveling along the axonemal microtubules. Loss of individual IFT components can cause a broad spectrum of defects in the assembly, maintenance, and function of cilia.Important insights into cilium structure and function have come from studies of genetically tractable organisms, particularly the green alga Chlamydomonas and the nematode Caenorhabditis elegans (Bae and Barr 2008; Pedersen and Rosenbaum 2008). In C. elegans, sensory cilia are found exclusively at the dendritic ends of sensory neurons. These cilia constitute a highly specialized sensory environment characterized by localized sensory receptors and specific signaling components. Cilium morphology is quite distinctive in many of these cells and likely contributes to their functional specialization (Ward et al. 1975). Recent progress has shed light on the mechanisms that confer this specialization onto more general pan-ciliary pathways (Evans et al. 2006; Mukhopadhyay et al. 2007; Jauregui et al. 2008; Mukhopadhyay et al. 2008; Silverman and Leroux 2009).The genomes of many eukaryotes harbor multiple α- and β-tubulin genes. Two hypotheses, which are not mutually exclusive, have been proposed to account for these paralogs (Cleveland 1987; Wade 2007). At one extreme, different tubulin isotypes might be functionally redundant, such that their minor coding differences are largely irrelevant. According to this model, multiple genes allow the maintenance of a stable pool of available monomers and dimers. The small amount of sequence variation within the α- and β-tubulin families supports this idea, as do studies of functionally redundant mitotic tubulins in C. elegans (Ellis et al. 2004; Lu et al. 2004; Phillips et al. 2004; Lu and Mains 2005). The alternative hypothesis proposes that specific structures, e.g., ciliary axonemes or axonal microtubules, rely on tubulins optimized for specific roles. Support for this idea has come from studies of cultured mammalian neurons (Joshi and Cleveland 1989), Drosophila (Hutchens et al. 1997; Raff et al. 1997), and human tubulins (Vent et al. 2005; Jaglin et al. 2009). In Drosophila, studies of motile sperm flagella have revealed that the sperm-specific β2 tubulin isoform builds not only the specialized motile axoneme but also all other tubulin-based structures (Kemphues et al. 1982). However, sequences both within and outside the axoneme motif in the C-terminal tail of this tubulin isoform are required for the flagellar axoneme, and other closely related β-tubulins cannot support this role (Fuller et al. 1987; Raff et al. 1997; Popodi et al. 2008). Genetic interactions have provided evidence that β2 tubulin heterodimerizes with the α-tubulin 84B (Hays et al. 1989), which also possesses specific functional properties not provided by structurally similar α-tubulins (Hutchens et al. 1997). In C. elegans, a specific role for tubulin isoforms has been described in the six touch receptor neurons. These nonciliated cells harbor unusual 15-filament microtubules composed of dimers of the α-tubulin MEC-12 and the β-tubulin MEC-7. The loss of mec-7 or mec-12, the expression of which is largely restricted to these cells, results in the conversion of 15-filament microtubules to the standard 11-microfilament variety and a commensurate loss of light-touch response (Savage et al. 1989; Fukushige et al. 1999; Bounoutas et al. 2009). Thus experimental support exists for both of these opposing views, and it seems likely that the role of specific tubulin isoforms in regulating microtubule structure and function differs according to cell and organelle type.The C. elegans genome encodes nine α- and six β-tubulin genes (Gogonea et al. 1999). Some of these genes, particularly tba-1, tba-2, tbb-1, and tbb-2, are expressed broadly during embryogenesis and function redundantly in spindle assembly and positioning (Ellis et al. 2004; Lu et al. 2004; Phillips et al. 2004; Lu and Mains 2005). tba-1 and tbb-2 have also been recently shown to be important for axon outgrowth and synaptogenesis (Baran et al. 2010). Several others, including mec-7, mec-12, and the β-tubulin ben-1, have been identified through genetic screens for particular phenotypes, such as touch insensitivity or benzimidazole resistance (Driscoll et al. 1989; Savage et al. 1989; Fukushige et al. 1999). However, the extent to which specific tubulin isoforms are required for structural and functional diversity in the C. elegans nervous system remains unknown. Here, taking advantage of several existing genome-wide data sets, we identify the α-tubulins TBA-6 and TBA-9 and the β-tubulin TBB-4 as strong candidates for tubulins that have roles in sensory cilia. We find that each of these genes are expressed in characteristic, partially overlapping, sets of sensory neurons, where their products localize to ciliary axonemes. While the loss of any one (or all three) of these genes does not abolish ciliogenesis, tubulin mutants exhibit significant defects in the localization of cilium proteins and in some cilium-dependent behavioral responses. Together, our results indicate that specific α- and β-tubulin isoforms are important, although not essential, for the efficient assembly and function of specific classes of C. elegans sensory cilia. Sensory cilia throughout the animal kingdom may therefore employ specific tubulin isoforms to optimize their function.  相似文献   

6.
Measurement of the content of polyamines in pancreatic islets indicated that no significant change in their concentration took place during glucose-stimulated insulin release. The finding, together with the absence of any effect of -difluoromethylornithine on glucosestimulated insulin release suggested that rapid synthesis of polyamines is not involved in stimulus-secretion coupling in the -cell. The concentration of polyamines found in islets were high enough for them to act as substrates for the Ca2+-dependent islet transglutaminase during insulin release. This was further demonstrated by the ability of islet transglutaminase to incorporate [14C]putrescine into proteins from islet homogenates and by the demonstration of an increase in the covalent incorporation of [14C]putrescine into the proteins of intact islets following their challenge with glucose. Unlike monoamine substrates of transglutaminase, putrescine failed to effectively inhibit insulin release when its intracellular concentration was increased. A role for polyamines in the secretory process through their incorporation into islet proteins is suggested.  相似文献   

7.
EARLIER studies of the location of the single cysteine residue and the two disulphide bridges in bovine β-lactoglobulins A and B1, for each of which the monomer is a single chain of 162 residues and 18,000 molecular weight2,3, led to the conclusion that the sulphydryl group is at position 69 and that the disulphides bridge positions 123 to 160 and 57 to 70. These results were based on diagonal peptide studies4 and on the composition of peptides in which the sulphydryl group had been labelled with 14C-iodoacetamide, the disulphide bridges being left intact. Use was made of the partial amino-acid sequence given by Frank and Braunitzer5 and the reasonable assumption was made that the sulphydryl occurred in only one position. Subsequently, Shaw6 has shown that the sequence of Frank and Braunitzer5 showing Cys residues adjacent at positions 69 and 70 is incorrect and that they are separated by a glutamine, the sequence for positions 67 to 71 for the Bvariant being Ala.Cys.Gln.Cys.Leu. Autoradiography of the dansyl amino-acid derivatives formed during the sequence determination of this pentapeptide indicated that both residues 68 and 70 seemed to have been labelled and so we have given further consideration to the sulphydryl location. It has been found that although it does occur at 68, with 57 and 70 disulphide bridged, there is also an equal amount of protein present with the sulphydryl at 70, with 57 and 68 disulphide bridged. We discuss this additional finding here and the significance for the determination of the location of sulphydryl groups in other proteins.  相似文献   

8.
The C termini of β-tubulin isotypes are regions of high sequence variability that bind to microtubule-associated proteins and motors and undergo various post-translational modifications such as polyglutamylation and polyglycylation. Crystallographic analyses have been unsuccessful in resolving tubulin C termini. Here, we used a stepwise approach to study the role of this region in microtubule assembly. We generated a series of truncation mutants of human βI and βIII tubulin. Transient transfection of HeLa cells with the mutants shows that mutants with deletions of up to 22 residues from βIII and 16 from βI can assemble normally. Interestingly, removal of the next residue (Ala428) results in a complete loss of microtubule formation without affecting dimer formation. C-terminal tail switching of human βI and βIII tubulin suggests that C-terminal tails are functionally equivalent. In short, residues outside of 1–429 of human β-tubulins make no contribution to microtubule assembly. Ala428, in the C-terminal sequence motif N-QQYQDA428, lies at the end of helix H12 of β-tubulin. We hypothesize that this residue is important for maintaining helix H12 structure. Deletion of Ala428 may lead to unwinding of helix H12, resulting in tubulin dimers incapable of assembly. Thr429 plays a more complex role. In the βI isotype of tubulin, Thr429 is not at all necessary for assembly; however, in the βIII isotype, its presence strongly favors assembly. This result is consistent with a likely more complex function of βIII as well as with the observation that evolutionary conservation is total for Ala428 and frequent for Thr429.Microtubules are involved in a great variety of cellular functions. Their constituent protein tubulin is an αβ heterodimer, both α- and β-tubulin existing as multiple isotypes, encoded by different genes and differing in amino acid sequence (1). The differences among the isotypes are highly conserved in evolution. In mammals, the β isotypes are βIa, βIb, βII, βIII, βIVa, βIVb, βV, and βVI. There is evidence that the isotype differences have functional significance. For instance, the βIV isotype is found in all axonemes (2).Structurally, both α- and β-tubulin consist of a globular region of 427 amino acids followed by a C-terminal region of 17–24 amino acids (35). The C-terminal region is highly negatively charged, being especially rich in glutamate residues and lacking in basic residues, and is likely to project outward from the rest of the molecule, because of its high negative charge and the electrostatic repulsion among the glutamate residues (3). The three-dimensional structure of the globular domain has been determined by electron and x-ray crystallography (4, 5). However, the C-terminal region has never been localized in the three-dimensional reconstructions except by computer modeling. The probable reasons for this are 1) that, if the C-terminal region projects out from the rest of molecule, it is likely to be very flexible with respect to the rest of the molecule and 2) the C-terminal region undergoes post-translational modification. Both of these can lead to structural heterogeneity and cause the C terminus to be invisible to crystallographic techniques.In this work, we examine the role of the C termini of human β-tubulins to determine the minimal sequence requirement for microtubule incorporation through structure/function analyses. The human βI and βIII tubulin isotypes were utilized based on their high degree of sequence variability clustered at the C terminus (Fig. 1) and the fact that βI is broadly distributed among normal tissues, whereas βIII has a very narrow tissue distribution. These two isotypes share 92% sequence identity, with differences among these isotypes occurring in both the globular domain and the C-terminal region (1).Open in a separate windowFIGURE 1.Sequence alignment of human βIa and βIII tubulin isotypes. Human βIa and βIII tubulin isotypes were aligned with ClustalX 1.83 and processed with BioEdit. Hyphens denote identical residues between sequences.

TABLE 1

The C-terminal amino acid sequences of the human β-tubulin isotypes
Human β-tubulin isotypeC-terminal tail sequence
βIaQQYQDATAEEEEDFGEEAEEEA
βIbQQYQDATAEEEEDFGEEAEEEA
βIIQQYQDATADEQGEFEEEEGEDEA
βIIIQQYQDATAEEEGEMYEDDEEESEAQGPK
βIVaQQYQDATAEQGEFEEEAEEEVA
βIVbQQYQDATAEEEGEFEEEAEEEVA
βVQQYQDATANDGEEAFEDEEEEIDG
βVIQQFQDAKAVLEEDEEVTEEAEMEPEDKGH
βVIIQQYQDATAEGEGV
Open in a separate windowThree attributes of potential functional significance have been assigned to the C-terminal regions of tubulin. First, the fact that it projects outward makes it likely that it can serve as a signal. For example, elegant experiments by Popodi et al. (6), working with β-tubulin isotypes from Drosophila, indicate that the C terminus is the region that determines which isotype goes into axonemal microtubules. In Tetrahymena thermophila, Duan and Gorovsky (7) demonstrated that α- and β-tubulin C-terminal tails (CTT)2 are interchangeable, and their functions are indistinguishable. In addition, a duplicated β-tubulin CTT rescued the lethal mutant lacking post-translational modification sites on β-tubulin but did not rescue the mutant lacking a 17-amino acid deletion from the β-tubulin tail (7). A significant amount of research on C-terminal tail function has utilized proteolytic digestion with a number of different endoproteinases such as subtilisin, proteinase K, and chymotrypsin among others (810). For example, subtilisin-digested αsβs-tubulin was found to have a higher capacity for generating microtubules than undigested (9). A single drawback to using these proteases is their site-specific nature, which limits us to distinct digestion sites in proteolysis experiments. Furthermore, the proteolyzed tail fragment could still interact with the globular body without being really separated. Thus, to elucidate the importance of amino acids flanking these digestion sites, alternative approaches must be utilized.Second, MAPs and motor proteins such as MAP2, MAP4, tau, DMAP-85, OP18/stathmin, dynein, and kinesin have been shown to bind the C-terminal region (1122). These proteins are known to play very important roles in cellular processes including intracellular transport and modulation of microtubule dynamics. Third, the C terminus is subject to a large number of post-translational modifications, some of which are known to have functional significance (1). These include phosphorylation (β) (2325), poly-glutamylation (α, β) (2630), polyglycylation (α, β) (3134), detyrosination (α) (3537), and deglutamylation (α) (38).In this paper we present evidence for a fourth function for the C-terminal region, namely, that it plays a major role in controlling the conformation of the globular region of the tubulin molecule such that microtubules can form. We have found that all of the amino acid residues necessary for assembly of the βI isotype of tubulin are contained within the first 428 amino acids, ending in N-QQYQDA428; C-terminal truncations lacking Ala428 yield tubulins that are not compatible with microtubule formation. We demonstrate that the C-terminal region does not contribute to intradimer formation. Furthermore, we find that β-tubulin C-terminal tail switching does not affect incorporation and that the presence of the full chimeric tail is not necessary for functional microtubules. Finally, we have observed that residue Thr429 plays an important but not critical role in the βIII isotype becoming assembly-competent but is not at all necessary for the βI isotype to form microtubules.  相似文献   

9.
Sakurai K  Fujioka S  Konuma T  Yagi M  Goto Y 《Biochemistry》2011,50(29):6498-6507
Folding experiments have suggested that some proteins have kinetic intermediates with a non-native structure. A simple G ?o model does not explain such non-native intermediates. Therefore, the folding energy landscape of proteins with non-native intermediates should have characteristic properties. To identify such properties, we investigated the folding of bovine β-lactoglobulin (βLG). This protein has an intermediate with a non-native α-helical structure, although its native form is predominantly composed of β-structure. In this study, we prepared mutants whose α-helical and β-sheet propensities are modified and observed their folding using a stopped-flow circular dichroism apparatus. One interesting finding was that E44L, whose β-sheet propensity was increased, showed a folding intermediate with an amount of β-structure similar to that of the wild type, though its folding took longer. Thus, the intermediate seems to be a trapped intermediate. The high α-helical propensity of the wild-type sequence likely causes the folding pathway to circumvent such time-consuming intermediates. We propose that the role of the non-native intermediate is to control the pathway at the beginning of the folding reaction.  相似文献   

10.
Class III β-tubulin (TUBB3) overexpression in ovarian cancer (OC) associates with poor prognosis. We investigated whether TUBB3 overexpression elicited anti-TUBB3 antibody production in OC patients and whether these antibodies may have diagnostic and prognostic impact. The presence of serum anti-TUBB3 antibodies was investigated in 49 untreated OC patients and 44 healthy individuals by an in-house developed ELISA that used recombinant TUBB3 as the antigen. Receiver operating characteristic (ROC) curves were generated to assess the diagnostic accuracy of the assay. Anti-TUBB3 antibodies discriminated OC patients and healthy individuals with excellent sensitivity and specificity (91.8% and 90.9%, respectively). In multivariate analysis, anti-TUBB3 antibody level emerged as an independent prognostic factor for progression free and overall survival. The ELISA was then optimized using a biotin-labeled TUBB3 C-terminal peptide424-450 instead of recombinant TUBB3 as the antigen and streptavidin-coated plates. The diagnostic role of the anti-TUBB3 antibodies was studied in an independent series of 99 OC patients and 80 gynecological benign disease patients. ROC-curve analysis showed a valuable diagnostic potential for serum anti-TUBB3 antibodies to identify OC patients with higher sensitivity and specificity (95.3% and 97.6%, respectively). Overall, our results provide evidence that preoperative anti-TUBB3 antibody level is a promising diagnostic and prognostic biomarker for the management of OC patients.  相似文献   

11.
The regioselectivity of β-galactosidase derived from Bacillus circulans ATCC 31382 (β-1,3-galactosidase) in transgalactosylation reactions using D-mannose as an acceptor was investigated. This D-mannose associated regioselectivity was found to be different from reactions using either GlcNAc or GalNAc as acceptors, not only for β-1,3-galactosidase but also for β-galactosidases of different origins. The relative hydrolysis rate of Galβ-pNP and D-galactosyl-D-mannoses, of various linkages, was also measured in the presence of β-1,3-galactosidase and was found to correlate well with the ratio of disaccharides formed by transglycosylation. The unexpected regioselectivity using D-mannose can therefore be explained by an anomalous specificity in the hydrolysis reaction. By utilizing the identified characteristics of both regioselectivity and hydrolysis specificity using D-mannose, an efficient method for enzymatic synthesis of β-1,3-, β-1,4- and β-1,6-linked D-galactosyl-D-mannose was subsequently established.  相似文献   

12.
1. The ability of a range of phenothiazines to inhibit activation of brain phosphodiesterase by purified calmodulin was studied. Trifluoperazine, prochlorperazine and 8-hydroxyprochlorperazine produced equipotent dose-dependent inhibition with half-maximum inhibition at 12mum. When tested at 10 or 50mum, 7-hydroxyprochlorperazine was a similarly potent inhibitor. However, trifluoperazine-5-oxide and N-methyl-2-(trifluoromethyl)phenothiazine were ineffective at concentrations up to 50mum, and produced only a modest inhibition at 100mum. 2. The same phenothiazines were tested for their ability to inhibit activation of brain phosphodiesterase by boiled extracts of rat islets of Langerhans. At a concentration of 20mum, 70-80% inhibition was observed with trifluoperazine, prochlorperazine, 7-hydroxyprochlorperazine or 8-hydroxyprochlorperazine, whereas trifluoperazine-5-oxide and N-methyl-2-(trifluoromethyl)phenothiazine were less effective. 3. The effect of these phenothiazines on insulin release from pancreatic islets was studied in batch-type incubations. Insulin release stimulated by glucose (20mm) was markedly inhibited by 10mum-trifluoperazine or -prochlorperazine and further inhibited at a concentration of 20mum. 8-Hydroxyprochlorperazine (20mum) was also a potent inhibitor but 7-hydroxyprochlorperazine (20mum) elicited only a modest inhibition of glucose-stimulated insulin release; no inhibition was observed with trifluoperazine-5-oxide or N-methyl-2-(trifluoromethyl)phenothiazine. 4. Trifluoperazine (20mum) markedly inhibited insulin release stimulated by leucine or 4-methyl-2-oxopentanoate in the absence of glucose, and both trifluoperazine and prochlorperazine (20mum) decreased insulin release stimulated by glibenclamide in the presence of 3.3mm-glucose. 5. None of the phenothiazines affected basal insulin release in the presence of 2mm-glucose. 6. Trifluoperazine (20mum) did not inhibit islet glucose utilization nor the incorporation of [(3)H]leucine into (pro)insulin or total islet protein. 7. Islet extracts catalysed the incorporation of (32)P from [gamma-(32)P]ATP into endogenous protein substrates. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis resolved several phosphorylated bands, but incorporation was slight. However, calmodulin in the presence of Ca(2+) greatly enhanced incorporation: the predominant phosphorylated band had an estimated mol.wt. of 55000. This enhanced incorporation was abolished by trifluoperazine, but not by cyclic AMP-dependent protein kinase inhibitor protein. 8. These results suggest that islet phosphodiesterase-stimulating activity is similar to, although not necessarily identical with, calmodulin from skeletal muscle; that islet calmodulin may play an important role in Ca(2+)-dependent stimulus-secretion coupling in the beta-cell; and that calmodulin may exert part at least of its effect on secretion via phosphorylation of endogenous islet proteins.  相似文献   

13.
14.
In a search for new probes to detect β-amyloid plaques in the brain of patients with Alzheimer’s disease (AD), we have synthesized and evaluated a series of quinoxaline derivatives containing a ‘6+6−6’ ring system. These quinoxaline derivatives showed excellent affinity for Aβ1-42 aggregates with Ki values ranging from 2.6 to 10.7 nM. Autoradiography with sections of brain tissue from an animal model of AD mice (APP/PS1) and AD patients revealed that [125I]5 labeled β-amyloid plaques specifically. In biodistribution experiments using normal mice, [125I]5 displayed high uptake (6.03% ID/g at 2 min) into and a moderately fast washout from the brain. Although additional refinements are needed to decrease the lipophilicity and improve the washout rate, the quinoxaline scaffold may be useful as a backbone structure to develop novel β-amyloid imaging agents.  相似文献   

15.
16.
Using genetic and biochemical techniques, we have determined that β-galactosidase in the yeast Kluyveromyces lactis is coded by the LAC4 locus. The following data support this conclusion: (1) mutations in this locus result in levels of β-galactosidase activity 100-fold lower than levels in uninduced wild type and all other lac- mutants; (2) three of five lac4 mutations are suppressible by an unlinked suppressor whose phenotype suggests that it codes for a nonsense suppressor tRNA; (3) a Lac+ revertant, bearing lac4–14 and this unlinked suppressor, has subnormal levels of β-galactosidase activity, and the Km for hydrolysis of o-nitrophenyl-β, D-galactoside and the thermal stability of the enzyme are altered; (4) the level of β-galactosidase activity per cell is directly proportional to the number of copies of LAC4; (5) analysis of cell-free extracts of strains bearing mutations in LAC4 by two-dimensional acryl-amide gel electrophoresis shows that strains bearing lac4–23 and lac4–30 contain an inactive β-galactosidase whose subunit co-electrophoreses with the wild-type subunit, while no subunit or fragment of the subunit is observable in lac4–8, lac4–14 or lac4–29 mutants; (6) of all lac4 mutants, only those bearing lac4–23 or lac4–30 contain a protein that cross-reacts with anti-β-galactosidase antibody, a finding consistent with the previous result; and (7) β-galactosidase activity in several Lac+ revertants of strains carrying lac4–23 or lac4–30 has greatly decreased thermostability.  相似文献   

17.
Summary A peptide immunochemically related to -endorphin was detected in some LH-RH neurons of the fetal human hypothalamus by comparison of adjacent sections stained for -endorphin and for LH-RH. In the same section, by successive staining and after antibody elution, both peptides were again revealed in the same neuron. The significance of the presence of the -endorphin-like material in LH-RH neurons is discussed.  相似文献   

18.
Corynebacterium diphtheriae strains lyso-genic for phage β are able to produce diphtheria toxin. This article describes evidence suggesting that the toxin structural gene is part of the phage genome.  相似文献   

19.
A peptide isolated from porcine gut according to its glucagon-like activity in liver (bioactive enteroglucagon) has been characterized immunologically, biologically and chemically: its potency relative to pancreatic glucagon in interacting with an antiglucagon antibody, hepatic glucagon-binding sites and hepatic adenylate cyclase was ~100%, 20% and 10%, respectively. In contrast, it is ~20-times more potent than glucagon in oxyntic glands, justifying the term ‘oxyntomodulin’. Chemically, it consists in the 29 amino acid-peptide glucagon elongated at its C-terminal end by the octapeptide Lys—Arg—Asn—Lys—Asn—Asn—Ile &;—Ala; accordingly, it is called ‘glucagon-37’  相似文献   

20.
A group of novel 4,5-dianilinophthalimide derivatives has been synthesized in this study for potential use as β-amyloid (Aβ) plaque probes. Staining of hippocampus tissue sections from Alzheimer’s disease (AD) brain with the representative compound 9 indicated selective labeling of it to Aβ plaques. The binding affinity of radioiodinated [125I]9 for AD brain homogenates was 0.21 nM (Kd), and of other derivatives ranged from 0.9 to 19.7 nM, except for N-methyl-4,5-dianilinophthalimide (Ki > 1000 nM). [125I]9 possessed the optimal lipophilicity with Log P value of 2.16, and its in vivo biodistribution in normal mice exhibited excellent initial brain uptake (5.16% ID/g at 2 min after injection) and a fast washout rate (0.56% ID/g at 60 min). The encouraging results suggest that this novel derivative of [123I]9 may have potential as an in vivo SPECT probe for detecting amyloid plaques in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号