首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li Q  Bi HR  Zhang R  Zhu DL 《生理学报》2006,58(1):77-82
通过组织浴槽血管环方法观察Kv3.4通道特异阻断剂BDS-Ⅰ对15-羟二十碳四烯酸(15-hydroxyeicosatetraenoic acid,15-FETE)收缩肺动脉血管的影响;通过酶法分离、培养Wistar大鼠肺动脉血管平滑肌细胞(pulmonary artery smooth musclecells,PASMCs),RT-PCR和Western blot技术观察15-HETE对大鼠PASMCs上Kv3.4通道表达的影响,以探讨Kv3.4通道在15-HETE收缩肺动脉过程中的作用。结果如下:(1)15-HETE以浓度依赖方式使肺动脉环张力增加,对缺氧组大鼠肺动脉环张力作用更为明显,与正常对照组相比差异显著;(2)除去肺动脉内皮后,15-HETE引起血管收缩的强度较内皮完整时增强,呈剂量依赖性收缩反应;(3)阻断Kv3.4通道可抑制15-HETE收缩肺动脉;(4)15-HETE下调PASMCs膜上Kv3.4通道mRNA及蛋白质表达。上述观察结果提示Kv3.4通道参与由15-HETE引起的缺氧肺动脉血管收缩(hypoxic pulmonary vasoconstriction,HPV)。  相似文献   

2.
Cultured endothelial cells take up 15-hydroxyeicosatetraenoic acid (15-HETE), a lipoxygenase product formed from arachidonic acid, and incorporate it into cellular phospholipids and glycerides. Uptake can occur from either the apical or basolateral surface. A substantial amount of the 15-HETE incorporated into phospholipids is present in the inositol phosphoglycerides. 15-HETE is converted into several metabolic products that accumulate in teh extracellular fluid; this conversion does not require stimulation by agonists. The main product has been identified as 11-hydroxyhexadecatrienoic acid [16:3(11-OH)], a metabolite of 15-HETE that has not been described previously. Formation of 16:3(11-OH) decreases when 4-pentenoic acid is present, suggesting that it is produced by beta-oxidation. The endothelial cells can take up 16:3(11-OH) only 25% as effectively as 15-HETE, and 16:3(11-OH) is almost entirely excluded from the inositol phosphoglycerides. These results suggest that the endothelial cells can incorporate 15-HETE when it is released into their environment. Through partial oxidation, the endothelium can process 15-HETE to a novel metabolite that is less effectively taken up and, in particular, is excluded from the inositol phosphoglycerides.  相似文献   

3.
Mono-hydroxy-eicosatetraenoic acids (HETE's) are frequently the principal lipoxygenase-derived products in a number of cell types. This paper describes the development of a selective and sensitive radioimmunoassay procedure for 15-HETE, a metabolite which has previously been shown to be both an activator and inhibitor of leukotriene formation in various cells. Initially, rabbits were immunized with 15-HETE conjugated to bovine serum albumin. After seven months, the anti-plasma showed significant binding of tritiated 15-HETE (40-45% binding with a 1:600 dilution of the anti-plasma) which was displaceable by cold 15-HETE. The sensitivity of the assay was approximately 20 pg. of 15-HETE. The anti-plasma exhibited very little (less than 1%) cross-reactivity with arachidonic acid, 5-, 8-, 9-, 11- and 12-HETE's, HHT, TXB2, PGE2 and 6-Keto-PGF1 alpha. Significant cross-reactivity was observed with 5,15-diHETE (53%), 8, 15-diHETE (6.6%), and several other 15-hydroxy-eicosanoids. Rabbit reticulocytes have a very active 15S-lipoxygenase and converted arachidonic acid (final concentration 7 microM) principally to 15-HETE. Unstimulated reticulocytes were found to release negligible amounts of 15-HETE as determined by radioimmunoassay. Treatment of these cells with the calcium ionophore A23187 (0.16 to 4.0 micrograms/ml) elicited a level of 15-HETE release (8 - 14 ng/ml) that was twenty to forty times less than that obtained with exogenous arachidonic acid (2.5 micrograms/ml). The radioimmunoassay reported here may be useful for identifying factors which stimulate cellular release of 15-HETE and other 15-hydroxy-eicosanoids from endogenous arachidonic acid.  相似文献   

4.
Cytosolic (100,000 g) fractions of fetal rabbit brain and placenta tissue convert [1-14C]arachidonic acid into several oxidation products identified with the lipoxygenase [12-hydroxyeicosatetraenoic acid (12-HETE) and 15-HETE] and cyclooxygenase [prostaglandin E2 (PGE2)] pathways. Formation of 12-HETE and 15-HETE by fetal brain is time-dependent, reaching a plateau after 40 min and is linear with protein concentration. An apparent affinity constant of 0.06 mM and a Vmax of 0.1 mumol/h/g wet weight are presumably responsible for the excessive accumulation of 12-HETE and 15-HETE in comparison to PGE2 (Km = 0.5 mM). The latter is synthesized by the placenta particulate fraction but almost exclusively by the brain cytosol. Compared to brain, the activity of the placenta tissue is exceedingly higher and in addition to 12-HETE and 15-HETE there is a substantial formation of 12-L-hydroxyheptadecatrienic acid. Formation of 12-HETE and 15-HETE at 21 days is as effective as at 31 days gestation and is strongly inhibited by nordihydroguaiaretic acid (93%), BW755c (99%), and AA861 (84%) but not by indomethacin. Placenta and brain tissues of intrauterine growth retarded fetuses after ligation of placental blood vessels fail to convert arachidonic acid into other eicosanoids. Loss of enzymatic activity also observed in normal tissue after prolonged storage cannot be restored by the addition of several SH agents, ascorbate, or ferric iron.  相似文献   

5.
Luteinizing hormone and follicle stimulating hormone secretion was stimulated by 4 min pulses of arachidonic acid (3 X 10(-5) to 10(-4)M) in superfused rat pituitary cells. The effect of its lipoxygenase metabolites, 5-hydroxy-6,8,11,14-eicosatetranoic acid (5-HETE) and 15-hydroxy-5,8,10,14-eicosatetranoic acid (15-HETE) was more potent on hormone release when added in the same dose. Using 3 X 10(-5)M 5-HETE, its releasing activity on gonadotropins was comparable to that of GnRH (10(-9)M). 15-HETE (3 X 10(-5)M) was even more potent on LH and FSH secretion than 5-HETE. The secretory profile induced by 5-HETE and 15-HETE was also similar to that shown for GnRH, resulting in a rapid increase and a more prolonged decline of the hormone release. The addition of these fatty acids to superfused pituitary cells did not alter the response of the cells to their physiological ligand. These findings give further support to the proposal that metabolites of arachidonic acid may be involved in receptor-mediated mechanisms of gonadotropin release in pituitary cells.  相似文献   

6.
J Wang  B H Yuen  P C Leung 《FEBS letters》1989,244(1):154-158
The role of several lipoxygenase metabolites of arachidonic acid in the action of luteinizing hormone-releasing hormone (LHRH) on ovarian hormone production was investigated. Like LHRH, treatment of rat granulosa cells with 5-HETE, 5-HPETE, 12-HETE, 15-HETE or 15-HPETE stimulated progesterone (P) and prostaglandin E2 (PGE2) production. 12-HEPE was most potent and stimulated P and PGE2 equally well. By contrast, 5-HETE stimulated P better than PGE2, while 15-HETE was a potent stimulator of PGE2 but not of P. Stimulation of P and PGE2 by LHRH or 12-O-tetradecanoylphorbol 13-acetate (TPA) was further augmented by several HETEs and HPETEs. Like protein kinase C, arachidonic acid metabolites appear to mediate the multiple actions of LHRH in the ovary.  相似文献   

7.
Synthesis of lipoxygenase metabolites of [14C]arachidonic acid by mouse spleen lymphocyte cultures was inhibited by the leukocyte product 15-hydroxy-eicosatetraenoic acid (15-HETE) in a dose-dependent manner. In parallel experiments, the influence of 15-HETE on mitogenesis in spleen lymphocyte cultures was examined. 15-HETE at concentrations similar to those which inhibited cellular lipoxygenases progressively inhibited mitogenesis induced by the T-cell mitogen PHA but had no significant effect on the mitogenic response to the B-cell mitogen LPS. The inhibitory response was maximal when 15-HETE was added within 8 hr of exposure to PHA. Several analogs of 15-HETE having progressively fewer double bonds were tested in the same systems. 15-OH,20:3 had approximately the same potency as 15-HETE in inhibiting both mitogenesis and formation of metabolites from [14C]arachidonic acid. 15-OH, 20:2 and 15-OH,20:0 were much less active in either assay. Mitogenesis, induced in spleen cell cultures by the tumor promoter phorbol myristate acetate, was also blocked by 15-HETE. These experiments indicate that lipoxygenase metabolites of arachidonic acid may play an important role in T-lymphocyte blastogenesis and suggest that 15-HETE, via its ability to selectively inhibit cellular lipoxygenases, may function as an endogenous regulator of T-lymphocyte responses.  相似文献   

8.
Erythroid progenitor cells synthesize 12-hydroxyeicosatetraenoic acid (12-HETE) and 15-hydroxyeicosatetraenoic acid (15-HETE) when stimulated by erythropoietin (Ep). Maximal stimulation of 12-HETE production occurred at one hour, whereas 15-HETE activity remained constant in response to Ep for 24 hours. Lipoxygenase-selective inhibitors of arachidonic acid metabolism blocked HETE production and Ep-stimulated growth and differentiation of erythroid progenitor cell-derived colonies (CFU-E). On the other hand, specific inhibitors of cyclooxygenase (aspirin and meclofenamate) did not significantly inhibit Ep-induced erythroid colony formation. It is hypothesized that the stimulation of HETE production from arachidonic acid (AA) is an essential step in the mechanism of action of Ep.  相似文献   

9.
Characterization of the stereospecificity of the derivatives of arachidonic acid and linoleic acid produced by endothelial cells is needed to define the enzymatic origin of these compounds and their role in vascular physiology. In studies utilizing two bovine endothelial cell lines (CPAE and AG04762), both free 15-hydroxyeicosatetraenoic acid (15-HETE) and 11-hydroxyeicosatetraenoic acid (11-HETE) were generated during incubations with exogenous arachidonic acid and both free 9-hydroxyoctadecadienoic acid (9-HODE) and 13-hydroxyoctadecadienoic acid (13-HODE) were generated during incubations with exogenous linoleic acid. Esterification of 15-HETE, 9-HODE and 13-HODE during these incubations was demonstrated. The analyses included reversed-phase high performance liquid chromatography of the free acid and its methyl ester and chiral separation of the methyl ester on straight phase chiral columns. The ratio of 9-HODE/13-HODE averaged 2.7 in the chromatographic analyses of the extracts of the incubations with linoleic acid. The combined production of 13-HODE and 9-HODE from linoleic acid was four times greater than that of 15-HETE and 11-HETE from arachidonic acid. With regard to the products of the CPAE endothelial cell line, the S/R ratio of the stereoisomers averaged 1.5 for free 15-HETE, 5.7 for free 13-HODE and 0.2 for free 9-HODE. The 11-HETE had strict (R) stereospecificity. The products from the AG04762 endothelial cell line had similar stereochemistry. All these stereochemical findings point to the activity of a cyclooxygenase rather than that of a lipoxygenase.  相似文献   

10.
Consideration of how 15-hydroxyeicosatetraenoic acid (15-HETE) might exert its biological actions led us to investigate the consequences of its incorporation into bovine pulmonary arterial endothelial cell (BPAEC) phospholipids [3H]15(S)-HETE was incorporated mainly (89%) into phosphatidylinositols, predominantly as 1-stearoyl-2-(15-HETE) phosphatidylinositol. By contrast 5(S)- and 12(S)-HETE are incorporated largely into phosphatidylcholine. 15-HETE had a long persistence in the phosphatidylinositols of BPAEC with a half-life of 12 h; its uptake was concentration-dependent, and it accumulated so that 2-(15-HETE) phosphatidylinositol accounted for 10.9% of total phosphatidylinositol after four sequential 1-h incubations of cells with 1 microM 15(S)-HETE. After incubating BPAEC with 15(S)-HETE, stimulation of the cells with bradykinin led to an increase in the levels of 15-HETE. Following addition of bradykinin to cells exposed to [3H]15(S)-HETE, a radiolabeled diacylglycerol was isolated. A mass spectrum of its pentafluorobenzoyl (PFBO) trimethylsilyl (Me3Si) derivative obtained with direct electron capture negative ion chemical ionization mass spectrometry (DNICI/MS) revealed a molecular anion and fragment ions that were identical with those observed with the PFBO/Me3Si derivative of authentic 1-stearoyl-2-(15-HETE) diacylglycerol. There was a lesser quantity of 1-oleoyl-2-(15-HETE) diacylglycerol. An increase in the quantity of 1-stearoyl-2-(15-HETE) diacylglycerol from 6 +/- 1.4 pmol/10(7) cells in the basal state to 12.7 +/- 3.5 after bradykinin was measured by DNICI/MS utilizing a deuterium-labeled analog as an internal standard. Thus, incorporation of 15(S)-HETE into the phosphatidylinositol of these cells led to the release of altered second messengers.  相似文献   

11.
Human peripheral blood polymorphonuclear leukocytes (PMNs) metabolized [14C]arachidonic acid predominantly by lipoxygenase pathways. The major products were 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) and 15-HETE. These and other lipoxygenase products, including their derived leukotrienes, have been implicated as mediators of inflammatory and allergic reactions. In human platelets, the nonsteroidal anti-inflammatory drug ibuprofen inhibited production of the cyclooxygenase product thromboxane B2 (I50 = 65 microM), whereas the lipoxygenase product 12-HETE was not appreciably affected even at 5 mM ibuprofen. The 5-lipoxygenase of human PMNs (measured by 5-HETE formation) was inhibited by ibuprofen but was about six times less sensitive (I50 = 420 microM) than the platelet cyclooxygenase. The unexpected observation was made that the human PMN 15-lipoxygenase/leukotriene pathway was selectively activated by 1-5 mM ibuprofen. Metabolites were identified by ultraviolet spectroscopy, by radioimmunoassay, or by retention times on high pressure liquid chromatography in comparison with authentic standards. The major product was 15-HETE; and in all of 19 donors tested, 15-HETE formation was stimulated up to 20-fold by 5 mM ibuprofen. Other identified products included 12-HETE and 15- and 12-hydroperoxyeicosatetraenoic acid. Activation of the 15-lipoxygenase by ibuprofen occurred within 1 min and was readily reversible. The effects of aspirin, indomethacin, and ibuprofen on the PMN 15-lipoxygenase were compared in six donors. Ibuprofen produced an average 9-fold stimulation of the enzyme, whereas aspirin and indomethacin resulted in an average 1.5- and 2-fold enhancement, respectively.  相似文献   

12.
Hydroxyeicosatetraenoic acid (HETE) derivatives of arachidonic acid are produced in the brain and have been implicated as pathologic mediators in various types of brain injury. To understand better their fate in the brain, particularly in cerebral microvessels, several HETEs were incubated with cultured mouse cerebromicrovascular endothelium for 1, 2, and 4 h, followed by HPLC analysis of medium and cellular lipids. 5(S)-, 8(RS)-, and 9(RS)-HETE were not metabolized by the cells, but were extensively incorporated, unmodified, into cell lipids. On the other hand, 11(RS)-, 12(S)-, and 15(S)-HETE were extensively metabolized and only minimally incorporated into cell lipids. Previously, the major 12-HETE metabolite was identified as 8-hydroxyhexadecatrienoic acid. In the present study, we identified the major 11-HETE metabolite as 7-hydroxyhexadecatrienoic acid and the major 15-HETE metabolite as 11-hydroxyhexadecatrienoic acid. omega-3 compounds, 15(S)- and 12(S)-hydroxyeicosapentaenoic acids (HEPE), were also metabolized to more polar compounds, but to a lesser extent than their tetraenoic acid, omega-6 counterparts. Comparison of 5-, 12-, and 15-HETE enantiomers revealed no differences in metabolism or incorporation between the R and S stereoisomers. These data suggest that many isomers of HETE and HEPE can be incorporated into cell lipids or metabolized by pathways that do not distinguish between enantiomers. These pathways, however, are sensitive to the position or number of double bonds and are selective based on the position of the hydroxyl group.  相似文献   

13.
Glucose (16.7 mM)-induced insulin secretion from isolated pancreatic islets of rats was inhibited by nordihydroguaiaretic acid (NDGA), 1-phenyl-3-pyrazolidinone (phenidone), 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline (BW755C), 2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861), and 2,6-di-tert-butyl-4-methylphenol (BHT). Indomethacin and aspirin, however, failed to inhibit the glucose-induced insulin secretion but rather tended to enhance it. The glucose-induced insulin secretion was inhibited by 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) (50 microM), 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE) (100 microM), and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) (100 microM), but not by 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) (100 microM). Exogenous 5-HETE (10 microM) induced significant insulin secretion in a low glucose (3.3 mM) medium. Racemic 5-HETE also showed insulinotropic effect in a concentration-dependent manner with the concentrations 20 microM or above, whereas 12-HETE, 15-HETE, 15-HPETE, 5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid, 5-hydroxy-6-glutathionyl-7,9,11,14-eicosatetraenoic acid, 5-hydroxy-6-cysteinylglycinyl-7,9,11,14-eicosatetraenoic acid, prostaglandin E2, and prostaglandin F2 alpha failed to induce insulin secretion. Although significant insulin release was observed with arachidonic acid (greater than or equal to 100 microM), reduce cell viability was evident at 200 microM. When the 10,000 X g supernatant of isolated pancreatic islet homogenate was incubated with [3H]arachidonic acid at 37 degrees C in the presence of GSH and Ca2+, and the labeled metabolites then extracted with ethyl acetate and subjected to reverse phase high pressure liquid chromatography, several radioactive peaks, coeluted with authentic 15-, 12-, and 5-HETE, were observed. The radioactive peaks were completely suppressed by the addition of either NDGA, BW755C, or phenidone into the medium. The results support our contention i.e. the involvement of lipoxygenase product(s) in the secretory mechanism of insulin, and further suggest that 5-lipoxygenase system may play a role.  相似文献   

14.
Receptor-mediated cyclic GMP formation in N1E-115 murine neuroblastoma cells appears to involve oxidative metabolism of arachidonic acid. Evidence in support of this includes the blockade of this response by lipoxygenase inhibitors, e.g., eicosatetraynoic acid (ETYA) or other metabolic perturbants, e.g., methylene blue. It was recently discovered that the lipoxygenase products 15-hydroxyeicosatetraenoic (15-HETE) acid and 12-HETE, like ETYA, were inhibitors of M1 muscarinic receptor-mediated cyclic GMP formation. In the present report, the effects of monoHETEs are explored in more detail, particularly with regard to the function of the muscarinic receptor. Like 12-HETE and 15-HETE (IC50 = 13 and 11 microM, respectively), 5-HETE inhibited the cyclic GMP response to the muscarinic receptor (IC50 = 10 microM). All three of these monoHETEs were shown also to be inhibitors of the cyclic GMP responses to receptors stimulated by carbachol, histamine, thrombin, neurotensin, and bradykinin. 15-HETE was shown to inhibit the muscarinic receptor-mediated response in a complex manner (apparent noncompetitive and uncompetitive components; IC50 = 18 and 2 microM, respectively). 15-HETE did not inhibit either the M1 muscarinic receptor-stimulated release of [3H]inositol phosphates from cellular phospholipids or the M2 muscarinic receptor-mediated inhibition of hormone (prostaglandin E1)-induced AMP formation. It seemed possible that the monoHETEs could enter into biochemical pathways for arachidonate in N1E-115 cells. [3H]Arachidonate and the three [3H]-monoHETEs all rapidly labeled the membrane lipids of intact N1E-115 cells, with each [3H]eicosanoid producing a unique labeling profile. [3H]15-HETE labeling was noteworthy in that 85% of the label found in the phospholipids was in phosphatidylinositol (PI;t1/2 to steady state = 3 min). Exogenous 15-HETE inhibited the labeling of PI by [3H]arachidonate (IC50 = 28 microM) and elevated unesterified [3H]arachidonate levels. Thus, the mechanism of blockade of receptor-mediated cyclic GMP responses by monoHETEs is likely to be more complex than the simple inhibition of cytosolic mechanisms, e.g., generation of a putative second messenger by lipoxygenase, and may involve also alterations of membrane function accompanying the redistributions of esterified arachidonate.  相似文献   

15.
The mechanisms of stimulation of the inactive 5-lipoxygenase in mast/basophil PT-18 cells by microM 15-hydroxyeicosatetraenoic acid (15-HETE) was investigated. Treatment of PT-18 cells with pM 15-[3H]HETE at 4 degrees for 3 h resulted in the cell association of 10% of the ligand: two-thirds was incorporated into cellular lipids and a third was bound to specific 15-HETE cellular binding sites. Binding data analysis indicated a single class of 15-HETE binding sites with a Kd of 162 nM and a Bmax of 7.1 x 10(5) sites/cell. Unlabeled 15-HETE, 12-HETE, and 5,15-diHETE inhibited the binding of 15-[3H]HETE to cells, whereas LTB4 and PGF2 alpha were relatively ineffective. 2.4 microM 15-HETE (unlabeled) prevented 50% 15-[3H]HETE incorporation. Examination of the effects of 15-HETE methyl ester, 12-HETE, 5,15-diHETE, and pertussis toxin on both the 15-HETE-induced 5-lipoxygenase activation and 15-HETE cell association processes indicated a preponderant correlation of this activation process with specific 15-HETE binding rather than 15-HETE incorporation into phospholipids. In addition, 5,15-diHETE itself stimulated the inactive 5-lipoxygenase and eight times more [3H]diHETE was bound to cells than became incorporated into cellular lipids. The results support the involvement of low affinity 15-HETE receptors, rather than 15-HETE incorporation into cellular lipids, in the 15-HETE-induced stimulation of the 5-lipoxygenase in PT-18 cells.  相似文献   

16.
Lipoxygenase (LO) products generated by human PMN were examined utilizing a gradient-HPLC and rapid spectral detector which permitted continuous UV-spectral monitoring of leukotrienes, lipoxins and related oxygenated products of arachidonic acid. When exposed to the ionophore A23187, PMN generated LTB4 and its omega-oxidation products as well as LXA4, LXB4, and 7-cis-11-trans-LXA4 from endogenous sources. Addition of 15-HETE changed the profile of products generated by activated PMN and led to a time- and dose-dependent increase in lipoxins and related compounds while the production of LTB4 and its omega-oxidation products was inhibited. Results of time-course and radiolabel studies revealed that 15-HETE is rapidly transformed within 15 s to 5,15-DHETE and conjugated tetraene-containing products, and that the inhibition of leukotriene formation followed a similar time-course. In contrast, PMN did not generate either lipoxins or related products from 5-[3H]HETE, nor did 5-HETE block leukotriene formation. Stimulated PMN generated 5,15-DHETE from exogenous 5-HETE, while in the absence of ionophore, 5-HETE was transformed to 5,20-HETE. These results indicate that PMN can generate lipoxins and related products from endogenous sources and that 15-HETE and 5-HETE are transformed by different routes.  相似文献   

17.
Ye H  Bi HR  Lü CL  Tang XB  Zhu DL 《生理学报》2005,57(5):612-618
15-羟二十碳四烯酸(15-hydroxyeicosatetraenoic acid,15-HETE)在低氧性肺血管收缩中起着重要作用,低氧肺动脉高压下调内皮型。氧化氮合酶(endothelial nitric oxide synthase,eNOS),使一氧化氮(nitric oxide,NO)的产量下降,但目前尚无关于15-HETE与eNOS/NO相互作用研究的报道。我们通过Wistar大鼠肺动脉环张力、牛肺动脉内皮细胞NO产量、总eNOS表达及eNOS磷酸化测定等方法对15-HETE与eNOS/NO的相互作用进行研究。首先分离人鼠肺动脉,分为eNOS抑制剂L-NAME组(0.1mmol/L)、去缸管内皮组与内皮完整组,用15-HETE作用夫鼠离体肺动脉环,测定肺动脉张力。结果表明,L-NAME组、去除内皮组与内皮完整组分别比较,15-HETE对血管的收缩作用增强,且都有统计学意义(P〈0.05)。培养牛肺动脉内皮细胞,分别用15-HETE、15-脂氧酶(15-lipoxygenase,15-LO)抑制剂[(cinnamyl 3,4-dihydroxy-[alpha]-cyanocinnamate,CDC)和(nordihydroguiairetic acid,YDGA)]处理细胞,通过Greiss方法检测亚硝酸盐含量,间接测定NO产量,与对照组比较,1μmol/L 15-HETE明显降低肺动脉内皮细胞NO水平(P〈0.05),10μmol/L CDC和0.1mmol/L NDGA显著增加NO水平(分别是P〈0.05,P〈0.01);通过Western blot检测不同时间(5,10,15,20,30,60min)eNOS的表达情况,结果显示,15-HETE的不同作用时间,没有引起eNOS表达的明显不同;用苏氨酸495位点磷酸化eNOS(Thr495)抗体进行免疫沉淀,再用总eNOS抗体和15-LO抗体通过Western blot检测磷酸化型含量,问接测定eNOS活性,结果表明15-HETE增强Thr495磷酸化型eNOS含量。由于Thr495为eNOS抑制性磷酸化位点,因此15-HETE降低eNOS活性。这些数据表明:15-HETE的缩血管作用有eNOS/NO参与,15-HETE可以通过磷酸化Thr495位点降低eNOS活性,并且首次发现磷酸化eNOS(Thr495)和15-LO之间存在蛋白质相互作用。  相似文献   

18.
We have previously reported that 15-hydroxyeicosatetraenoic acid (15-HETE) stimulated the 5-lipoxygenase in the murine PT-18 mast/basophil cell line to produce leukotriene B4 and 5-HETE from exogenously added arachidonic acid. In order to determine the structural requirements in the HETE molecule that are necessary for the activation of this 5-lipoxygenase, various isomeric HETEs, derivatives and analogs were prepared, purified and tested. The order of stimulatory potencies was: 15-HETE acetate greater than 15-HETE = 15-hydroperoxyeicosatetraenoic acid (15-HPETE) greater than 5-HPETE = 12-HPETE greater than 5-HETE. 15-HETE methyl ester, 12-HETE and prostaglandin E2 were ineffective over the concentration range tested. Several diHETEs were also tested. 5S,15S-DiHETE was somewhat less potent than 15-HETE, whereas both 8S,15S-diHETE and leukotriene B4 were inactive. The calcium ionophore A23187 was much less effective than 15-HETE. These structure-activity studies indicate the importance of the nature, position and location of the various functional groups in the HETE molecule and suggest that a specific recognition site is involved in the activation of the 5-lipoxygenase in PT-18 cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号