首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roundabout(Robo)蛋白是神经轴突导向分子家族Slit蛋白的单次跨膜受体,属于一种神经细胞粘附分子。Robo蛋白在神经系统已被确认具有重要轴突导向功能。近年来研究发现,血管新生的内皮细胞表面只特异性地表达Robo4,且Robo4对内皮细胞迁移、病理性血管生成和血管完整性都具有调节作用。缺血性脑血管病是人类致残甚至死亡的主要疾病之一,由于短暂或持续的脑血流减少而造成脑细胞损伤,因此,恢复脑血流、促进血管再生对脑功能恢复至关重要。Robo4对血管方面的作用为我们进一步研究及了解其在血管生成中的机制提供重要依据,也为缺血性脑血管病的治疗提供新的发展方向。  相似文献   

2.
During development,axon guidance receptors play a crucial role in regulating axons sensitivity to both attractive and repulsive cues. Indeed, activation of the guidance receptors is the first step of the signaling mechanisms allowing axon tips, the growth cones, to respond to the ligands. As such, the modulation of their availability at the cell surface is one of the mechanisms that participate in setting the growth cone sensitivity. We describe here a method to precisely visualize the spatio-temporal cell surface dynamics of an axon guidance receptor both in vitro and in vivo in the developing chick spinal cord. We took advantage of the pH-dependent fluorescence property of a green fluorescent protein (GFP) variant to specifically detect the fraction of the axon guidance receptor that is addressed to the plasma membrane. We first describe the in vitro validation of such pH-dependent constructs and we further detail their use in vivo, in the chick spinal chord, to assess the spatio-temporal dynamics of the axon guidance receptor of interest.  相似文献   

3.
Ena/VASP: proteins at the tip of the nervous system   总被引:3,自引:0,他引:3  
The emergence of neurites from a symmetrical cell body is an essential feature of nervous system development. Neurites are the precursors of axons and dendrites and are tipped by growth cones, motile structures that guide elongating axons in the developing nervous system. Growth cones steer the axon along a defined path to its appropriate target in response to guidance cues. This navigation involves the dynamic extension and withdrawal of actin-filled finger-like protrusions called filopodia that continuously sample their environment. Ena/VASP proteins, a conserved family of actin-regulatory proteins, are crucial for filopodia formation and function downstream of several guidance cues. Here we review recent findings into Ena/VASP function in neurite initiation, axon outgrowth and guidance.  相似文献   

4.
5.
The cues and signaling systems that guide the formation of embryonic blood vessels in tissues and organs are poorly understood. Members of the Eph family of receptor tyrosine kinases and their cell membrane-anchored ligands, the ephrins, have been assigned important roles in the control of cell migration during embryogenesis, particularly in axon guidance and neural crest migration. Here we investigated the role of EphB receptors and their ligands during embryonic blood vessel development in Xenopus laevis. In a survey of tadpole-stage Xenopus embryos for EphB receptor expression, we detected expression of EphB4 receptors in the posterior cardinal veins and their derivatives, the intersomitic veins. Vascular expression of other EphB receptors, including EphB1, EphB2 or EphB3, could however not be observed, suggesting that EphB4 is the principal EphB receptor of the early embryonic vasculature of Xenopus. Furthermore, we found that ephrin-B ligands are expressed complementary to EphB4 in the somites adjacent to the migratory pathways taken by intersomitic veins during angiogenic growth. We performed RNA injection experiments to study the function of EphB4 and its ligands in intersomitic vein development. Disruption of EphB4 signaling by dominant negative EphB4 receptors or misexpression of ephrin-B ligands in Xenopus embryos resulted in intersomitic veins growing abnormally into the adjacent somitic tissue. Our findings demonstrate that EphB4 and B-class ephrins act as regulators of angiogenesis possibly by mediating repulsive guidance cues to migrating endothelial cells.  相似文献   

6.
An interaction of growth cone axonin-1 with the floor-plate NgCAM-related cell adhesion molecule (NrCAM) was shown to play a crucial role in commissural axon guidance across the midline of the spinal cord. We now provide evidence that axonin-1 mediates a guidance signal without promoting axon elongation. In an in vitro assay, commissural axons grew preferentially on stripes coated with a mixture of NrCAM and NgCAM. This preference was abolished in the presence of anti-axonin-1 antibodies without a decrease in neurite length. Consistent with these findings, commissural axons in vivo only fail to extend along the longitudinal axis when both NrCAM and NgCAM interactions, but not when axonin-1 and NrCAM or axonin-1 and NgCAM interactions, are perturbed. Thus, we conclude that axonin-1 is involved in guidance of commissural axons without promoting their growth.  相似文献   

7.
The finding that morphogens, signalling molecules that specify cell identity, also act as axon guidance molecules has raised the possibility that the mechanisms that establish neural cell fate are also used to assemble neuronal circuits. It remains unresolved, however, how cells differentially transduce the cell fate specification and guidance activities of morphogens. To address this question, we have examined the mechanism by which the Bone morphogenetic proteins (BMPs) guide commissural axons in the developing spinal cord. In contrast to studies that have suggested that morphogens direct axon guidance decisions using non-canonical signal transduction factors, our results indicate that canonical components of the BMP signalling pathway, the type I BMP receptors (BMPRs), are both necessary and sufficient to specify the fate of commissural neurons and guide their axonal projections. However, whereas the induction of cell fate is a shared property of both type I BMPRs, axon guidance is chiefly mediated by only one of the type I BMPRs, BMPRIB. Taken together, these results indicate that the diverse activities of BMP morphogens can be accounted for by the differential use of distinct components of the canonical BMPR complex.  相似文献   

8.
Guidance of vascular and neural network formation   总被引:15,自引:0,他引:15  
Blood vessels and nerves are structurally similar complex branched systems. Their guidance must be exquisitely regulated to ensure proper wiring of both networks. Recent results showed that specialized endothelial cells, resembling axonal growth cones, form the tips of growing capillaries. These endothelial tip cells guide outgrowing capillaries in response to gradients of extracellular matrix-bound vascular endothelial growth factor. Several axon guidance molecules, including Semaphorins, Netrins, Ephrins and Slits, have also been implicated in vessel pathfinding and network formation. In particular, Semaphorin3E and its receptor plexinD1 in addition to the Netrin receptor UNC5B have recently been shown to direct endothelial tip cell navigation.  相似文献   

9.
Neogenin is a multifunctional transmembrane receptor belonging to the immunoglobulin superfamily. It displays identical secondary structure to deleted in colorectal cancer (DCC), a netrin receptor that is involved in axon guidance and cell survival. Like DCC, neogenin is able to transduce signals elicited by netrin. These neogenin-netrin interactions have been implicated in tissue morphogenesis, angiogenesis, myoblast differentiation and most recently in axon guidance. Neogenin is also a receptor for repulsive guidance molecule, a glycosylphosphatidylinositol-linked protein involved in neuronal differentiation, apoptosis and repulsive axon guidance. Numerous studies have been started to elucidate the in vivo functions of neogenin, and its role in multiple aspects of development and homeostasis.  相似文献   

10.
Actin-based motility: stop and go with Ena/VASP proteins   总被引:11,自引:0,他引:11  
Proteins of the Ena/VASP (Enabled/vasodilator-stimulated phosphoprotein) family are involved in Abl and/or cyclic nucleotide-dependent protein kinase signaling pathways. These proteins are also crucial factors in regulating actin dynamics and associated processes such as cell-cell adhesion, platelet function and actin-based motility of both cytopathogenic Listeria and their eukaryotic host cells. Although biochemical mechanisms have emerged depicting Ena/VASP proteins as enhancers of actin filament formation, increasing evidence also suggests that these proteins have inhibitory functions in integrin regulation, cell motility and axon guidance.  相似文献   

11.
Vascular endothelial growth factor A (VEGF-A) is best known for its essential roles in blood vessel growth. However, evidence has emerged that VEGF-A also promotes a wide range of neuronal functions, both in vitro and in vivo, including neurogenesis, neuronal migration, neuronal survival and axon guidance. Recent studies have employed mouse models to distinguish the direct effects of VEGF on neurons from its indirect, vessel-mediated effects. Ultimately, refining our knowledge of VEGF signalling pathways in neurons should help us to understand how the current use of therapeutics targeting the VEGF pathway in cancer and eye disease might be expanded to promote neuronal health and nerve repair.  相似文献   

12.
Yu HH  Huang AS  Kolodkin AL 《Genetics》2000,156(2):723-731
Semaphorins comprise a large family of phylogenetically conserved secreted and transmembrane glycoproteins, many of which have been implicated in repulsive axon guidance events. The transmembrane semaphorin Sema-1a in Drosophila is expressed on motor axons and is required for the generation of neuromuscular connectivity. Sema-1a can function as an axonal repellent and mediates motor axon defasciculation. Here, by manipulating the levels of Sema-1a and the cell adhesion molecules fasciclin II (Fas II) and connectin (Conn) on motor axons, we provide further evidence that Sema-1a mediates axonal defasciculation events by acting as an axonally localized repellent and that correct motor axon guidance results from a balance between attractive and repulsive guidance cues expressed on motor neurons.  相似文献   

13.
Neurolin is a member of the superfamily of immunoglobulin-like cell surface receptors. It is essential during neuronal development in the model organism Carassius auratus (goldfish) and involved in the guidance of the growing axon. Among the five extracellular immunoglobulin (Ig) domains, the second Ig domain is crucial for axon pathfinding. In the present study, we report the NMR assignment and secondary structure prediction of the second Ig domain of neurolin.  相似文献   

14.
The developing optic pathway has proven one of the most informative model systems for studying mechanisms of axon guidance. The first step in this process is the directed extension of retinal ganglion cell (RGC) axons within the optic fibre layer (OFL) of the retina towards their exit point from the eye, the optic disc. Previously, we have shown that the inhibitory guidance molecules, Slit1 and Slit2, regulate two distinct aspects of intraretinal axon guidance in a region-specific manner. Using knockout mice, we have found that both of these guidance activities are mediated via Robo2. Of the four vertebrate Robos, only Robo1 and Robo2 are expressed by RGCs. In mice lacking robo1 intraretinal axon guidance occurs normally. However, in mice lacking robo2 RGC axons make qualitatively and quantitatively identical intraretinal pathfinding errors to those reported previously in Slit mutants. This demonstrates clearly that, as in other regions of the optic pathway, Robo2 is the major receptor required for intraretinal axon guidance. Furthermore, the results suggest strongly that redundancy with other guidance signals rather than different receptor utilisation is the most likely explanation for the regional specificity of Slit function during intraretinal axon pathfinding.  相似文献   

15.
Members of the Cas family of Src homology 3 (SH3)-domain-containing cytosolic signaling proteins are crucial regulators of actin cytoskeletal dynamics in non-neuronal cells; however, their neuronal functions are poorly understood. Here, we identify a Drosophila Cas (DCas), find that Cas proteins are highly expressed in neurons and show that DCas is required for correct axon guidance during development. Functional analyses reveal that Cas specifies axon guidance by regulating the degree of fasciculation among axons. These guidance defects are similar to those observed in integrin mutants, and genetic analysis shows that integrins function together with Cas to facilitate axonal defasciculation. These results strongly support Cas proteins working together with integrins in vivo to direct axon guidance events.  相似文献   

16.
17.
A major goal of modern neuroscience research is to understand the cellular and molecular processes that control the formation, function, and remodeling of chemical synapses. In this article, we discuss the numerous studies that implicate molecules initially discovered for their functions in axon guidance as critical regulators of synapse formation and plasticity. Insights from these studies have helped elucidate basic principles of synaptogenesis, dendritic spine formation, and structural and functional synapse plasticity. In addition, they have revealed interesting dual roles for proteins and cellular mechanisms involved in both axon guidance and synaptogenesis. Much like the dual involvement of morphogens in early cell fate induction and axon guidance, many guidance-related molecules continue to play active roles in controlling the location, number, shape, and strength of neuronal synapses during development and throughout the lifetime of the organism. This article summarizes key findings that link axon guidance molecules to specific aspects of synapse formation and plasticity and discusses the emerging relationship between the molecular and cellular mechanisms that control both axon guidance and synaptogenesis.  相似文献   

18.
19.
Axon branching is vital to the development of a highly interconnected and functional nervous system. Similar to axon growth and guidance, axon branching is subject to dynamic remodeling of the neuronal cytoskeleton. Coordinated remodeling of the cytoskeleton is achieved through parallel and direct targeting of both actin filaments and a subset of highly dynamic microtubules that probe the actin-rich peripheral domains in growth cones and emerging branch sites. A growing number of extracellular cues implicated in growth cone guidance also influence axon branch behavior. Mechanistic insight into the molecular basis of growth cone steering and axon branching reveals significant similarities but also uncovers important differences between these crucial events in the establishment of neural circuits.  相似文献   

20.
Growth cones are highly motile structures at the end of neuronal processes, capable of receiving multiple types of guidance cues and transducing them into directed axonal growth. Thus, to guide the axon toward the appropriate target cell, the growth cone carries out different functions: it acts as a sensor, signal transducer, and motility device. An increasing number of molecular components that mediate axon guidance have been characterized over the past years. The vast majority of these molecules include proteins that act as guidance cues and their respective receptors. In addition, more and more signaling and cytoskeleton-associated proteins have been localized to the growth cone. Furthermore, it has become evident that growth cone motility and guidance depends on a dynamic cytoskeleton that is regulated by incoming guidance information. Current and future research in the growth cone field will be focussed on how different guidance cues transmit their signals to the cytoskeleton and change its dynamic properties to affect the rate and direction of growth cone movement. In this review, we discuss recent evidence that cell adhesion molecules can regulate growth cone motility and guidance by a mechanism of substrate-cytoskeletal coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号