首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biogenesis of respiratory complexes is a multistep process that requires finely tuned coordination of subunit assembly, metal cofactor insertion, and membrane-anchoring events. The dissimilatory nitrate reductase of the bacterial anaerobic respiratory chain is a membrane-bound heterotrimeric complex nitrate reductase A (NarGHI) carrying no less than eight redox centers. Here, we identified different stable folding assembly intermediates of the nitrate reductase complex and analyzed their redox cofactor contents using electron paramagnetic resonance spectroscopy. Upon the absence of the accessory protein NarJ, a global defect in metal incorporation was revealed. In addition to the molybdenum cofactor, we show that NarJ is required for specific insertion of the proximal iron-sulfur cluster (FS0) within the soluble nitrate reductase (NarGH) catalytic dimer. Further, we establish that NarJ ensures complete maturation of the b-type cytochrome subunit NarI by a proper timing for membrane anchoring of the NarGH complex. Our findings demonstrate that NarJ has a multifunctional role by orchestrating both the maturation and the assembly steps.  相似文献   

2.
3.
Respiratory nitrate reductase purified from the cell membrane of Escherichia coli is composed of three subunits, alpha, beta, and gamma, which are encoded, respectively, by the narG, narH, and narI genes of the narGHJI operon. The product of the narJ gene was deduced previously to be a highly charged, acidic protein which was not found to be associated with any of the purified preparations of the enzyme and which, in studies with putative narJ mutants, did not appear to be absolutely required for formation of the membrane-bound enzyme. To test this latter hypothesis, the narJ gene was disrupted in a plasmid which contained the complete narGHJI operon, and the operon was expressed in a narG::Tn10 insertion mutant. The chromosomal copy of the narJ gene of a wild-type strain was also replaced by the disrupted narJ gene. In both cases, when nar operon expression was induced, the alpha and beta subunits accumulated in a form which expressed only very low activity with either reduced methyl viologen (MVH) or formate as electron donors, although an alpha-beta complex separated from the gamma subunit is known to catalyze full MVH-linked activity but not the formate-linked activity associated with the membrane-bound complex. The low-activity forms of the alpha and beta subunits also accumulated in the absence of the NarJ protein when the gamma subunit (NarI) was provided from a multicopy plasmid, indicating that NarJ is essential for the formation of the active, membrane-bound complex. When both NarJ and NarI were provided from a plasmid in the narJ mutant, fully active, membrane-bound activity was formed. When NarJ only was provided from a plasmid in the narJ mutant, a cytosolic form of the alpha and beta subunits, which expressed significantly increased levels of the MVH-dependent activity, accumulated, and the alpha subunit appeared to be protected from the proteolytic clipping which occurred in the absence of NarJ. We conclude that NarJ is indispensible for the biogenesis of membrane-bound nitrate reductase and is involved either in the maturation of a soluble, active alpha-beta complex or in facilitating the interaction of the complex with the membrane-bound gamma subunit.  相似文献   

4.
The nar operon, coding for the respiratory nitrate reductase of Thermus thermophilus (NRT), encodes a di-heme b-type (NarJ) and a di-heme c-type (NarC) cytochrome. The role of both cytochromes and that of a putative chaperone (NarJ) in the synthesis and maturation of NRT was studied. Mutants of T. thermophilus lacking either NarI or NarC synthesized a soluble form of NarG, suggesting that a putative NarCI complex constitutes the attachment site for the enzyme. Interestingly, the NarG protein synthesized by both mutants was inactive in nitrate reduction and misfolded, showing that membrane attachment was required for enzyme maturation. Consistent with its putative role as a specific chaperone, inactive and misfolded NarG was synthesized by narJ mutants, but in contrast to its Escherichia coli homologue, NarJ was also required for the attachment of the thermophilic enzyme to the membrane. A bacterial two-hybrid system was used to demonstrate the putative interactions between the NRT proteins suggested by the analysis of the mutants. Strong interactions were detected between NarC and NarI and between NarG and NarJ. Weaker interaction signals were detected between NarI, but not NarC, and both NarG and NarH. These results lead us to conclude that the NRT is a heterotetrameric (NarC/NarI/NarG/NarH) enzyme, and we propose a model for its synthesis and maturation that is distinct from that of E. coli. In the synthesis of NRT, a NarCI membrane complex and a soluble NarGJH complex are synthesized in a first step. In a second step, both complexes interact at the cytoplasmic face of the membrane, where the enzyme is subsequently activated with the concomitant conformational change and release of the NarJ chaperone from the mature enzyme.  相似文献   

5.
6.
Understanding when and how metal cofactor insertion occurs into a multisubunit metalloenzyme is of fundamental importance. Molybdenum cofactor insertion is a tightly controlled process that involves specific interactions between the proteins that promote cofactor delivery, enzyme-specific chaperones, and the apoenzyme. In the assembly pathway of the multisubunit molybdoenzyme, membrane-bound nitrate reductase A from Escherichia coli, a NarJ-assisted molybdenum cofactor (Moco) insertion step, must precede membrane anchoring of the apoenzyme. Here, we have shown that the NarJ chaperone interacts at two distinct binding sites of the apoenzyme, one interfering with its membrane anchoring and another one being involved in molybdenum cofactor insertion. The presence of the two NarJ-binding sites within NarG is required to ensure productive formation of active nitrate reductase. Our findings supported the view that enzyme-specific chaperones play a central role in the biogenesis of multisubunit molybdoenzymes by coordinating subunits assembly and molybdenum cofactor insertion.  相似文献   

7.
NarJ is a chaperone involved in folding, maturation, and molybdenum cofactor insertion of nitrate reductase A from Escherichia coli. It has also been shown that NarJ exhibits sequence homology to a family of chaperones involved in maturation and cofactor insertion of E. coli redox enzymes that are mediated by twin-arginine translocase (Tat) dependent translocation. In this study, we show that NarJ binds the N-terminal region of NarG through Far Western studies and isothermal titration calorimetry, and the binding event occurs towards a short peptide sequence that contains a homologous twin-arginine motif. Fractionation experiments also show that the interaction of NarJ to the cytoplasmic membrane exhibits Tat-dependence. Upon further investigation through Far Western blots, the interactome of NarJ also exhibits Tat-dependence. Together the data suggest that the Tat system may play a role in the maturation pathway of nitrate reductase A.  相似文献   

8.
Significant recent advances have been made in studies of the major dissimilatory nitrate reductase (NarGHI) of Escherichia coli. This enzyme is a complex iron-sulfur ([Fe-S]) molybdoenzyme that oxidizes menaquinol or ubiquinol at a periplasmically oriented Q-site (Qp site), and reduces nitrate at a cytoplasmically-oriented molybdo-(bismolybdopterin guanine dinucleotide) (Mo-bisMGD) cofactor. The Qp site, as well as two hemes, termed bL and bH, are localized in a hydrophobic diheme cytochrome b(Narl) that: (i) provides a conduit for electron-transfer from the periplasmically-oriented Qp-site; (ii) provides a membrane anchoring functionality for the membrane-extrinsic subunits (NarGH) that coordinate the Mo-bisMGD (NarG) and four [Fe-S] clusters (NarH); and (iii) helps ensure the separation of sites of H+-yielding and H+-consuming reactions such that enzyme turnover leads to the generation of a proton-electrochemical potential across the cytoplasmic membrane. This minireview focuses on recent advances and future prospects for the diheme cytochrome b subunit (Narl) of NarGHI.  相似文献   

9.
Eick M  Stöhr C 《Protoplasma》2012,249(4):909-918
A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.  相似文献   

10.
Li QH  Haga I  Shimizu T  Itoh M  Kurosaki T  Fujisawa J 《FEBS letters》2002,516(1-3):145-150
Genes encoding the NarG and NarH subunits of the molybdo-iron-sulfur enzyme, a nitrate reductase from a denitrifying halophilic euryarchaeota Haloarcula marismortui, were cloned and sequenced. An incomplete cysteine motif reminiscent of that for a [4Fe-4S] cluster binding was found in the NarG subunit, and complete cysteine arrangements for binding one [3Fe-4S] cluster and three [4Fe-4S] clusters were found in the NarH subunit. In conjunction with chemical, electron paramagnetic resonance, and subcellular localization analyses, we firmly establish that the H. marismortui enzyme is a new archaeal member of the known membrane-bound nitrate reductases whose homologs are found in the bacterial domain.  相似文献   

11.
We have used Escherichia coli cytoplasmic membrane preparations enriched in wild-type and mutant (NarH-C16A and NarH-C263A) nitrate reductase (NarGHI) to study the role of the [Fe-S] clusters of this enzyme in electron transfer from quinol to nitrate. The spectrum of dithionite-reduced membrane bound NarGHI has major features comprising peaks at g = 2.04 and g = 1.98, a peak-trough at g = 1.95, and a trough at g = 1.87. The oxidized spectrum of NarGHI in membranes comprises an axial [3Fe-4S] cluster spectrum with a peak at g = 2.02 (g(z)) and a peak-trough at g = 1.99 (g(xy)). We have shown that in two site-directed mutants of NarGHI which lack the highest potential [4Fe-4S] cluster (B. Guigliarelli, A. Magalon, P. Asso, P. Bertrand, C. Frixon, G. Giordano, and F. Blasco, Biochemistry 35:4828-4836, 1996), NarH-C16A and NarH-C263A, oxidation of the NarH [Fe-S] clusters is inhibited compared to the wild type. During enzyme turnover in the mutant enzymes, a distinct 2-n-heptyl-4-hydroxyquinoline-N-oxide-sensitive semiquinone radical species which may be located between the hemes of NarI and the [Fe-S] clusters of NarH is observed. Overall, these studies indicate (i) the importance of the highest-potential [4Fe-4S] cluster in electron transfer from NarH to the molybdenum cofactor of NarG and (ii) that a semiquinone radical species is an important intermediate in electron transfer from quinol to nitrate.  相似文献   

12.
Nitrate is available to microbes in many environments due to sustained use of inorganic fertilizers on agricultural soils and many bacterial and archaeal lineages have the capacity to express respiratory (Nar) and assimilatory (Nas) nitrate reductases to utilize this abundant respiratory substrate and nutrient for growth. Here, we show that in the denitrifying bacterium Paracoccus denitrificans, NarJ serves as a chaperone for both the anaerobic respiratory nitrate reductase (NarG) and the assimilatory nitrate reductase (NasC), the latter of which is active during both aerobic and anaerobic nitrate assimilation. Bioinformatic analysis suggests that the potential for this previously unrecognized role for NarJ in functional maturation of other cytoplasmic molybdenum‐dependent nitrate reductases may be phylogenetically widespread as many bacteria contain both Nar and Nas systems.  相似文献   

13.
Subunits A and B were isolated from purified nitrate reductase by preparative electrophoresis in low levels of sodium dodecyl sulfate. Nonheme iron and low levels of molybdenum were associated with isolated subunit A but not with isolated subunit B. After dialysis against a source of molybdenum cofactor, subunit A regained tightly bound molybdenum and concomitantly regained enzyme activity and reactivity with anti-nitrate reductase antiserum. Subunit B neither bound cofactor nor regained activity or reactivity with antiserum. These data indicate that subunit A contains the active site of the enzyme. Subunit A was also found to be modified posttranslationally in a similar fashion as is subunit B. This was determined by comparison of partial proteolytic digests and amino acid analyses of A subunits from precursor and membrane-bound forms of nitrate reductase.  相似文献   

14.
Nitrate reductase, released and purified from membrane fractions of Escherichia coli, is composed of three subunits. Formation of the enzyme depends on induction of the nar operon, narGHJI, which is composed of four open reading frames (ORF). Previous studies established that the first two genes in the operon narG and narH encode the alpha and beta subunits, respectively, while formation of the gamma subunit, cytochrome bNR, depends on expression of the promoter distal genes. The narJ and narI genes were subcloned separately into plasmids where each was under the control of the nar promoter. Expression of these plasmids in a mutant which forms only alpha and beta subunits revealed that expression of the narI gene is sufficient to restore normal levels of cytochrome bNR, but expression of both genes is required for assembly of fully active, membrane-bound nitrate reductase. The amino acid composition, the N-terminal sequence, and the sequence of cyanogen bromide fragments derived from the isolated gamma subunit corresponds to that expected for a protein produced by the narI ORF. A protein corresponding to the narJ ORF did not appear to be associated with the purified nitrate reductase complex or with the complex immunoprecipitated from Triton X-100-solubilized membrane preparations. We conclude that narI encodes the gamma subunit (cytochrome bNR) and that while the product of the narJ gene is required for assembly of fully active membrane-bound enzyme it is not tightly associated with the active enzyme.  相似文献   

15.
16.
Rothery RA  Blasco F  Weiner JH 《Biochemistry》2001,40(17):5260-5268
We have investigated the functional relationship between three of the prosthetic groups of Escherichia coli nitrate reductase A (NarGHI): the two hemes of the membrane anchor subunit (NarI) and the [3Fe-4S] cluster of the electron-transfer subunit (NarH). In two site-directed mutants (NarGHI(H56R) and NarGHI(H205Y)) that lack the highest potential heme of NarI (heme b(H)), a large negative DeltaE(m,7) is elicited on the NarH [3Fe-4S] cluster, suggesting a close juxtaposition of these two centers in the holoenzyme. In a mutant retaining heme b(H), but lacking heme b(L) (NarGHI(H66Y)), there is no effect on the NarH [3Fe-4S] cluster redox properties. These results suggest a role for heme b(H) in electron transfer to the [3Fe-4S] cluster. Studies of the pH dependence of the [3Fe-4S] cluster, heme b(H), and heme b(L) E(m) values suggest that significant deprotonation is only observed during oxidation of the latter heme (a pH dependence of -36 mV pH(-1)). In NarI expressed in the absence of NarGH [NarI(DeltaGH)], apparent exposure of heme b(H) to the aqueous milieu results in both it and heme b(L) having E(m) values with pH dependencies of approximately -30 mV pH(-1). These results are consistent with heme b(H) being isolated from the aqueous milieu and pH effects in the holoenzyme. Optical spectroscopy indicates that inhibitors such as HOQNO and stigmatellin bind and inhibit oxidation of heme b(L) but do not inhibit oxidation of heme b(H). Fluorescence quench titrations indicate that HOQNO binds with higher affinity to the reduced form of NarGHI than to the oxidized form. Overall, the data support the following model for electron transfer through the NarI region of NarGHI: Q(P) site --> heme b(L) --> heme b(H) --> [3Fe-4S] cluster.  相似文献   

17.
The Escherichia coli mob locus is required for synthesis of active molybdenum cofactor, molybdopterin guanine dinucleotide. The mobB gene is not essential for molybdenum cofactor biosynthesis because a deletion of both mob genes can be fully complemented by just mobA. Inactive nitrate reductase, purified from a mob strain, can be activated in vitro by incubation with protein FA (the mobA gene product), GTP, MgCl2, and a further protein fraction, factor X. Factor X activity is present in strains that lack MobB, indicating that it is not an essential component of factor X, but over-expression of MobB increases the level of factor X. MobB, therefore, can participate in nitrate reductase activation. The narJ protein is not a component of mature nitrate reductase but narJ mutants cannot express active nitrate reductase A. Extracts from narJ strains are unable to support the in vitro activation of purified mob nitrate reductase: they lack factor X activity. Although the mob gene products are necessary for the biosynthesis of all E. coli molybdoenzymes as a result of their requirement for molybdopterin guanine dinucleotide, NarJ action is specific for nitrate reductase A. The inactive nitrate reductase A derivative in a narJ strain can be activated in vitro following incubation with cell extracts containing the narJ protein. NarJ acts to activate nitrate reductase after molybdenum cofactor biosynthesis is complete.  相似文献   

18.
19.
Nitrate reductase A (NRA, NarGHI) is expressed in Escherichia coli by growing the bacterium in anaerobic conditions in the presence of nitrate. This enzyme reduces nitrate to nitrite and uses menaquinol (or ubiquinol) as the electron donor. The location of quinones in the enzyme, their number, and their role in the electron transfer mechanism are still controversial. In this work, we have investigated the spectroscopic and thermodynamic properties of a semiquinone (SQ) in membrane samples of overexpressed E. coli nitrate reductase poised in appropriate redox conditions. This semiquinone is highly stabilized with respect to free semiquinone. The g-values determined from the numerical simulation of its Q-band (35 GHz) EPR spectrum are equal to 2.0061, 2.0051, 2.0023. The midpoint potential of the Q/QH(2) couple is about -100 mV, and the SQ stability constant is about 100 at pH 7.5. The semiquinone EPR signal disappears completely upon addition of the quinol binding site inhibitor 2-n-nonyl-4-hydroxyquinoline N-oxide (NQNO). A semiquinone radical could also be stabilized in preparations where only the NarI membrane subunit is overexpressed in the absence of the NarGH catalytic dimer. Its thermodynamic and spectroscopic properties show only slight variations with those of the wild-type enzyme. The X-band continuous wave (cw) electron nuclear double resonance (ENDOR) spectra of the radicals display similar proton hyperfine coupling patterns in NarGHI and in NarI, showing that they arise from the same semiquinone species bound to a single site located in the NarI membrane subunit. These results are discussed with regard to the location and the potential function of quinones in the enzyme.  相似文献   

20.
A novel nitrate reductase (NR) was isolated from cell extract of the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens strain ALEN 2 and characterized. This enzyme is a classical nitrate reductase containing molybdopterin cofactor in the active site and at least one iron-sulfur cluster per subunit. Mass spectrometric analysis showed high homology of NR with the catalytic subunit NarG of the membrane nitrate reductase from the moderately halophilic bacterium Halomonas halodenitrificans. In solution, NR exists as a monomer with a molecular weight of 130–140 kDa and as a homotetramer of about 600 kDa. The specific nitrate reductase activity of NR is 12 μmol/min per mg protein, the maximal values being observed within the neutral range of pH. Like other membrane nitrate reductases, NR reduces chlorate and is inhibited by azide and cyanide. It exhibits a higher thermal stability than most mesophilic enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号